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Numerical Study of Sound Refraction by a Jet Flow. II. Wave 
Acoustics 

L. K. SCHUBERT* 

University of Toronto, Institute for Aerospace Studies, Toronto, Canada 

The equations appropriate to the propagation of sound in a realistic jet flow have been solved by finite- 
difference methods for the case of a sinusoidal point source on the axis of a subsonic jet. Each numerical 
solution provides detailed phase and amplitude information throughout the sound field. At the high- 
frequency limit the finite-difference results agree with ray-tracing results. Also, the computed farfield 
directivity patterns generally agree with available experimental data and lend further support to the view 
that the downstream "valley" in jet noise is due to refraction rather than to the inherent directivity of the 
sound generated within the region of turbulence. Unexpected findings are that the flow beyond 100 nozzle 
diameters continues to deepen the refraction valley significantly, and that the sound-pressure level reduction 
at a fixed point on the axis at first increases as the source is moved downstream from the nozzle. For the 
application of the refraction results to the computation of jet noise directivity, it is found that the distortion 
of the constant phase surfaces can be neglected except at high frequencies. 

INTRODUCTION 

The motivation for the present study of acoustic 
radiation from a simple source in a jet flow has been 
stated in a companion paper treating the high-frequency 
limit. • Briefly, the objective is to complement and ex- 
tend experimental results •'-e and thereby to corroborate 
the refraction interpretation TM of the downstream 
"valley" in jet noise. 

As in most of the cited experiments, the model con- 
sists of a harmonic point source located on the axis of 
an axisymmetric jet flow. • A distinctive feature of the 
present study is the use of entirely realistic velocity and 
temperature profiles. Earlier studes •'-•e were based on 
highly idealized flow models (e.g., a nonspreading jet) 
and exaggerated the refraction effects by orders of mag- 
nitude. The physical model in principle admits turbu- 
lence, but turbulent scattering effects are suppressed in 
the final wave equation. To avoid the boundary condi- 
tion of a solid jet nozzle, an unconfined convergent flow 
which supplies the jet flow is presumed to lie upstream 
of the nozzle plane. The exact nature of this "antijet" 
has been found to be unimportant as far as the down- 
stream sound field is concerned. A constant-momentum 

antijet and a constant mass-flow antijet gave virtually 
indistinguishable results. 

At the high-frequency limit the pressure field of the 
source can be computed by ray-tracing methods. Such 

geometric-acoustics solutions are available from Ref. 
1; they should be in agreement with frequency-depend- 
ent results in the high-frequency limit. However, the 
frequencies of interest in jet noise are for the most part 
much too low for the application of ray-acoustics 
methods; instead a full wave-acoustics approach is 
required. 

To simplify this task it is advantageous to combine 
the basic fluid-dynamical equations into a single wave 
equation involving a single dependent variable. Two 
such wave equations are considered here, one expressed 
in terms of acoustic pressure and the other in terms of 
Obukhov's quasi velocity potential. •7 Both versions are 
approximate; in fact, no exact wave equation exists for 
a flow with vorticity. The quasipotential formulation, 
although based on more restrictive physical assump- 
tions, is computationally more convenient than the 
pressure formulation; therefore little use was made of 
the pressure formulation, except as a check on the 
quasipotential formulation where the latter is theoretic- 
ally suspect. 

In view of the complexity of the functions describing 
the flow field, a solution by numerical finite-difference 
methods was sought. The two versions of the wave equa- 
tion were treated identically. First the time dependence 
e -•t was divided out. There resulted a complex elliptic 
partial differential equation in the complex amplitude 
B of the pressure or quasipotential. Quantities related 
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to the phase and amplitude of B were chosen as new 
dependent variables. Unlike the sinuous variable B, 
these quantities are spatially monotonic over regions 
large compared with the wavelength. Even though the 
transformed wave equation is nonlinear, this fact facili- 
tated the application of finite-difference methods by 
greatly reducing the required number of grid points. The 
difference equations approximating the differential 
equation (numbering 578 in most cases) were solved by 
nonlinear block relaxation using a Newton-like method. 

I. DERIVATION, TRANSFORMATION, AND 
DISCRETIZATION OF CONVECTED 

WAVE EQUATION 

A. Pressure Formulation and Obukhov's Quasipotential 

then gives 

•t(• D•) Ovj Ovi 1 Op Op 1 O2p 4 ..... . (4) 
Ox• Oxj p2 0x• Oxi p Ox•Ox• 

The neglect of viscosity and heat conduction leads to 
the simple energy equation i7 

Os/Or =o, (s) 

where s is the instantaneous local entropy. Consequently 
the equation of state, applied to a moving particle of 
fluid, becomes 

Do 1 Dp 
.... . (6) 
Dt a • Dt 

The convected wave equation for uniform flow, 17 One can therefore expand the first term in Eq. 4 as 

___1( O•p (1) O•p (1)• O•p (1).nt_ 2 U ._[_ U •. 
a•\ Ot •' Ox•Ot Oxt • / 

(1) D(•Do) 1 D•p 1 (Dp•qlDa-2Dp •t • pa • Dt • p2a4\Dt / p Dt Dt 

expressed in terms of pressure as above or in terms of an 
acoustic velocity potential II, has sometimes been suc- 
cessfully applied to shear-flow problems. is This is some- 
what surprising, since no velocity potential exists in 
a vortical flow. Nevertheless, Eq. 1 apparently accounts 
for most of the refraction and diffraction due to spatial 
variations of U and a • in a jet flow. This conclusion has 
been reached after a careful numerical study of more 
accurate versions of the convected wave equation, which 
are derived below. 

The effects of turbulent scattering will ultimately be 
suppressed by dropping products of turbulent quantities 
with acoustic perturbation quantities from the wave 
equation. This is not equivalent to the neglect of turbu- 
lent velocity fluctuations in the physical model. In fact, 
a time-averaged jet flow would violate the fluid-dyna- 
mical conservation equations. 

