
INFORMATION AND CONTROL 25, 30--44 (1974)

Representative Samples of Programmable Functions

L. K. SCI~UBERT

Department of Computing Science, University o] Alberta,
Edmonton, Alberta, Canada

Any computable function 6 may be viewed as a "generalization" of a finite
function. Specifically, there is a "sample" (finite subset) of ¢ such that every
minimal program for the sample is a program for 6. Like the representation
of a function by a program, its representation by a sample is machine dependent.
However, relative to any finite number of machines on which ~ is programmable,
there is a sample of ¢ which represents q~ for each of the machines. On the other
hand, given a representative sample of ~, the values of ~ for arguments in its
domain can only be found in the limit in general. If it is known that some
program length b suffices for a function ~, then an upper bound can be effectively
inferred from b on the cardinality of any representative sample of ¢ which does
not contain redundant elements. Conversely, a bound on representative
sample "size" (interpreted not as cardinality, but as a finite-one function of finite
functions) effectively supplies a bound on requisite program length. Apart from
these general considerations, certain detailed relationships between represen-
tative samples and minimal programs are also developed. For example, it is
shown that any decision function with a representative sample of l elements
can be programmed with no more than (4 + [log~ m])(/-- 1) + c bits, where
the largest argument appearing in the representative sample is m bits long.
Such bounds can be interpreted as bounds on the information-theoretic
complexity of the representative samples (finite functions) concerned.

1. INTRODUCTION

T h e existence of " c o n v e r g e n t " learning machines such as the Pe rcep t ron

(Minsky and Papert , 1969) suggests that cer ta in types of funct ions (such as the

l inear threshold functions) are adequate ly character ized by rather small

samples (subsets) of themselves . T h a t is, i f convergence is comple te after some

t ra ining period, the labelled pat terns seen up to that point compr ise a

" represen ta t ive sample" of the pa t te rn- response relation.

I n fact, Go ld (1965) has shown that convergen t funct ion identifiers exist

for all re classes of total recursive functions. So for any such class a finite

subset of each funct ion suffices to dis t inguish it f rom all o ther funct ions in the

30
Copyright © 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PROGRAMMABLE FUNCTIONS 31

class. However, Gold also showed that there is no convergent identifier for
the class of all total recursive functions. I t may be asked, however, whether
members of function classes for which there is no convergent identifier are
nevertheless characterized by samples (finite subsets) of themselves in some
sense. In particular, is this the case for the class of all partial recursive
functions ?

I t is shown in Section 2 that the members of any re class of partial recursive
functions are characterized by "representative" samples of themselves, in the
sense that all minimal programs for a representative sample are programs for
the function represented. In other words, each partial recursive function may
be regarded as a generalization of a finite function. The use of minimal
programs as a basis for function generalization was suggested by the seemingly
important "simplicity principle" in science (e.g., Born, 1971); a similar idea
lies at the root of the work on inductive inference by Solomonoff (1964),
Willis (1970), and others. Representative samples are shown to provide a
relatively machine-independent (though in general noneffective) charac-
terization of programmable functions.

In Section 3 relations between program length and representative sample
size for arbitrary partial recursive functions are explored. It is found that a
given bound on program length adequate for programming a particular
function entails a bound on the cardinality of representative samples of that
function. This bound on cardinality can be found effectively if all programs
of a given length or less can be found effectively. On the other hand, if
representative sample size is measured not by cardinality but by a measure of
size analogous to measures of length used for programs, then no bound on
representative sample size can be inferred from a bound on program length.
The situation is reversed for the converse problem of going from bounds on
sample size to bounds on program length. Clearly, sample cardinality provides
no bound on program length, since for any n there are infinitely many
n-element functions requiring distinct programs. On the other hand, if
finite function size is defined so that only finitely many finite functions are of
a particular size or less and these functions can be found effectively, then
representative sample size can be used to infer a bound on minimal program
length.

