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ASS'tRACT. The general problem of finding minimal programs realizing given "program descriptions" 
is considered, where program descriptions may be of finite or infinite length and may specify arbitrary 
program properties. The problem of finding minimal programs consistent with finite or infinite input* 
output lists is a special case (for infinite input-output lists, this is a variant of E. M. Gold's function 
identification problem). Although most program minimization problems are not recursively solvable, 
they are found to be no more difficult than the problem of deciding whether any given program re- 
alizes any given description, or the problem of enumerating programs in order of nondecreasing 
length (whichever is harder). This result is formulated in terms of k-limiting recursive predicates and 
functionals, defined by repeated application of Gold's limit operator. A simple consequence is that 
the program minimization problem is limiting recursiv~ly solvable for finite input-output lists and 2- 
limiting recursively solvable for infinite input-output lists, with weak assumptions about t h e  

measure of program size. Gold regarded limiting function identification (more generally, "black box" 
identification) as a model of inductive thought. Intuitively, iterated limiting identification might be 
regarded as higher-order inductive inference performed collectively by an ever-growing community 
of Lower order inductive inference machines. 
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1. Introduction 

A question considered by Gold [1] was for what classes of computable functions there 
exist machines which succeed in "identifying in the l imit" any member of the class. 
Identifying a computable function in the limit consists of generating a sequence of 
"guesses" (integers) convergent to an index for the function, successive guesses being 
based on successively larger portions of an information sequence which lists all elements 
of the function. An example of a practical problem to which these concepts are relevant 
is the learning problem in pat tern recognition. Typically an adaptive pat tern recognition 
system is caused to "learn" a mapping from patterns to responses by presenting to it  a 
sequence of labeled patterns, i.e. patterns vdth their appropriate responses. All of the 
machine's responses will be correct once it  has identified the pattern-response mapping, 
in the sense that  it has found an algorithm (equivalently, an index) for it. Two of Gold's 
main results were tha t  any r.e. class of total recursive functions is identifiable in the limit, 
and that  the class of total recursive functions is not identifiable in the limit (hence also 
the class of partial recursive functions is not  identifiable in the limit).  
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Here a modified version of Gold's problem is considered. The first modification is the 
replacement of information sequences by (finite or infinite) "program descriptions" 
which may specify arbitrary program properties. Descriptions which list input-output 
pairs are then regarded as a special case. The second modification is that  iterated limit 
procedures (k-limiting recursive functionals) are admitted for program finding, since 
finding suitable programs in the noniterated limit is impossible for many classes of pro- 
gram descriptions. For this purpose k-limiting recursiveness is defined by straightforward 
generalization of Gold's concept of limiting recursiveness. The third modification is the 
added requirement that programs found in the (iterated) limit be minimal according to 
some prescribed measure of program size. Accordingly problems of this modified type are 
called program minimization problems. 

There are various reasons for an interest in finding minimal-length programs. In work 
on grammatical inference closely related to Gold's identification problem, Feldman [2] 
considers inference schemes which try to find "good" grammars consistent with available 
information about a language. One measure of goodness is the intrinsic complexity, or 
size, of a grammar. In terms of the function identification problem, this corresponds to 
finding programs which are small according to some measure of program size. Indeed, the 
use of small (though not necessarily minimal) programs for inductive inference is a re- 
curring theme in the literature (see, for example, [3-5]) ; allusion is usually made to the 
scientific maxim known as "Occam's Razor," according to which "it is vain to do with 
more what can be done with fewer" in accounting for known phenomena. The special 
importance of minimal programs is also suggested by the work c,f Kolmogorov [6], Martin- 
LSf [7], and others, showing that the number of symbols in the shortest program for 
generating a finite sequence can be taken as a measure of the information content of the 
sequence, and this measure provides a logical basis for information theory and probability 
theory. 

In the following the unsolvability of most nontrivial program minimization problems 
is first noted. After establishment of some basic properties of k-limiting recursive predi- 
cates and functionals, it is shown that any program minimization problem is k-limiting 
recursively solvable if the problem of determining whether any given program satisfies 
any given description is k-limiting recursively solvable and programs are k-limiting r.e. 
in order of nondccreasing size. Simple consequences are that  the problem of finding 
minimal programs for finite functions is limiting recursively solvable, and that  the prob- 
lem of finding minimal programs for arbitrary computable functions (given an explicit 
listing) is 2-limiting recursively solvable, with weak assumptions about the measure of 
program size. Lower bounds on the difficulty of these problems are already known from 
the work of Pager [8] and Gold [1]. 