Viscosity and heat conduction will be neglected 
herein. Their roles in the transport of momentum and 
energy within the jet flow are very minor compared to 
that of turbulent mixing. As far as the sound propaga- 
tion is concerned, viscosity and heat conduction merely 
contribute (along with molecular relaxation effects) to 
the attenuation of sound at large distances. 

The nonviscous momentum equation states that 

Dvi Ovi Ovi 1 Op 
--:-- •-v, .... (2) . 

Dt Ot Ox• p Ox• 

Differentiation with respect to xi and substitution of 
the continuity equation in the form 

Ovi 1 Dp 

Oxi p Dt 
(3) 

I D:p •/(Dp• • .... , (7) 
pa • DF p•a4\Dt / 

where the isentropic relation for an ideal gas /•a -• 
= -('y- 1)/(pa4)bp has been used. 

The second term of the right-hand side of Eq. 7 can 
be neglected if it is supposed that fractional pressure 
changes in the jet are very small, i.e., (p-po)/po = ef(x,t) 
where e<<l and f•0(1). In that case Dp/Dt•powf, 
D2p/Dt 2•. •pow2f, and the ratio of the second term to the 
first •(fpo/p)•<<l. This is rather a loose argument, 
since the symbol p lumps together aerodynamic and 
acoustic components. In a more careful treatment one 
finds that the quadratic term in Eq. 7 merely adds terms 
involving mean pressure gradients to the wave equation, 
and that all of these terms can be neglected under the 
somewhat more stringent assumption that fractional 
mean pressure variations are small compared to varia- 
tions in the mean velocity ratio. 19 

Substituting Eq. 7, without the quadratic term, into 
Eq. 4 one obtains 

1 D•p O•p Ovi Ov• 1 Op Op 
-- =p . (8) 

a • DF Ox•Ox• Oxi Ox• p Ox• Ox• 

This of course is equivalent to Lighthill's equation •ø and 
its variants, although the demonstration of equivalence 
in the general case (nonuniform mean density) by ex- 
pansion of the Lighthill source term O2(pv•vi)/OxiOxj 
and conversion from density to pressure on the left- 
hand side is more difficult than the derivation of either 

equation. Phillips' variant of the wave equation, •l how- 
ever, closely resembles the present version. Note that 
the right-hand side of Eq. 8 includes not only sound 
generating terms, but also sound propagating terms, such 
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as k(OU/OxO(Ou•./Ox•) (where U and u•. are mean and 
acoustic velocity components). 

When D/Dr is expanded, Eq. 8 becomes 

1/O•'p O•'P q-vivj O•'p • O•'P •Ot2"+2VioxiOt OxiOx---•.i OxiOxi 
OviOvi 10o Op 

Oxi Oxi p Oxi Oxi' 
(9) 

The term (Dvi/Dt)(Op/Oxg) resulting from the second 
application of the D/Dr operator has been discarded, 
since it is equal to -p-l(Op/Oxg)2 by Eq. 2. Its retention 
would lead to further terms in the final wave equation 
involving mean pressure gradients. Like those resulting 
from the retention of the last term in Eq. 7, they turn 
out to be negligible. 

One may replace p, vi and p by p(0)_+_p(1), w•-l-ui and 
p(0)_[_p(1), respectively. The first part of each sum cor- 
responds to the value in the absence of injected sound; 
the second part is the additional perturbation due to the 
injected sound. Neglecting second-order terms and 
products of acoustic perturbations.with pressure gradi- 
ents, and subtracting the equation valid when no in- 
jected sound is present (this automatically eliminates 
terms associated with the generation, propagation, and 
scattering of aerodynamic jet noise), one obtains 

1 (02p (1) 02p (1) 02p(1) ) 02p (1) -- + 2w• +w•%, 
a2\ Ot 2 Ox•Ot OxiOxj• Ox•Ox• 

Owi Owj Ow• Oui 1 0p © Op (1) 
_ p (1) ..... {- 2p 

Ox 
(lo) 

Scattering of the injected sound by the turbulence can 
now be suppressed by replacing a 2, p(0), and wi by their 
local time averages a•', F, and Ug. If in addition Ug-• U/•gl 
(i.e., unidirectional flow), then Eq. 10 becomes 

l(O•.p(•) 02p(1) 09'p (1)) 02p (1) •\ Ot •' +2U +U •' Ox•Ot Ox• 2 Ox•Ox• 

OU• •' OU Ou5 1 Ok Op (1) =P(1)\•xl/ nt-2fiOxy Oxx • Oxi Ox• (11) 

Since the flow in a jet is nearly parallel, OU/Ox• is small 
[Io(u/uj)/O(x•/D)I <0.1 for the' jet; by contrast 
I O(S/S•)/O(x•./D)lm•x• 1.2 at the end of the mixing 
region] so that it seems reasonable to retain only 
2kOU/Oz Ou•/Ox•, where z=(x•?-l-xs•) •, of the second 
source term in Eq. 11. The first source term is appreci- 
able only at very low frequencies, as may be ascertained 
by writing p(•) as (a•')-•p (•) and comparing with the first 
term of the left-hand side (term is important for 
wx<OU/Ox•, i.e., fx<O.O16M•a•/D; e.g., at M•=0.5, 
D=0.75 in., the threshold is f= 142 Hz). 

Thus one arrives at the approximate wave equation 

OU Ou: 1 Ok Op (•) 
=2)--- --. (12) 

Oz Oxx k Ox• Oxg 

Because of the presence of the shear term 

2kOU/Oz Ou:/OXl, 

this equation can be solved independently of the mo- 
mentum equation only under conditions when (i) 
Ou:/OXl is expressible in terms of p(1) or (ii) the effect of 
the shear term on the solution is slight (this can occur 
even when the shear term is not small). 

In general (i) is false. However, when the Mach num- 
ber M•<• •0.1 and the mean density is uniform, Ou:/Ox• 
is approximatel? • (iwk)-•O•p(1)/Ox10z. The main use 
made of this approximation was to determine conditions 
under which (ii) holds and to check the quasipotential 
formulation discussed below. The inclusion of the ap- 
proximation in the wave equation ultimately leads 
to a considerable complication of the numerical 
computations. 