In Section 4 an attempt is made to obtain good upper bounds on minimal
program length for a function in terms of detailed properties (not merely
"size") of a representative sample of the function. Attention is restricted to
program length measures based on the number of "bits" in a program. It is
shown, for example, that any decision function with a representative sample
of l elements can be programmed with no more than (4 + [log2 m])(l - - 1) + c

643/~5/I-3

3 2 L. K. SCHUBERT

bits, where the largest argument appearing in the representative sample is
m bits long.

Finally, the degree of unsolvability of some problems concerning represen-
tative samples is considered briefly in Section 5. I t is possible to go from
representative samples to programs for functions limiting recursively but not
recursively in general. The converse problem is not recursively solvable
either, but it is not known whether it is limiting recursively solvable. I t is
then shown that the problem of finding the values of a function, given a
representative sample of it, is limiting recursively solvable but not recursively
solvable in general. However, if the machine under consideration computes
total functions only (e.g., the primitive recursive functions), then the problem
is recursively solvable.

2. REPRESENTATIVE SAMPLES OF PROGRAMMABLE FUNCTIONS

The following rather arbitrary definition of program machines is made to
fix ideas.

DEFINITION. Let .//d be the class of two-tape Turing machines (or some
equivalent class of algorithmic devices). One tape of each machine is regarded
as the input-output (I/O) tape, and the other is regarded as the program tape.
For this reason members of J/f will be referred to as program machines. The
finite-state part of each machine is coupled to the tapes through read-write
heads. A computation begins with the finite-state automaton in a unique
start state and with a program on the program tape and an input expression
on the I/O tape. I f and when the machine halts, the I/O tape expression
represents the output. Suppose there is an effective one-to-one coding from
tape expressions onto the integers N (assume the same tape-expression
syntax for both tapes). The tape expression corresponding to code number x
will be written as ~. I f ~ is a program, x is called its index. The terms "input
expression" and "input" will serve, respectively, to distinguish an initial I /O
tape expression 35 from its code number y; similarly, a distinction is made
between an "output expression" ~ and the "output" z. I f M eventually
halts with output z when supplied with program ~ and input y, this is written
a s ~ M (y) __ 2;. If M does not halt, ~ M (y) is undefined. Thus, M computes a
partial function 6~M with program ~. However, it will be convenient to think
of ~ not merely as a program for Cx M but as a program for any subset of C M
In other words, ~ is a program for a function 6 provided only that

PROGRAMMABLE FUNCTIONS 33

4xM(Y) = 4(Y) for all y in the domain 4; 4xm(Y) need not be undefined for y
outside that domain.

DEFINITION. ~ is a program for ~ (dependence on a fixed M is understood),
where ~ is a function, i f ~ M (y) - Z for all <y, z) a6 . I f such an £ exists for
a given 4, 6 ill be said to be programmable (on M). I f in addition, 6M(y) is
undefined whenever ~b(y) is undefined (i.e., ~ = ~M), then 2 is a strict
program for ~b and ~ is strictly programmable (on M).

Remarks. (i) I t is in the strict sense that the correspondence between
programs and functions is usually formalized.

(ii) ~b~ M is the union of functions for which £ is a program.

(iii) I f ~b is programmable or strictly programmable on M, all subsets
of ~b are programmable on M, including non-re subsets (if any).

(iv) Any program for a total function is a strict program for that
function.

(v) Any program is a program for the empty function.

DEFINITION. A program length measure assigns a nonnegative integral
length to each program such that only a finite number of programs are of any
particular length. The length of ~ will be written as I x]-

A length measure need not be recursive, though this is a frequent assump-
tion; furthermore, programs are often assumed to be effectively enumerable
in order of nondecreasing length. For example, the number of elementary
symbols in a program provides such a length measure. Feldman (1969) has
given an interesting sufficient condition for enumerability of this type (he
uses the term "occams enumerations").

In the following, obviously machine- and length-measure-dependent
concepts will often be used without explicit reference to a particular machine
or length measure. This should be kept in nfind for a correct interpretation
of the results. By a universal machine will be meant one on which all partial
recursive functions are strictly programmable. Note that there are machines
on which all partial recursive functions are programmable, but not all are
strictly programmable.