Finally, the point is emphasized in the concluding remarks that limiting recursively 
solvable induction problems, though strictly "unsolvable" in general, ate nonetheless 
within the reach of mechanical procedures in the important sense described by Gold, and 
that even problems unsolvable in the limit may be regarded as solvable in a weakened 
sense by an expanding community of mechanisms performing limit computations. 

2. Program Minimization Problems 

To fix ideas, any programmable machine M may be thought of as a 2-tape Turing machine, 
with one tape regarded as input-output ( I /O)  tape and the other as program tape. One 
or both tapes also serve as working tape. A computation begins with the finite-state 
control of 'the machine in a unique start state and with a program on the program tape 
and an input on the I /O tape. If and when the machine halts, the I /O  tape expression 
gives the output. I t  is assumed that there is an effective 1-1 coding from tape expressions 
(same syntax for both tapes) onto the integers N. The program (or I /O tape expression) 
corresponding to code number (index) x will be written as 4. If M eventually halts with 
output ~ when supplied with program ~ and input ~, one may write ~b~(y) -- z. I f  M 
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does not halt, 4 ~ ( y )  is undefined. Thus M computes a partial function 4~ ~ with pro- 
grara ~. However, it will be convenient to think of ~ not merely as a program for 4, M, 
but as a program for any subset of 4= ~. In  other words, ~ is a p r o ~ a m  for a function 4 
provided only that  4 ~ ( y )  -- 4(y) for all y in the domain of 4~; 4 ~ ( y )  need not be un- 
defined for y outside that  domain. If  such an ~ exists for a given 4, 4 will be said to be 
programmable (on M). A machine M such that  the sequence ¢ ~ ,  4i ~, 42 ~, • • • contains 
every partial recursive function is universal. 

A program length measure assigns a nonnegative integral length to each program such 
that  only a finite number of programs are of any particular length. The length of a pro- 
grana ~ will be denoted by ] x I. A length measure need not be reeursive, though this is a 
frequent assumption; furthermore, programs are often assumed to be effectively enumera- 
ble in order of nondecreasing length. For example, the number of elementary symbols in 
a program provides such a length measure. 

In the following, obviously machine and length-measure dependent concepts will 
sometimes be used without explicit reference to a particular machine or length measure. 
This should be kept in mind for a correct interpretation of the results. 

A minimal program for a function 4 is one whose length does not exceed the length of 
any other program for 4. The problem of finding a minimal program (or all minimal pro- 
grams) for a function ~, given a (possible infinite) list of the argument-value pairs of 4, 
is an example of a program minimization problem. More generally, a program minimiza- 
tion problem is the problem of finding a minimal program (or all minimal programs) 
meeting the conditions listed in any "program description" belonging to some class of 
such descriptions. Program descriptions are loosely defined as follows. Suppose that  a 
(possibly infinitary) logical system is given along with an interpretation based on a fixed 
M such that  every wff in the system expresses some program property (i.e. every wff is a 
unary predicate over programs). Then the wff's comprising the system will be called 
program descriptions. Typically a program description might specify relationships be- 
tween inputs and outputs (e.g. particular input-output pairs), structural properties (e.g. 
the number of occurrences of a particular symbol in the program), operational properties 
(e.g. computational complexity), or combinations of such properties. If  ~ is a program 
description, a program ~ will be said to realize ~ if • has the property expressed by 5; 
more briefly, ~(£) will be written for "~ realizes ~." If  an ~ exists such that  $(~), then 
will be said to be realizable. For some descriptions (such as listings of input-output pairs) 
the truth value of the assertion $(~) depends only on the function computed by M with 
program :~, i.e. [4, M = 4~ ~] ~ [~(£) ¢~ ~(~)]. Such descriptions will be termed I /O  de- 
scriptions. As examples of I /O  descriptions which do not merely list functions, consider 
the following expressions (in a quasilogical notation with the obvious interpretation) : 

(i) [4=i(a) = 9 Y 4~M(3) = 11] & 4 ~ ( 5 )  divergent, 
(ii) (Yy)[4,M(y) convergent & even], 

(YY)[4~ ( Y ) =  V -~ (iii) M ~ V 475(y)1 ( y)[4~ (y + 5) 4=M(y) + 6]. 