Regarding (ii), it turns out that both the shear term 
and the density gradient term on the right-hgnd side of 
Eq. 12 vary like w -• compared to terms on the left-hand 
side (note that they contain only singly differentiated 
perturbation quantities, whereas all terms on the left- 
hand side contain double derivatives). Consequently 
their relative contributions to the solution should 
diminish with increasing frequency. Studies of both 
terms by the finite-difference methods described herein 
are reported in Ref. 22. An integral estimate of shear 
term effects, which corroborates the finite-difference 
results, is also given there. The conclusions are that the 
density gradient term is unimportant at jet noise fre- 
quencies, whereas the shear term appreciably enhances 
the downstream radiation at the expense of upstream 
radiation. This reduces the depth of the axial valley by 
about 1.8 dB for each 0.! increase in Mach number, ir- 
respective of the frequency. For frequencies f<O.5a/ 
D (X> 2D) the reduction becomes too large a fraction 
of the over-all valley depth to be ignored. This fre- 
quency limit, though established for low Mach numbers 
only, is thought to be typical at higher Mach numbers 
as well, since both the shear term and the main refrac- 
tion term in the wave equation are proportional to Mi. 

The limited usefulness of the pressure formulation of 
Eq. 12 without the shear term, and the awkwardnesi of 
computations with the low Mach number approxima- 
tion to the shear term, motivated an attempt to formu- 
late the convected wave equation in terms of some quasi- 
velocity potential. It is shown in Ref. 22 that assump- 
tions of uniform entropy, small w and w-derivatives 
([wl<<a, IVXwi<<w, ] (w.V)(Vxw)l<<•01Vxw[), neg- 
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FIG. 1. The finite difference grid. Only the first 13 of the 19 circumferential grid lines are shown. Here the source is at the center of 
the nozzle. 

ligible turbulent scattering, and unidirectional mean 
flow lead to the equation 

0211+2 0211 0•'II \ Ot 2 U q- Ox•Ot 

0211 i 02 U 0II 
--=0 (13) 

OXiOXi O00XiOXi OXl 

for a quasipotential II related to the acoustic pressure 
and velocity by 

p(•) OH OH 
.... [-wi (14) 
p(o) Ot Oxg 

and 

0H 

Oli ft owi oli owj Oli) ( • .... dt. (15) 
Ox• \•x• Ox i Ox• Oxi 

II is a special case of Obukhov's quasipotential, •7 for 
nearly uniform density and a sinusoidal source of sound. 

For constant density, Eq. 13 is identical in form to 
the pressure equation (Eq. 12) except for the extra term 
involving the Laplacian of the mean velocity. Here the 
extra term is of order o• -2 compared to other terms, so 
that its contribution to the solution should again di- 
minish with increasing frequency. Numerical studies of 
this contribution (which are relatively easy in this case 
since only the single dependent variable II is involved) 

450 Volume 51 Number 2 (Part 1) 1972 

have shown that it is qualitatively similar to the con- 
tribution of the shear term in the pressure formulation. 
However, it diminishes the depth of the axial valley by 
only about ! dB for each 0.! increase in the Mach num- 
ber, so that it can be ignored down to lower frequencies 
(f•O.15a/D, or X•7D). Judging from comparisons of 
computed results (obtained by the finite-difference 
methods to be described) with the experimental evi- 
dence, •'-6 it may be permissible to omit the extra term 
from Eq. 13 at even lower frequencies. Physically, this 
suggests that the part of the sound field induced by the 
mean flow vorticity is itself solenoidal. For if the di- 
vergence of ug' in Eq. 15 is assumed to vanish, then Eq. 
13, without the last term, is satisfied irrespective of the 
Mach number. 

In spite of its theoretical limitations, the potential 
formulation has been found to be consistent with the 

pressure formulation in all cases where the pressure 
formulation is demonstrably valid. 2•' This includes high 
Mach number and high temperature cases. After the 
initial compatibility studies, therefore, most computa- 
tions were done with the less cumbersome potential 
formulation. 

Both formulations remain suspect at low frequencies 
(f<O.15a/D), when the Mach number is not low 
(M>0.1). Results in this regime appear to agree with 
experiment, but clearly cannot be considered reliable. 

B. Transformations and Finite-Difference Formulation 

If the harmonic sound field generated by the simple 
source is written as p(•) (or II)=B exp(--io•t), then the 
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time dependence can be eliminated from the convected 
wave equation, so that Eq. 1 (or Eq. 13, without the 
last term) becomes 

02B OB 
W'ø'B--M •. q-2iMW--q-W•B=O (16) 

0•12 

in terms of the dimensionless quantities •=xi/D, 
M = U/a, and W =ooD/a (these are functions of position 
in general). Note that the three parameters Mj= Uj/as, 
Wo=ooD/ao, and C=as/ao fully determine the solution 
for a given source position. The real and imaginary 
parts of Eq. 16 give two linear elliptic equations involv- 
ing the real and imaginary parts of B. 

Of the known methods for the approximate treatment 
of partial differential equations, a numerical finite- 
difference approach was judged to be the most easily 
implemented. A spherical polar grid was chosen since B 
is expected to be a simple function of the radial distance 
r for large r. This simplified the farfield boundary condi- 
tions. The grid lies between two source-centered circles, 
one of very small and one of very large radius. Appropri- 
ate boundary conditions on these circles are formulated 
later. 

It was soon realized that an extremely large number 
of grid points (104 to 107 , depending on the frequency) 
would be required to resolve the fluctuations in the sinu- 
ous variable 

On the other hand the amplitude A and phase $ should 
vary monotonically with distance; if A is written as 
x/a and ß as a•, where a=r/D, then x and • should be 
nearly constant and a much coarser grid will suffice to 
delineate them. This advantage easily offsets the dis- 
advantages associated with the nonlinearization of Eq. 
16, which is a consequence of the transformation from B 
to x and ,I,. 