DEFINITION. A (strict) minimalprogram for a function is a (strict) program
for ~ whose length does not exceed the length of any other (strict) program
for 6-

34 L. K. SCHUBERT

D~FI~ITION. Suppose that each minimal program for a subset ¢ of a
function 4 is a program for 4. Then ~ is a representative subset of 4, and ¢ is
a generalization of ~:. If ¢ is the union of all functions (i.e., the most inclusive
function) of which ~ is representative, then ~: is a strictly representative subset
of 4, and ¢ is the maximal generalization of ¢. A function which is its own
maximal generalization is maximal.

Remarks. (i) The relation "is a representative subset of" is reflexive and
transitive (and in fact is a partial ordering on the programmable functions).

(ii) If ~ is a representative subset of 4, then 2 is a minimal program for
iff 2 is a minimal program for ¢.

(iii) Any ¢' obtained by adding further elements of ¢ to a (strictly)
representative subset ~ is also (strictly) representative.

(iv) Each ¢ programmable on M is a strictly representative subset of
some function (its maximal generalization).

(v) Any representative subset of a maximal function 4 is strictly
representative of 4.

(vi) Any programmable total function is maximal.

(vii) Any function which is maximal in terms of a particular machine
and length measure is partial recursive.

(viii) A programmable function contains a strictly representative
subset iff it is maximal.

In the following, a finite subset of a function will be referred to as a "sample"
of the function (for brevity).

Theorem 1 states that any programmable function is in a sense characterized
by a sample of itself (in much the same sense that it is characterized by a
program for it; however, the representative-sample characterization is not
always "effective", as is indicated in Section 5).

THEOREM 1. 1f 4 is a function programmable on M, then there is a represen-
tative sample of 6.

Proof. The following diagonal argument is similar to one given by
Pager (1969) in a theorem on finite decision tables.

Since ¢ is programmable on M, there is at least one minimal program x0
for 4"

Let P be the set of programs of length [2 0 I or less, and let

PROGRAMMABLE FUNCTIONS 35

be the set of programs in P which are not programs for ¢. I f Q is empty
(i.e., k == 0), then the empty function is a representative sample of¢ since the
minimal programs for the empty function are the absolutely shortest programs
and these are included in P. I fQ is not empty, then for each xi in ~ there is an
element in the domain of ¢, say y~, such that u ¢~(y~) is undefined or is not
equal to ¢(y~). Let ~ be the sample {(y~, ¢(Yi)) I i : - 1, 2,..., k} C ¢. Then
each program in Q is not a program for ~, since it must fail for at least one
element of ~, but all minimal programs for ~ are in P; hence, all minimal
programs for ~ are in P - O~i .e . they are programs for C--and ~ is a
representative sample of ¢.

COROLLARY 1.1. I f M is universal, there is a representative sample of each
(subset of each) partial recursive function.

COROLLARY 1.2. There is a strictly representative sample of each maximal
function programmable on M (and hence of each total function programmable
on M).

COROLLARY 1.3. Any enumeration (recursive or otherwise) of a function
programmable on M yields a representative sample eventually, since all elements
of some representative sample are eventually enumerated.

COROLLARY 1.4. I f ¢ is programmable on some finite number of machines,
then there is a sample ore which is representative of C for all of these machines.
The union of samples representative for individual machines yields such a
sample. Note that different length measures are permitted for different machines.

Corollaries 1.3 and 1.4 indicate that the characterization of functions by
representative samples is less machine specific than characterization by
programs.

3. RELATIONS BETWEEN PROGRAM LENGTH AND

REPRESENTATIVE SAMPLE SIZE

Can program length be used to obtain bounds on representative sample
size, and conversely ? The notion of sample size can be interpreted either in
terms of sample cardinality or in terms of some measure of length analogous
to program length measures. The next two theorems show that an upper
bound can be inferred for sample cardinality but not for sample length (at
least when the measure of sample length is recursive).

36 L . K . SCHUBERT

The proof of Theorem 1 provides an upper bound on the cardinality of
some representative sample of ¢. I t turns out that this upper bound applies
to all representative samples of ¢ once the samples have been purged of
" redundant" elements.

DEFINITION. A representative sample # of ¢ is a critical sample of ¢ if no
proper subset of ~ is a representative sample ore .