Gold's identification problem can evidently be reformulated in terms of infinite descrip- 
tions (i.e. wff's belonging to an infinitary logical system) such as 

(iv) 4,M(0) = 0 & 4 ~ ( 1 )  -~ 1 &4,~(2)  = 4&4~M(3) = 9 & - . - , e t c .  

Ii~ is assumed that  descriptions can be coded numerically. If  only finite descriptions 
are involved, an effective coding of descriptions into integers is appropriate. If  infinite 
descriptions are involved, these can be coded as total number-theoretic functions on N 
by means of a 1-1 mapping from elementary symbols into integers) For example, con- 
sider illustration (iv) above; if the numbers from 1 to 5 are used to encode the symbols 

A code into total functions would also be used for a mixture of finite and infinite descriptions; one 
digit, say 0, would be reserved as terminator and all function values corresponding to points beyond 
the end of a finite description would be set to 0. 
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¢ ~ ,  (,), = ,  and &, respectively, and numerals within the description are represented 
by adding 6, the code sequence 1, 2, 6, 3, 4, 6, 5, 1, 2, 7, 3, 4, 7, 5, .. • is obtained; ex- 
pressed as a total function this is {(0, 1), (1, 2), (2, 6), (3, 3), (4, 4), (5, 6), . . -} .  Thus 
when functions of encoded descriptions are considered later on, these become functionals 
in the case of infinite descriptions. 

The coded version of a description ~, whether it is finite or infinite, will be written as & 
Since no confusion can result, coded representations of descriptions will also simply be 
called descriptions. A set of descriptions will be called infinitely diverse if every set of 
programs containing at least one that  realizes any given one of the descriptions is infinite. 
Otherwise the descriptions are finitely diverse, i.e. some finite set of programs suffices for 
their realization. 

Theorem 1 is concerned with I / O  descriptions only, while Theorems 3 and 4 will apply 
to arbitrary program descriptions. 

THEOREM 1. Let M be a universal programmable machine and let a recursive length 
measure be given. Then the program minimization problem is not recursively solvable for any 
effectively enumerable, infinitely diverse set of I / 0  descriptions. 

PROOF. Pager [8] previously noted this fact for the case when I /O  descriptions specify 
finite functions, and remarked that  the proof involves the Recursion Theorem. The theo- 
rem also follows directly from a theorem of Blum [9]. The denial of the theorem allows 
an infinite set of minimal programs to be enumerated, by  enumeration of the I / O  descrip- 
tions and computation of the corresponding minimal programs. If  h(x, y) is a function 
which simulates the first minimM program enumerated of size greater than I x I, then 
clearly h(x, y) is partial reeursive, and hence by the S - m - n  Theorem and the Re- 
cursion Theorem, for some xo, h(xo, y) ~ for Thus ~0 = Cx0(y) all y. is shorter than one of 
the supposed minimal programs in the enumeration. 

To demonstrate the unsolvability of a program minimization problem (for a universal 
machine), it is therefore sufficient to show that  the descriptions concerned include an 
effectively enumerable, infinitely diverse set of I / O  descriptions. This implies, for example, 
that  the program minimization problem for the singleton functions, for the finite decision 
functions, and even for the decision functions of cardinality 2 is unsolvable, ~ whenever 
the length measure is recursive. 

Pager [10] has shown that  the last-mentioned problem is unsolvable even when the 
length measure is not recursive. Further, he established the surprising fact tha t  the 
minimization problem is unsolvable for a certain finitely diverse set of decision functions, 
regardless of the length measure employed [8]. 

In  view of Pager's results it may be asked whether the requirement tha t  the length 
measure be recursive is superfluous in Theorem 1. The answer is no (although the re- 
qnirement can be weakened somewhat). To prove this, it is only necessary to specify 
some sequence of finite decision functions such that  any program is a program for at  
most one of these functions, plus an arbitrary procedure for obtaining a particular pro- 
gram for each function in the sequence; then the length measure can readily be defined to 
guarantee the minimality of these particular programs. 