For convenience x was replaced by its decibel value 
S=# In(x/x0), where # and x0 are constants. Now the 
largest variations in S and ,I, are expected to occur near 
a=O and near tanO=O where 0 is the angle with the jet 
axis, while at larger values of a and tanO these variations 
should subside. Thus the grid spacing may be allowed to 
increase with • and tanO. The transformations rt=lna 
and tan0=a • tan•, where a•< 1, 2a give the desired varia- 
tions of the grid spacing in real space when constant 
spacing is used in 7, •'-space. The grid is shown in Fig. 1. 

The foregoing transformations can be summarized as 

B=x0 exp(• •q-ie,,It), 
r/= In (•jl•-[ - •-1- •a•)l, (18) 

B: A exp(i•): A cos•q-iA sin•. (17) and these convert Eq. 16 to the mildly nonlinear form 

R2--M•Q • O•S O•S O2S R•q-M•P•--3M•Q • aS 
----k 2M•PQ q-R•(R• -- M•P •) 

R • O• • O•O•' O• '• R • 07 

--e TM MPR --W 

R•--M•Q • 0• 0• 0• R•--M•P•+M•Q • O• 
---½2M•PQ +R•(R•--M•P•)--q 

R • O• • 0•0• O• • R • 

[• ]O•M'P'--2M'Q' MQ + (R•--2M•P•)+2PQ½•--a-•)(R•--M•P•) Or R • •--2W R 

2{OS(•+O• 5 OS O• FMQc o• o• +- q-• •R • 
Or 

where P=• sin•, Q=•-• cos•, R=(P•+Q•) i. Inserting the usual finite difference approximations 

aS S•o-S_•o aS So•-So_• O•S S•o-2Soo+S-•o 
. 

O• 2H O• 2K O, • H • 

O•S Sol--2Soo+So-1 O•S Sll-Sl-l-S-11+S-l-1 

O• • K • O•O• 4HK 

Real 

Part 

Imaginary 

Part 

(19) 

(20) 
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and similarly for ß for uniform grid spacing H and K in 
r• and i', respectively, one obtains the discrete analogs 
fRe(i,j)=f•m(i,j)=O corresponding to Eq. 19; fRe and 
fire, often called "point residuals," are defined for each 
internal grid point (i,j). Explicit expressions are given 
in Ref. 22; the required additions to f•e and fire, if it 
is desired to include the extra term --io•-iV2UOII/Oxl in 
the II formulation, can also be found there. That the dis- 
crete equations are in fact approximations to the 
analytic equations, with errors of order H 2, K •, and HK, 
follows from Taylor's theorem if it is assumed that the 
partial derivatives of S and ,r, up to the fourth, are 
bounded in the domain of solution. 

To complete the formulation of the discrete problem 
it remains to state the boundary conditions. Because of 
the axisymmetry of the source-jet configuration it is 
natural to restrict 0 to the interval 0, r. Thus there are 
three boundary segments: the innermost and outermost 
circumferential grid lines and the symmetry axis. 

The inner boundary condition is critical in that it 
effectively specifies the characteristics of the source. 
Two questions arise in the formulation of this condition' 
what is the nearfield of a point source in an unbounded 
uniform flow, and how is this nearfield modified, if at all, 
by the presence of the jet edge and other nonuniformi- 
ties in a jet flow? 

In a recent theoretical note on moving point sources, 
Graham and Graham •4 have pointed out that the notion 
of a "simple source" in a uniform flow is not uniquely 
defined (except at the high-frequency limit). For ex- 
ample, the field of such a source may be construed as 
a discrete-tone Green's function for the convected wave 

equation with either pressure or potential as dependent 
variable; but it is easily verified that the solutions of 
a-•'D•'p(•)/Dt •-- V2p (1) = •(x--y) exp(--io•t) and a-•D•II/ 
Dt •'-- V•II =5(x--y) exp(--io•t) are not equivalent. It is 
not certain which choice corresponds more closely to 
experimental "simple sources." However, directivity 
patterns corresponding to different choices of theoretical 
source type show little difference in refraction effects; 
instead, the differences take the form of a general down- 
stream enhancement (at the expense of upstream radia- 
tion) of greater or lesser magnitude. For consistency 
with earlier theoretical work, the Green's function for 
the potential (see, e.g., Refs. 14, 17) has been taken as 
basic here. 

The question of possible effects of flow nonuniformi- 
ties may be dealt with as follows. Consider an integral 
iteration in which the nearfield of the source is sought 
by regarding 

2--1 ["(a. ) (2U.O•'II/Ox10t+U.•O2II/Ox1 •) 
-- (d 2)-1(2 U 0qI/0Xl Ot-3 !- U202II/0Xl 2) ], 

where the subscript s denotes values at the source, as 
a forcing term in the convected wave equation. If the 
potential corresponding to uniform velocity U8 and 
sound speed a8 is used as "zeroth" approximation, 

subsequent iterations are found to add terms at most of 
order lnr. Thus the uniform-flow part of the solution, 
which is of order r -1, predominates close to the source. 
This has been verified • for Moretti and Slutsky's ana- 
lytical velocity potential corresponding to a point 
source in a nonspreading jet. TM 

The appropriate velocity potential in a uniform flow is 

_io•Itq_r M cos0 -- (1-- M 'ø' sin20)•l } a 1 --M •' 
q exp 

II = (21) 
4•rr(1 --M • sin•0) « 

where q is the amplitude of the total volume flow away 
from the source. The transformation to S, ,I, satisfies 
II=X0 exp[S/•-•q-i(e,I•--o•t)• so that the inner 
boundary conditions for II are 

S--C1-(•/2) ln(1--M • sin•0), 

(1--M 2 sin•0),•--M cos0 (22) 
,I,=W . 