In the following, I~ denotes the set of indices of minimal programs for a
function ¢. I f ~ is a representative sample of 4, then the following statements
can easily be shown to be equivalent:

(a) ~: is a critical sample of ¢.

(b) For all u e ~, ~ - - {u} is not a representative sample of ¢.

(c) For all ~/C ~, 7/is not a representative sample of ~.

(d) For all ~ C #, I e @ I~.

(e) For all ~/C ~, either I e n I n = ;~ or I e C I x (depending on whether
or not there is a program for ~? shorter than any program for ~:).

I t is worth noting that the concept of "criticality" of a function ~: is actually
independent of the function ¢ represented by ~; this is clear from the absence
of ~ in (c), (d), and (e).

In the following theorem # S stands for the number of elements of S.

THEOREM 2. / f XO is a program for a/unction ¢, then for any critical sample
o/C, #~: < #{:?- [f x l ~ [Xo I}. (The shorter 2o, the better the upper bound

obtained).

Proof. Let X = {2 1 I 2(~< I 20 I}, Y = {3 ~ I/f is a minimal program for
~}, and Z = X - - Y. Say that an element u of ~: "eliminates" a program 5 in
Z if 5 is not a program for {u}. I t is sufficient to show that each element of ~:
eliminates a program in Z which is not eliminated by any other element of ~.
But if this were false for some u ~ ~:, every program in Z would be eliminated
by some element of ~ - {u} and contradiction with fact (b) above would
result. The strict inequality # ~ < # X results from # Y > 0.

I t is obvious from fact (b) that every representative sample of a function
contains a critical sample of ¢. Thus, every representative sample of ¢ whose
cardinality exceeds a certain fixed number (dependent on ¢) contains
"redundant" elements.

COROLLARY. For any recursive program length measure such that programs

PROGRAMMABLE FUNCTIONS 37

are effectively enumerable in order of nondecreasing length, a bound on critical
sample cardinality of a function can be effectively determined from a bound on
requisite program length for that function.

Of course, knowing a bound on critical sample cardinality is insufficient
in general for constructing a critical sample (see Section 5).

Now let a recursive measure of finite function "length" be given such that
only a finite number of such functions are of any particular length. For any
such measure of length,

THEOREM 3. There is no algorithm for computing, from x, an upper bound
on the length of a representative sample of ¢~ ~ if M is universal.

Proof. I f all functions computed by M with the absolutely minimal
programs are empty, let Y0 = 0 and z o = 0. Otherwise, let Y0 be an input
for which some absolutely minimal program produces an output, and let z o
be some number greater than that output.

Now assume contrary to the theorem that there is a recursive function f
such that f (x) is an upper bound on the length of some representative sample
of C u for all x. Consider a program 2 0 which carries out the following
instructions for any given input y :

Enumerate the singleton functions {(Yo, z0)}, {(Yo, Zo q -1)) , {(Yo,
z 0 q- 2)),..., computing the length of each until one is found, say {(Yo, zl)},
whose length exceedsf(x0). I f y = Y0, output z 1 , otherwise run on forever.

That such an 2 0 exists even though the value of x 0 itself is used in the
computation follows from the S-m-n theorem and the recursion theorem.
Specifically, it can be shown that there is a recursive function g such that
a(~) = AZ[¢xM(g(x)' Z)] for all x.

Now clearly ¢~u ° = {(Y0, zl)}- By the definition of Y0 and z0, at least one
of the absolutely minimal programs fails to give output z 1 for input Yo, so
that the empty function cannot be a representative sample of c M; hence,
{(Y0, z l)) is the only representative sample of ¢ ~ . But its length exceeds
f(Xo), so that the purported algorithm for finding an upper bound on the
length of a representative sample fails for x = x 0 .

COROLLARY. There is no algorithm for computing an upper bound on the
length of a representative sample of C M from an upper bound on the requisite
program length for C M if 3/1 is universal and the length measures concerned are
recursive.

The corollaries of the last two theorems have been concerned with inferences

38 L. K. SCHUBERT

about representative sample size when a bound on program length is known.
Next consider the converse problem of inferring bounds on program length
from bounds on representative sample size.

