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Abstract. For solving large systems of nonlinear equations by quasi-Newton methods

it may often be preferable to store an approximation to the Jacobian rather than an

approximation to the inverse Jacobian. The main reason is that when the Jacobian is

sparse and the locations of the zeroes are known, the updating procedure can be made

more efficient for the approximate Jacobian than for the approximate inverse Jacobian.

I. Introduction. In recent years a class of methods termed quasi-Newton have

received considerable attention in the literature [l]-[3]. In one such method [1],

[4] iterative approximations to the solution of the system of equations

(1) fix) = 0

where / and x sire n-vectors, are obtained by solving

(2) Gmpw = -fk)

and substituting pm in

(3) Yk+1) = *« + tmpm .

The scalar t(k) is chosen to reduce some norm of/ at each step, thus ensuring stabil-

ity. The approximation G(k) to the Jacobian is revised after each step in accordance

with

(A\ p(k+l) plk)    ,     U —   \i   —  t      )J      \p

Í    p      p

This is the result of a primary condition requiring Gik+1) to predict the same changes

in/ in the direction pm that actually occurred at the (fc + l)th step (supplies n

equations) and a secondary condition requiring (?(*+1) to predict the same changes

in/ as Gm in all directions orthogonal to pUc) (supplies the remaining n2 — n equa-

tions).

Broyden [1] described a class of methods containing the above method as a

special case. However, he suggested the use of an approximation H{k) to the in-

verse Jacobian instead of Gm. He supplied an explicit updating algorithm for

H{k) equivalent (in its simplest form) to (4). Other choices of the secondary con-
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dition on G{k) or H^ are possible and this fact gives rise to the class of quasi-

Newton methods.

When H(k) is used, the solution of the linear equations (2) is reduced to the

matrix-vector multiplication

(5) pik) = -íf(í)/(il.

This is certainly an advantage when all elements of the Jacobian are unknown.

However, in many large systems of nonlinear equations, particularly the difference

equations arising from nonlinear differential equations, most of the elements of the

Jacobian are known to be zero and other elements may be known nonzero con-

stants. If the known zeros are introduced into G(k), much less storage is required

for Gm than for the full matrix H{k). Also, if G{k) has a band structure, (2) need not

be a great deal more time-consuming than (5). Moreover, when many of the ele-

ments of the Jacobian are known, the number of secondary conditions on G{k+1)

can be greatly reduced, so that G converges more rapidly to the Jacobian. This

requires a simple modification of (4) which will now be described.

II. Modification When the Jacobian is Sparse. The z'th row g/*) of G{h) represents

an approximation to the gradient of the ith function component/¿. When n — r<

components of g i are known constants, one first imposes the condition that these

components shall remain unchanged in the Jacobian revision; the remaining choices

have to be made on the basis of the remaining r¿ coordinate directions.

Designate by pm the column vector derived from p{k) by setting py(*> to zero

whenever the corresponding element of gr, is a known constant. Note that p(k) is

dependent on i. Also let g i be the row vector derived from g¡ by setting its unknown

elements to zero.

The known components of gr¿ account for a change tmgip'-k) in/¿ at the (fc + l)st

step. The remainder of the change, /¿(*+,) — filk) — t^g ip(k), must then be at-

tributed to the unknown components. Thus the primary condition on gY+1),

restricted to r ¿-space, becomes

(6) tmgY+l)pm = filk+1) - fi(k) - tlkWk) ,       i = l,2,...,n.

This is, in fact, identical to the usual primary condition t'>k)Gg°+1)p'-k> = f(k+1) — /(i)

because gY+l)pw + g¿pik) = gi(k+1)pik). The secondary condition is similarly

obtained by restricting the usual secondary condition to the r ¿-space corresponding

to the unknown elements of <7¿:

(7) g.,i      q = gfi   q,       i=l,2,---,n

where q satisfies p(i:)r<J = 0. This does not reduce to the usual condition G{k+l)q =

QMq.
It is easily verified that (6) and (7) are satisfied by the exact row-by-row ana-

logue of (4), i.e.,

(q\     n .<*+i> _ „ m , m_- {i. - t_;;■■   \p_        . _ 1 2   _ _
twf"f
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III. Example. A set of equations used by Broyden to test his methods is

fx= — (3 + axi)xi + 2x2 — ß ,

(9) fi = Xi-x — (3 + ax/)Xi + 2xi+x —

fn = xn_i — (3 + axn)xn — ß .

i = 2, 3,

These equations are also suitable for illustrating the present variant, if the zero

entries in the Jacobian are regarded as known. The parameter values chosen were

a = —.5; ß = 1; n = 5, 10, 20; xi<-0) = —1 for all i. Both the unit matrix and a

difference approximation based on a differencing interval of .001 were used for

Gm. Broyden's mean convergence rate

(10)
p       1 i   Nl
R = — in tt=— ,

m      Nm

where Nx and Nm are the initial and final Euclidean norms of /, was computed in

each case, m has been redefined as the total number of function component evalua-

tions divided by n. In this way m reflects the fact that one can take advantage of

the Jacobian's sparseness in computing Gm by differencing.

Results for the present method ("modified Jacobian revision"), Broyden's

1/fsr method ("basic Jacobian revision"), and the constant matrix method ("no

Jacobian revision") are shown in Tables I — III.

Table I. n

Nature of G'0) Method Nx N„ li

Difference
Approximation
to Jacobian

Unit
Matrix

Mod. Jac. rev.
Basic Jac. rev.
No Jac. rev.

Mod. Jac. rev.
Basic Jac. rev.
No Jac. rev.

1.803
1.803
1.803

1.803
1.803
1.803

9.592 X 10"7
9.657 X 10-8
2.149 X 10"7

3.272 X 10"7
7.262 X 10"7
5.920 X 10-7

9
11

20
23
73

1.901
1.947
1.504

0.776
0.640
0.205

Table II. n = 10

Nature of G<°> Method Nx \„ m R

Difference
Approximation
to Jacobian

Unit
Matrix

Mod. Jac. rev.
Basic Jac. rev.
No Jac. rev.

Mod. Jac. rev.
Basic Jac. rev.
No Jac. rev.

2.121
2.121
2.121

2.121
2.121
2.121

1.408 X 10-7
2.098 X 10"7
5.404 X 10"7

1.707 X 10"7
4.391 X 10"7
8.363 X 10"7

!)
11
15

26
(il

1.878
1.493
1.026

0.628
0.252
0.168

The results indicate that modified Jacobian revision becomes increasingly desirable

as n is increased, particularly if the initial approximation to the Jacobian is poor.

The modification may also be useful when the Jacobian is full, but most of the
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Table III. n = 20

Nature of G<°> Method Nx Nm m R

Difference
Approximation
to Jacobian

Mod. Jac. rev.
Basic Jac. rev.
No Jac. rev.

2.646
2.646
2.646

3.130 X
3.846 X
3.473 X

10"7
io-7
10"7

9
12
19

1.792
1.323
0.838

Unit
Matrix

Mod. Jac. rev.
Basic Jac. rev.
No Jac. rev.

2.646
2.646
2.646

3.402 X 10-7
9.850 X 10-7
9.222 X 10"7

25
118
97

0.635
0.125
0.153

entries are easily computed constants. In this case, however, storage space is not

economized and the solution of (2) may be time-consuming.
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