1 --M 2 

Equivalent conditions for p(1) can be obtained from 
p(1) =•Dii/Dt.• In order that Conditions 22 be approxi- 
mately valid on the inner boundary, the radius of that 
boundary must be chosen small enough. Experimenta- 
tion with various radii has shown that the value rid 
=0.25 is generally adequate. 

The outer boundary conditions were based on the 
expansions (at fixed 0) 

S = Soo"JF-S1/o'+ S2/ o'2"JF -''' , 
(23) 

In most computations 25 the outer radius was a=r/D 
= 100. At this distance, the first two terms in the ex- 
pansions were found to suffice, in that no reflections 
from the boundary were discernible. On the other hand, 
pronounced standing waves were produced if the ex- 
pansions were truncated after the first term. The dis- 
crete analogs of Eq. 23, up to orders a -1, are found to be 

4Sm_l,i-- (2 --H)Sm_•,i 
Sm,•= , j=2,3, ß ß .,n--l, 

2q-H (24) 
4•m_l,i--(2--H)•m_2j 

,r,,.j=-- , j=2, 3, ...,n-l, 
2+H 

where m and n are the number of circumferential and 

radial grid lines, respectively. When H is small, Sm.j 
and 'I'm,i approach the values corresponding to linear 
extrapolation, so that the discretization error is of order 
H 2 . 

The usual method of extracting symmetry boundary 
conditions from the basic difference equations them- 
selves, by applying the equations at points on the 
boundary and using mirror-image values at missing grid 
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points,'fails in the present case. The reason is that the 
difference equations are identities on the jet axis. Axial 
values of S and ,I, were therefore computed by quadratic 
interpolation through the two nearest points on the 
same circumferential grid line, with a zero slope condi- 
tion imposed at the axis. Thus the symmetry boundary 
conditions are 

4Si,2--Si,a 4xIti,•.--xlti,a 
Si,1 • , xlt i,1 • • , 

3 3 

i=2,3,-..,m, (25) 

and similarly for Sg.n and xI,•.n. The discretization error 
in these approximations is of order K 4, since only even 
terms are present in the Taylor expansions of S and ,I, 
about • =0. 

The discretization error in the complete set of finite- 
difference equations is thus quadradic in the grid spac- 
ing. However, in view of the state of the art in proving 
the convergence of discrete solutions to the solutions of 
corresponding continuous problems, it will be assumed 
rather than proved that the solution of the present dis- 
crete problem converges. The plausibility of this as- 
sumption was confirmed by solving the discrete equa- 
tions for a succession of grid densities and observing 
that the solution appeared to approach an asymptotic 
limit at small H, K. In the simple case of uniform flow, 
the asymptotic limit satisfactorily approximates the 
analytical solution, Eq. 21. For a jet flow the asymptotic 
limit is consistent with the experimental evidence and, 
at the high-frequency limit, with ray acoustics (see Sec. 
III). 

II. SOLUTION OF NONLINEAR 

DIFFERENCE EQUATIONS 

The Jacobian J of the system of algebraic equations 
derived from the discrete analogs of Eq. 19 and the 
boundary conditions satisfies none of the conditions 
usually postulated to ensure the stability of point or 
block iterative methods of solution. It is not symmetric, 
nor diagonally dominant (the largest elements, by sev- 
eral orders of magnitude, are those associated with the 
'I,-derivatives of fRO, nor positive definite, nor probably 
amenable to a regular splitting (J = P-Q; P-•, Q/> 0) as 
it contains positive off-diagonal elements. •'6 The same is 
individually true of each quadrant of J, and of many of 
the tridiagonal blocks that constitute each quadrant. 

Nevertheless, nonlinear block iteration can be made 
to work, if each block is chosen to consist of the equa- 
tions corresponding to at least three neighboring radial 
grid lines. No viable alternative to this method was 
found; for example, minimization methods invariably 
stagnate at spurious minima. 

The block iteration may be described as follows. Let 
x represent the unknowns on l adjacent radial mesh 

lines (numbered j, j+l, ..., j+/--1), i.e., 

X = (SI,j,S2,j,. ß ß ,Sm-2,j; Sl,jq-l,S2,jq-l,. ß ß ,Sm-2,jq-13 ' ' ' 3 
Sl,jq-l_l ,S2,j+l_l, . ß ß ,Sm--2,jq-l--1; Xltl,j, xlt2,j, ' ß ß ,xltm--2,j 3 
xlq,5+•,•.,5+•, ' ß ß ,•m-•,5+•; ' ' '; 

•,•+•-•,•-,5+•-•, ' ' ' ,•m--•,5+•--0 v- 

Also let f be the vector comprised of the "point re- 
siduals" fae(i,j) and fxm(i,j) at the internal points of 
these grid lines, i.e., 

j); fa(1, jq-1), 
fae(2, jq-1); ...; 
fae(1, j+l-- 1),fa(2, jnt-I -- 1),. ß., 
fa(m--2, j+/--1); fXm(1,j),fXm(2,j),''', 
fxm(m--2, j); fXm(1, jnt-1),fXm(2, jq-1),' ß ', 
fxm(m--2, j-I-l); '''; fXm(1, j+/--1), 

fm(2, j+l-- 1),''' j+l-- 1)3 

An "inner" iteration suppresses all components of f for 
a particular j, while the "outer" block iteration re- 
peatedly carries j through the values j=2, 3, ..., 
n--1. The inner iteration is 

x (v+•) = x (v) +t(v)d (v) (26) 

with d © obtained by direct solution of 

A(v)d(v)=--f (v), (27) 

where A (v) is an approximation to J-• and t © is a scalar 
chosen so that IIf(•+•)11 IIf(>11, thus ensuring nondi- 
vergence of the inner iteration. For A (v)m[j(v)•-• and 
t(v)= 1 this is the generalized Newton-Raphson itera- 
tion. •'7 Methods of this type have received a good deal 
of attention in the recent literature. •'8 The most popular 
variant, however (Broyden's fs/r quasi Newton 
method2ø), is unsuitable in the present application be- 
cause of excessive demands on storage and inefficiency 
of the procedure for updating A (v). Even with an im- 
proved updating procedure aø the convergence of Eq. 26 
was not appreciably accelerated; therefore A © was 
kept constant at an initial approximation A (0) obtained 
by numerical differencing. 