First, observe that sample cardinality cannot provide a bound on program
length, since for any n there are infinitely many n-element functions requiring
distinct programs. This leaves the question of whether a bound on program
length can be inferred from a bound on representative sample "length" in
the previously defined sense. The answer is affirmative.

THEOREM 4. Let M be a program machine with programs at least for all
finite functions, and let a recursive program length measure be given as well as a
recursive measure of finite function length such that finite functions are effectively
enumerable in order of nondecreasing length. Then there is an effective procedure
for obtaining a bound on minimal program length for ~ (programmable on M)
from a bound on representative sample length for ~.

Pro@ For the given bound b on representative sample length, enumerate
the set of finite functions (~ I length of ~: ~< b}. For each such (generate an
effective enumeration of N z. For each pair (x, t) enumerated and for each y
in the (finite) domain of ~, operate M for t steps with program ~ and input y.
I f M produces output ~(y) for each such y within t steps, then 2 is a program
for ~: and I g l provides a bound on the smallest programs for ~:. Such an
will be found eventually since ~ is programmable on M. The largest of all
bounds found in this way provides an upper bound on minimal program
length for6, since at least one of the ~ is a representative sample of 4,.

4. BOUNDS ON THE ~/[INIMAL NUMBER OF BITS IN

PROGRAMS FOR FINITE FUNCTIONS

More interesting results on minimal program lengths are obtained if more
information about representative samples (rather than size only) is used and
if attention is restricted to universal machines and "information-theoretic"
length measures of the type introduced by Solomonoff (1964), Kolmogorov
(1965), and Chaitin (1970); i.e., programs are assumed to be binary strings
and the length of a program is the number of bits in the string. Then for any
effective one-to-one code from finite functions into binary strings, a fixed
amount of additional code concatenated with any such code string ~ suffices
to form a program for the finite function ~:; the additional code serves to
decode ~ and to print the output ~:(y) whenever the input y is in the domain

PROGRAMMABLE FUNCTIONS 39

of ~:. Thus, if ~ is a representative sample of ¢, an upper bound on the length
of a minimal program for 6 is I ~ [+ c, where c is independent of ~.

Now, while a one-to-one encoding of finite functions is certainly sufficient
for the above purpose, it is not in general necessary. In order for the program
to regenerate correctly the values ~:(y) for all arguments y in the domain of ~:,
it need not "remember" (encode) those arguments but only distinguish
them. For example, if ~ ~ {<Yl, zl), <Y2, z2)}, where Yl -- 100110101 and
~p~ ~- 1110100001, then only the second bits (say) of Yl and Y2 need to be
tested and zl or £~ printed out accordingly by a program for ~:. This
evidently permits a better upper bound on minimal program length in
general than a one-to-one code.

The extent to which the ! ~1 + c bound can be improved depends, first,
on the class of finite functions under consideration and, second, on the class
of functions from which the upper bound is chosen. Clearly, the more
inclusive the latter class, the closer the upper bound can be to actual minimal
program length. 1 On the other hand, only an easily calculated bound expressed
in terms of simple parameters of a given finite function can shed any light
on the relationship between representative samples and lengths of minimal
programs for a function. The following theorem lists upper bounds on
minimal program length for several rather "common" classes of finite
functions; in view of the particular length measure under consideration,
these can be regarded as bounds on the information-theoretic complexity K
of the function in these classes. In calculating the bounds, it has been assumed
that the programs on which they are based need not specify their own end
points (thus it would not be clear where each program begins and ends if
they were placed end to end on tape); if the programs are to be self-delimiting,
an additional term logarithmic in the bound is required with each given
bound.

THEOREM 5. Let the programs of a universal program machine be binary
strings whose length is measured in bits. Then the following bounds apply to the
minimal length K(~) of programs for a finite function ~. Evidently, these bounds
also apply to programs for any generalization ~ of ~.

(a) I f ~ is any finite binary sequence, then K(~) ~ l ~ c, where l = #~.

(b!~ 1If ~ is any finite integer sequence, then K(~) ~ 2L -~- c, where
L = X,-o t ~i I, l = #~, and zi = ~(i) for i < l.