A (v) is a 2/(m--2) by 2/(m--2) matrix consisting en- 
tirely of (m--2) by (m--2) tridiagonal submatrices 
(some of them null). The method used for the direct 
solution of Eq. 27 takes advantage of this fact. It is 
a generalization of the well-known algorithm for re- 
ducing tridiagonal systems. •'6 At each step in the elimi- 
nations 2l equations are used simultaneously to elimi- 
nate 4l •' elements of A (v) (i.e., one subdiagonal element 
of each submatrix); at each step in the back-substitu- 
tions, 2l components of d © are found simultaneously. 
This facilitated the rapid evaluation of Eq. 26, with x 
composed of up to 238 unknowns (/= 7, m= 19). 

Within the frequency-Mach number domain fM 
•<O.135a/D 19 circumferential and radial grid lines 
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LATERAL DISTANCE FRE• 
SEDRCE• IN NOZZLE DIAMETERS 
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"• • "' _ _•_c• i .......... --' 

Fro. 2. SPL for coD/ao 
=1.055, Mi=0.1. Constant 
SPL contours at intervals of 2 
dB. (Ti•-- T.mb)/T.mb=O. Dis- 
tance from nozzle=0. Program 
parameters' M= 19, N=19, 
tan0/tan•- = 0.289. Frequency- 
3000 Hz for •-in. jet. 

(re=n= 19) sufficed to delineate the solution accurately. 
The iteration block size required for stability varied 
from/=3 to/-5 in this regime. For fM>O. 135a/D the 
discretization error increased rapidly, but any increases 
in rn and n would have led to prohibitive computing 
time, storage and stability problems. For this regime, 
therefore, the solution was recomputed for a succession 
of fan-shaped domains making smaller and smaller 
angles with the jet axis. Whenever the solution near 
the axis converged after very few such steps, the result 

was accepted as accurate. In this way the fM product 
was pushed up to about 0.28 aid (less for heated jets). 

III. RESULTS AND DISCUSSION 

The contour plots of sound-pressure level (SPL) and 
phase in Figs. 2-4 (interpolated from the finite-differ- 
ence results) serve to portray the general character of 
the results. The convergence of the discrete solution 
with increasing grid density is illustrated in Fig. 5. A 

LATERAL O"[STANEE 
.•EI_I•CE'_, IN I'qlDZZLE 

.,..., .," ' ...... 100 i ................. 

,/"/ '"" ......... "'"• • ..... [- ...... --•"•5•__ ""% 
/ :' .-' t -" 1 ' 
' / /" .--:'-:2h-_. 

/ / / :'½:----NCZ'. 1 / / / / - •-L-_ - '• \ ,' .... ' 
.... I i / ,-' ..•- •h•-'•ox" \ ',• • /' ,," .,,." ..,-' 

: .... _ - _v.. I : _"" '•" -2•.•- 

---•-=---•. _ '--•-.-_ •••-•• 

"• 'x•.•_ .... _ .... . ........ ß /.,// //// 

Fro. 3. SPL for •oD/ao 
=1.055, M•=0.3. Constant 
SPL contours at intervals of 2 
dB. (Ti•-- T•b)/T.•b=O. Dis- 
tance from nozzle=0. Program 
parameters' M=19, N=19, 
tanO/tan•=0.289. Frequency' 
3000 Hz for i-in. jet. 
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Fro. 4. Phase for o:D/ao 
= 7.03, Mj =0.0632. Constant 
phase contours at intervals of 
20•r rad. (Tier-- ramb)/ramb=0. 
Distance from nozzle=0. Pro- 

gram parameters: M=19, N 
= 19, tan0/tan•' =0.289. Fre- 
quency' 20000 Hz for -•-in. 
jet. 

LATERAL O!STANCE FROM 
SOU•iE, IN NOZZLE DIAMETERS 

DOWNSTREAM DISTANCE FROM 
SOURCE,IN NOZZLE DIAMETERS 

d 

-20 

o 

-lO 

-3o 

-40 

'500 20 40 60 80 lOO 
DEGREES 

Fro. 5. The behavior of the solution as a func- 
tion of the number of circumferential and radial 
grid lines at very low Mach number (a) Behavior 
of directivity pattern at 100D. (b) Valley depth 
at 100D. 
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Fro. 6. High-frequency limit of refraction patterns for unheated 
and slightly heated jet, using ray-tracing (by methods of Ref. 1) 
and finite difference method. Mi=0.01, source at 2D, observer 
100D from source. 

comparison of finite-difference results and ray-tracing 
results is shown in Fig. 6 (also phase, Fig. 16). The tran- 
sition from wave-acoustic behavior was found to be 

nearly complete at f• 6a/D (D/X,,• 6), in the sense that 
further frequency increases cause only a small fractional 
change in the decibel depth of the axial valley. 

A. Sound-Pressure Level 

Figures 7-9 compare computed and measured direc- 
tivity patterns at 100D for several frequencies and Mach 
numbers. 5 The agreement is good at the lower frequen- 
cies and Mach numbers (fM<,•,O.O65a/D). When the 
term ioo-lV•'UOII/OXl is omitted from Eq. 13, the com- 
puted refraction valleys are slightly deeper than those 
measured; when it is included, the agreement becomes 
nearly exact for the angular range -8ø<• 0<• 8 ø, but the 
computed SPL then lies above the measured value for 
0> 8 ø. The remaining differences probably stem from 
the choice of inner boundary conditions. As remarked 
earlier (Sec. I-B), the nearfield characteristics of the 
experimental point source are not known with certainty. 
At the higher frequencies and Mach numbers the com- 
puted valley becomes considerably deeper than the 
measured valley (Fig. 9). Now the behavior of different 
"simple source" types becomes indistinguishable at 
sufficiently high frequencies, and the accuracy of the 
wave equation is known to improve with increasing fre- 
quency; therefore, these discrepancies are attributed to 

t 0 
-1( 

DEGREES 

• -20 

• <30 

-40 

0 10 20 30 40 50 60 70 80 90 

= 1.055 

- • EXPERIMENT [.5] 

I 
•Wo=1.76 .,•-.-•-[I-FORMULATION WITH EXTRA 

•TT•iI]•]]•THEORY TERM (UPPER CURVE) '•"-•--rI-FORMULATION WITHOUT EXTRA 

-•-- TERM 
• Wo =2.46 

, 

-50 

Fro. 7. Comparison of computed and experimental refraction patterns for several frequencies (Wo=coD/ao= 1.055, 1.76, 2.46, i.e. 
3000 Hz, 5000 Hz, 7000 Hz for 0.75-in. jet). Mi=0.3, temperature ambient, source at 2D, observer 100D from source. 
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Fl. 8. Comparison of computed and experimental refraction patterns for several Mach numbers (My=0.3, 0.5, 0.9). Wo=o:D/ao 
1.055 (3000 Hz for 0.75-in. jet), temperature ambient, source at 2D, observer 100D from source. 
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Fl. 9. Depth of refraction valley as a function of (a) frequency (Wo=o:D/ao) and (b) Mach number. The extra term referred to is 
ioo-•V•'UOII/Ox•. Source at 2D, SPL measured 100D from source. Note that when the valley becomes deeper than about 20 dB, the error 
grows rapidly. 
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Fro. 10. Circumferential variation of amplitude and phase at several distances; fixed parameters' W0= 1.055 (3000 Hz for l-in. jet), 
Mi=0.7, source at 2D, temperature ambient. 

experimental error. In particular, it is postulated that 
the measured directivity is a superposition of the true 
refracted field and a weak secondary field caused by 

• THEORY 

.... EXPERIMENT ['3,4] 

Fro. 11. Polar plots of theoretical and experimental refraction 
patterns for hot and cooled jets Wo=toD/ao=11 055 (3000 Hz for ß , ß 

0.75-in. jet), observer 100D from source. 
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reflections from experimental equipment. This second- 
ary field has only a shallow axial valley because of the 
wide distribution of reflecting surfaces. When the true 
valley depth becomes deeper than the secondary field 
(this appears to occur at a valley depth of about 20 dB), 
the apparent valley depth is constrained to the level 
of the secondary field. 

Except at the very highest (near ray-acoustic) fre- 
quencies the width of the axial valley is virtually 
frequency-independent, reaching half its decibel depth, 
relative to the value at 0=30 ø, at 0=7.7 ø. The width 
changes little with distance from the source, at least for 
r/> 7D EFig. 10(a)-]. 

The depth of the valley, however, continues to grow 
for very large distances from the source. For example, 
at f=O. 17a/D the decibel depth doubles beyond 100D. 
Beyond 5000D, little further change occurs. 

The numerical results for heated and cooled jets (Figs. 
11-13) show more powerful refraction effects than were 
experimentally observed. As the finite-difference re- 
sults for heated jets are supported by ray-tracing results 
at the high-frequency limit, the differences are tenta- 
tively attributed to the effects of buoyancy on real 
heated or cooled jets. The buoyant forces spoil the sym- 
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Fro. 12. Computed temperature effect (•D/ao= 1.055, Mj=0.5, source at 2D). (a) Downstream directivity at 100D. (b) Variation of 
SPL at 0=0 ø, r? 100D with temperature. 

metry of a horizontal jet by curving the center line and 
may thus reduce refraction. 

Figure 14 shows the variation of valley depth with 
source position at several frequencies. Experiments a 
had revealed the surprising fact that refraction varies 
little for a range of axial source positions of interest for 
jet noise (0-8D). According to computed results there is 
actually an initial increase in refraction as the source is 
moved downstream. This may indicate that reflections 
in the initial part of the jet, which tend to cause axial 
enhancement of the intensity, more than offset refrac- 
tion effects there. 

The following simple procedure may be used to esti- 
mate SPL's in approximate agreement with computed 
results (for f<x 0.55 a/D). 

(1) Find S• as the ordinate corresponding to the 
given Wo(=wD/ao) for the lower broken line in Fig. 
9(a). Use the linear continuation of the curve if 
necessary. 

(2) S2=MjS•/0.3. 
(3) Sa=S•.q-M•X(ordinate corresponding to the 

appropriate distance in Fig. 15). a• 
(4) Find the ordinate S4 corresponding to 0 on the 

100D curve in Fig. 10(a). 
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Fro. 13. Directivity patterns for a hot jet at various Mach numbers. Fixed parameters' •D/ao= 1.055, jet temperature= 500øF, source 
at 2D. (a) Downstream directivity at 100D. (b) Variation of SPL at 0=0 ø, r-- 100D with Mach number. 

The Journal of the Acoustical Society of America 459 

 16 June 2024 19:57:58



L. K. SCHUBERT 

SPL re 8 = 90 ø 
(dB) 

8 DEGREES • 

0 I0 20 30 40 50 60 70 80 90 I0 20 30 40 50 

64D l I I I I I I I I I I 
32D - I0 

- zO 
16DI --/// / 

I/// wo 
2 D -30 
4D 

- 40 

8D 
-50 

-60 

-70 

SOURCE POSITION, NOZZLE DIAMETERS • 

60 70 8 0 90 I O0 
I I I I I I I I 

.76 
W•= 2.46 (b) 

Fro. 14. Effect of source position on refraction valley. Fixed parameters' My=0.3, temperature ambient. (a) Directivities for a suc- 
cession of axial source positions with source-observer distance fixed at 100D. (b) SPL at 0-0 ø, 100D from the nozzle, as a function of 
source position (for three frequencies). 
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Fro. 15. Deepening of axial valley with 
distance, per unit Mach No. (approximate, 
based on several frequencies). Temperature 
ambient, Wo=toD/ao. 
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(5) S•=SaS4/35.1. 
(6) SPL relative to 0=90 ø•Ss-}-10Mj cos0 (correc- 

tion for the last term in Eq. 13). 