1 However, for any recursive upper bound on minimal program length, there are
finite functions for which this upper bound will exceed the actual minimal length by
an arbitrarily large amount.

40 L. K. SCHUBERT

(c) I f ~ is any finite binary-valued function (decision table) with arguments
of equal length, then K(~) ~ (3 4- [logz m]) (l - 1) 4- c, where 1 =- #~ ,
m ~- q Yo I - - - - I Y~-I I, and{yo ,Y~-l}isthedomainof~.

(d) I f ~ is any finite binary-valued function (decision table), then
K(~) ~ (4 4- [log,, m]) (l - 1)4- c, where l = #~, m -~ maxi<~].Yi I, and
{Yo Y~-I} is the domain of ~.

(e) I f ~ is any finite function from N into N, then

where ~ = {(y~, z~) 1 0 ~ i < I}, m = max,<, l Y,], a n d L = Z~-lo I ~ I.

Proofs and Discussion• (a) See Solomonoff (1964), Kolmogorov (1965),
or Chaitin (1970); the argument used is very similar to the one above for
establishing the [~ [4- c bound• The 1 4- e bound is optimal in the sense
that for all sufficiently large k the overwhelming majority of binary sequences
with l 4- c = k have K(~:) in the interval k ! c', with c' independent of
h and ~:.

(b) Finite integer sequences frequently occur in mathematical tables, e.g.,
the squares of the integers, or a list of prime numbers. One way to encode
such a list is to place the binary representations of the successive integers end
to end. However, boundaries between successive integers must somehow be
identified• One way of doing this is as follows: Suppose the total number of
bits in the concatenated binary-coded integers is L. The total number of ways

• ~L-1 ,Z4, 2 L-l, SO that an additional of segmenting a sequence of L bits is 2,1~=0 (k) =
(L - 1)-bit prefix will suffice to indicate any particular disposition of
boundaries. Thus, 2L 4- c is an upper bound on the minimal program length.
This bound is again optimal in that for sufficiently large k the overwhelming
majority of sequences with 2L 4- c = k have K(~) within the interval
k :k c'. The reason is that the code strings (consisting of a prefix and a number
of concatenated binary-coded integers) of length 2L - - 1 encode 2 zr-~ integer
sequences, all of which require distinct programs, as is easily verified.

(c) Finite decision tables with arguments of equal length (equal numbers of
bits) are of importance in switching theory• They are also of interest in pattern
recognition, where the problem of mapping digital arrays (images) of fixed
size onto two or more pattern classes is frequently encountered. The code
strings on which the given bound is based contain four successive segments:
an encoding of l (length, ~-~ ~ log z l); an encoding of the form of a decision
tree, each of whose l - i nonterminal nodes corresponds to a conditional

PROGRAMMABLE FUNCTIONS 41

branch contingent on the presence of a 1 bit at a particular position in a given
argument and whose 1 terminal nodes correspond to the 1 given function
values (length, ~-~21--~log~l) ; a listing of the positions of the l - - 1
decision bits used at the nonterminal nodes of the decision three (length,

(l - - 1)[log 2 roD; and a listing of the binary values associated with the
given arguments, in the order corresponding to the arrangement of terminal
decision tree nodes (length, ~ 1). The initial code for I consists of the binary
representation of l (length, [log2(x q- 1)J if the binary string bob 1 ""b~ is
taken as code of the number 2 k + l - 1-4:-~=o bi 2i) with an additional
prefix which indicates in a type of unary code the length of the representation
of 1 that follows it. Specifically, if the binary representation of 1 contains b
bits (say), the prefix consists of an initial 0 or I (corresponding to b even or
odd, respectively) followed by [b/2] O's followed by a 1; thus the over-all
length of the code for l is within a constant of ~- log~ l. The length of the
decision tree code is based on the fact that there are (2 / - - 2)!/[l!(l - - 1)!]
distinct binary decision trees with l terminal nodes, where neither nodes
nor edges are labelled. I f the index of a tree in a systematic enumeration of
all of these trees is taken as its code number, the number of bits required to
designate a particular tree is found with the aid of Stirling's formula to lie
within a constant of 2l - - ~ log~ I. All codes for positions of decision bits in
the arguments are assumed to be of length ~-~ [log 2 m]; this is certainly
sufficient for m-bit arguments. I t is easy to show that the boundaries of
various code segments in the complete code string can be inferred from the
code string itself (assuming it is known where the complete string ends).
The resulting bound (3 + [log 2 m]) (/ - - 1) + c is not optimal in the strong
sense of (a) and (b) above, since the first segment (length, ~-~ ~ log 2 l) could be
made of length ~ (1 + E) log 2 l for any e > 0, and it is possible to shorten
the remainder of the code string as well; however, it is conjectured that the
deviation from optimality is logarithmic in the given bound at most.