This estimate applies to unheated jets. Heated jets 
pose a problem, because of the discrepancies with ex- 
periment and also because the SPL is apparently not 
linear in Mach number for hot jets [Fig. 13(b)•. As a 
crude correction one may add 

E1.8-Mj- (0.692-1.6M•+M?')•3 

X Tj/To--0.565--45 dB 
to the depth of the valley and scale up values at 0•0 
proportionately. It should be kept in mind, however, 
that this decibel correction may be too large by a fac- 
tor of 2 or more for a real jet. 

B. l•hase 

It was shown in Ref. 1 that the surfaces of constant 

phase must become more and more nearly spherical far 
from the source, even though the phase differential 
between 0=0 and 0=r/2 increases without limit. It 
turns out that the distortion of these surfaces from 

spherical shape is slight at all distances from the source, 

except for the very highest frequencies. For example, at 
f=O.17a/D the axial phase lag at 100D relative to 
quiescent values is only 1.42 rad, as compared to a lag 
of 10.6 rad that would be observed if the axial phase 
velocity were the sum of flow speed and sound speed. 
The reason is that the bulk of the sound near the axis 

has leaked in by diffraction from outside, so that it tends 
to be phase-locked to the outside pattern. The circum- 
ferential phase variation at several distances is shown in 
Fig. 10(b). The axial phase variation for a large range 
of frequencies is plotted in Fig. 16. No procedure for 
reconstructing computed values, like that given for the 
SPL, has been devised for the phase. This was con- 
sidered unnecessary since for jet noise applications the 
phase information can usually be dispensed with, as will 
be seen below. 

C. Application to Jet Noise 

In Ref. 6 it was assumed that the directivity pattern 
for jet noise at a particular frequency (i.e., the variation 
of SPL with 0, in decibels) is essentially the directivity 
pattern without allowance for refraction plus the corre- 
sponding directivity pattern for a simple source on the 
jet axis. 

Actually, the correct expression for the farfield jet 
noise intensity at x, due to unit volume at y, at fre- 
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Fro. 16. Variation of phase variable (normalized) along jet axis. The Mach No. is not identical for all examples shown, though always 
<0.1. Variations of the curves are slight in this range. 
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quency f, is •'•' 

I(x,y,f) = G(x,y,f) dr day•G*(x,y,f) 
16•r•'x•'poao oo 

X {P(y,t)P(y', 

Xexp{ - 2rif[r+ (I x-- Y'l - Ix- y[)/aoJ}, (28) 

where 8,1ø P (y,t) = -- (•)-l•2p (o)/Dt2(D/Dt denotes the 
time derivative following the mean flow and the angular 
brackets denote averaging over t) and [x-yl-•G(x,y,f) 
Xexp(- 2rift) (= g', say) is a discrete-tone Green's 
function for the pressure formulation of the convected 
wave equation. That is, it corresponds to a source term 
of type •(x--y)exp(--2rift) added on to the right of 
Eq. 12. 

The pressure patterns 

[x--y]-•x exp[i•-- 2•if(t+lx--yl/ao)• 

(=g, say) calculated herein, however, correspond to 
a discrete-tone Green's function for the acoustic poten- 
tial, or equivalently, to a source term of type 

D[-b(x--y) exp(-- 2ri ft)-]/Dt 

in the pressure formulation Eq. 12; a•' this is implicit in 
the use of Eq. 21 as inner boundary condition. The re- 
lationship between g and g' is easily shown to be 
g=-2rifg'--UOg'/Oy•; this has the approximate solu- 
tion g' • (i/2r f) (1 -- M cos0)-•g in the farfield, assuming 
that the main effect on g of a source displacement/xyl is 
a phase shift -(2rf/ao)/Xy• cos0 (i.e., the jet-off value). 
This assumption is restated as (2) below. 

Now the assumption that a refraction correction can 
be added on as in Ref. 6 turns out to be equivalent to 
taking G* outside the integral in Eq. 28. This can be 
justified if (1) sources at points y and y' generate ap- 
proximately the same SPL at a distant field point x, 
where y and y' lie within the main region of sound gen- 
eration; and (2) variations in the cmnulative phase 
difference • between x and y are small in the sense 

[ •(x,y, f) - •(x,y', f) - 2•f( I x- y l - Ix- y'l)/a0 I<<• 

for y, y' within the volume swept out by an eddy during 
its lifetime. 

Detailed examination of computed amplitude and 
phase data suggests that for f•< 0.4aid criteria (1) and 
(.2) should be roughly satisfied. as At moderate frequen- 
cies, therefore, it should be possible to use 

20 log•01C(x,y,f)I •20 lOglo[x/(1-M cos0)• dB, 

where M is the Mach number at the source point, as 
a refraction correction to be added onto the "basic" 
directivity 9'1ø's4 modified by convection effects.•.o,s,•o, a5 
In principle this provides a purely theoretical procedure 
for computing jet noise directivity patterns. Note 

the downstream "bulge" contributed by the term 
(1-M cos0) -1 above; this augments a similar (but shal- 
lower) bulge associated with the "extra terms" in Eqs. 
12 and 13, and diminishes the refraction valley depth at 
the higher Mach numbers. Since experimental point 
source refraction patterns lack this downstream bulge, 
"naive" refraction corrections to jet noise patterns on 
the basis of these data are presumably too large at high 
Mach numbers. A recent amendment as of the experi- 
mental refraction corrections, designed to remedy in- 
fractions of energy conservation, appears to co•afirm 
this view. 

In summary, a convected wave equation appropriate 
to the propagation of sound in a jet flow has been de- 
rived. Solutions by finite-difference methods were ob- 
tained for fM•< 0.28aiD. The results support and ex- 
tend experimental results showing that the axial valley 
in jet noise is due to refraction. 
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