(d) Here the code is much the same as in (c), except that an additional bit
is stored for each nonterminal node of the decision tree. This bit determines
which of the two questions " I s the length of argument exceeded ?" or " I s the
bit in the specified position a 1 ?" shall be asked at that node.

(e) Here the code is much the same as in (d), except that an encoding of
L - - 1 (length ~ ~- log2(L -- 1 + 1)) is inserted between the code segment
for I and the code segment for the form of the decision tree; in addition, the
space taken up by the values associated with the given arguments is now
L ~ J201 + J21 I ~- "'" + 12l-1 I, and this sequence of values is prefixed
with a piece of code indicating the disposition of the l - 1 boundaries

42 L. K. SCHUBERT

between them (requires 1og2(~L2-~) bits). No claim is made about the optimality
of this or the preceding bound.

The assumption in Theorem 5 that the given program machine is universal
could be weakened; the machine need 0nly be powerful enough to decode the
binary strings described above. This is possible with a machine which always
halts, in which case the problem of finding a minimal program for ~ is
solvable.

5. SOME FURTHER SOLVABILITY QUESTIONS CONCERNING

REPRESENTATIVE SAMPLES

In Section 3 some solvability questions concerning bounds on program
length and bounds on representative sample size were answered. More
generally, the difficulty of going from one "representation" of a function to
another is of some interest, and this is briefly discussed below. Then the
"effectiveness" of representation of a function by a representative sample is
considered.

First consider the problem of going from a representative sample of a
function to a program for the function. The predicate [~ is a minimal program
for ~] is easily shown to be in 2J 2 c~/I2 of the Kleene hierarchy. Thus the
problem under consideration is limiting recursively solvable, in the
terminology of Gold (1965). L6fgren (1967) and Pager (1969)have inde-
pendently shown that the problem of finding minimal programs for finite
functions is not recursively solvable (see also Schubert, 1973).

The converse problem of going from a strict program 2 for a function to a
representative sample of the function is not reeursively solvable by Theorem 3.
It is conjectured that this problem, and the closely related problem of finding
a minimal program for ~ , given x, is not limiting recursively solvable, but
no proof has been found for this conjecture. (The problem of finding a strict
minimal program for ¢~ is known to be nonlimiting recursively solvable; see
Meyer, 1972).

Finally, how difficult is it to find the values of a function for which a
representative sample is given ?

2 It would be meaningless to ask for a representative sample when the given program
is not a strict program for the function. A n y set of input-output pairs generated
by a program {including the empty set) is representative of some function computed
by M with that program--namely, that set itself.

PROGRAMMABLE FUNCTIONS 43

THEOREM 6. Given a recursive length measure, the values of a programmable
function at points in its domain can be found in the limit from a representative
sample of the function. I f M computes total functions only and programs are re in
order of nondecreasing length, then function values can be found effectively from
a representative sample. For some program machines, however, no such effective
procedure exists.

Proof. Since a minimal program for a representative sample can be found
in the limit, function values can also be found in the limit.

I f M computes total functions only and programs are re in order of non-
decreasing length, then of course minimal programs for representative
samples of functions and, hence, for the functions can be found effectively.

Finally, assume contrary to the theorem that the values of any function
programmable on any M in dE can be determined effectively from a represen-
tative sample of the function, for some length measure. Then let M be
universal, and l e t f be a partial recursive function of two arguments such that
f(~, y) = ¢(y) for all y in the domain of ¢ whenever ~ (with G6del number ~)
is a representative sample of ¢.

Enumerate elements (y , n) of N ~ and correspondingly run the computation
of f (~ v , y + 1) for n steps, where s~y ~ {(0, 0),..., (y , 0)}, until a pair
Y = Yl, n - - n 1 is found such that the corresponding computation halts and
yields output 0. Such a pair will be found eventually since, for any sufficiently
large y, ~ is a representative sample of the function which is zero for all
arguments. Correspondingly, define the first Yl + 2 arguments of a function g
to beg(y) =: 0 fo ry ~< Yl andg(y l + 1) ----- 1. Now use a similar procedure to
find Y2, n2 such thatf(~vl+v~+l , Yl + Y2 + 2) yields output 1 within n 2 steps,
where ~:~1+~+ 1 = {(0, 0),..., (Y l , 0), (Yl @ 1, 1),..., (Yl @ Y~ q- 1, 1)}.
Then defineg(y) ~ 1 fo ry 1 @ 1 ~ y ~ y ~ @Y2 -F- 1 andg(y~ -~Y2 4- 2) == 0.
Similarly continue assigning sequences of O's and l ' s as values ofg.

Then g is programmable on M but, for infinitely many initial segments
~: = {(0, g(O)},..., {y, g(y)}} ofg, f(~, z) =/= g(z) for some z. By Corollary 1.3,

f fails for some representative samples of g, and the resultant contradiction
establishes the theorem.

6. CONCLUDING REMARKS

I t has been shown that generalization of finite functions via minimal
programs leads to a class of functions which includes each function 6, or an
extension of 6, which can be computed with the program machine under

44 L.K. SCHUBERT

consideration. If the machine is universal, each partial recursive function can
be regarded as a generalization of a finite subset (representative sample) of
itself. The characterization of a function by a representative sample has been

shown to be less machine dependent than its characterization by a program.
Various relationships between representative samples and programs have been
examined. As a byproduct, bounds on minimal program size for various types

of finite functions have been obtained.

ACKNOWLEDGMENTS

The author is indebted to D. V. Gottlieb of Johns Hopkins University for stimu-
lating discussions on the initial part of this work, and to J. R. Sampson of the Uni-
versity of Alberta for his many useful comments on the manuscript. The work was
conducted under a National Research Council Postdoctorate Fellowship.

RECEIVED: March 22, 1973; REVISED: November 8, 1973

REFERENCES

BORN, M. (1971), "The Born-Einstein Letters," p. 163, Macmillan.
CHAITIN, G. (1970), On the difficulty of computations, IEEE Trans. Inf. Theory IT-16,

5-9.
FELDMaN, (1972), "Some Decidability Results on Grammatical Inference and Com-

plexity," Stanford Artificial Intelligence Project Memo No. AI-93 (1969); also
Information and Control 20, 244--262.

GOLD, E. M. (1965), Limiting recursion, J. Symb. Logic 30, 28-48.
KOLraOGOaOV, A. N. (1965), Three approaches to the quantitative definition of

information, Inform. Transmission 1, 3-11; also Int. J. Comp. Math. 2, 157-168
(1968).

L~SFCREN, L. (1967), Recognition of order and evolutionary systems, in "Computer
and Information Sciences," Vol. II (J. Tou, Ed.), 165-175, Academic Press.

MEYER, A. R. (1972), Program size in restricted programming languages, Information
and Control 21, 382-394.

MINSK~, M. AND PAPERT, S. (1969), "Perceptrons," MIT Press, Cambridge, MA.
PAGER, D. (1969), On the problem of finding minimal programs for tables, Information

and Control 14, 550-554.
SCHUBERT, L. K. (1973), "Iterated Limiting Recursion and the Program Minimization

Problem," Technical Report No. TR 73-2, Dept. of Computing Science, University
of Alberta; J. Ass. Comp. Mach,

SOLOMONOF~', (1964), A formal theory of inductive inference, Information and Control
7, 1-22, 224--254.

WILLIS, D. G. (1970), Computational complexity and probability constructions,
J. Ass. Comp. Mach. 17, 241-259.