I t  is interesting to note that  Theorem 1 still holds for certain non-I /O descriptions. 
For example, suppose the minimal programs are required to operate within a certain 
bound on the computational complexity (e.g. time or tape complexity), apart  from an 
arbitrary additive constant. Then it is clear that  the proof of Theorem 1 is applicable 
without change. 

For the finite decision functions, note that the functions computed with any finite set of programs 
can be diagonalized to yield a finite decision function which requires a program not in the given set. 
To prove infinite diversity for the 2-element decision functions, it is sufficient to show that no set of 
n programs can include a program for each 2-element decision function whose argmnents are in a 
fixed set of 2 "+1 integers; but for this many arguments at least 2 of the programs must give identical 
results (if any), so that two unsymmetric decision functions are missed. 
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These unsolvability results do not mean that  all interesting program minimization 
problems are entirely beyond the reach of mechanical procedures, as Theorem 3 will show. 

The following definitions generalize the concept of limiting reeursion introduced by  
Gold [11. 

Definitions. Let A be a subset of ~ X • • • X ~ X N" where the @~ are sets of unary 
total functions and r, s >_ 0. A functional a F is k-limiting recursive on A if there exists a 
functional G recursive on A X N k such tha t  

(Y~ E h ) ( 3 m l ) ( Y n l  > ml) . . .  ( 3m~) (Ynk  > ink)IF(a) = G(a, nl, . - .  , n~)]. 

Equivalently one may write (Vd E h)[lim,~ . . -  lim,~ G(~, nl, . . .  , nk) ~- F(~)]. 4 For 
k = 1, these statements say that  for all arguments 6, G(~, n) is the same as F(~) when- 
ever n is sufficiently large, or equivalently, tha t  the limit of G($, n) with respect to n is 
F(~) (the limit is attained in finitely many steps) ; for k = 2, they say that  for all argu- 
ments ~ and all sufficiently large n~, G(~, nl, n2) is the same as F(~) whenever n2 is suffi- 
cientiy large, or equivalently, tha t  in the limit of large nl the limit of G(~, n~, n2) with 
respect to n2 is F(6) ; etc. I t  can be shown (with the aid of the Kleene T-predicate and the 
Recursion Theorem) that  for all k there are (k + 1)-limiting recursive functionals tha t  
are not k-limiting recursive. Similarly a predicate P is k-limiting decidable on A if there is 
a predicate Q decidable on A X N ~ such that  (V~ E A) (~m~) (Vnl > m~) . . -  (3ink) (Vnk 
> mk)[P(~) ~ Q(~, nl, . - .  , n~)]. Descriptions comprising a set & will be called uniformly 
k-limiting decidable (with a particular M understood) if there is a predicate P k-limiting 
decidable on h X N such that  for all $ E A, P(~, x) holds iff ~(~). A set of integers is 
k-limiting r.e. if it is empty or the range of a function k-limiting recursive on N 3  0-limiting 
recursive is the same as recursive, and I-limiting recursive is abbreviated as limiting 
recursive. 

Gold (also Pu tnam [11]) has shown that  limiting decidable is equivalent to member- 
ship in the intersection of classes ~2 and I12 of the Kleene arithmetical hierarchy. I t  can 
be shown that  if P is k-limiting r.e., then it is in ~k and if P is k-limiting decidable, it is 
in Z~, A I]2,, for all k. I conjecture the converse statements to be false for k > 1; the 
proof (or disproof) of this conjecture is an open problem. The following is easily verified. 

LEMMA 1. I f  P and Q are predicates of at least one number variable (and possibly ad- 
ditional number and function variables), then ( 3 m  ) ( Y n  > m )P(  n,. . . ) & ( ~ m  ) ( Y n  > m) 
Q(n, . . . )  -~ ( 3 m ) ( Y n  > m)[P(n ,  . . . )  & Q(n, . . . ) ] .  

COROLLARY 1.1. I f  P and Q are predicates of at least k number variables (and possibly 
additional number and function variables), then 

(~ml )  (Yn~ > m~) . . .  (~m~) ( Y n ,  > m~)P(n~, . . . , n~, . . . ) 

& (~ml ) (Yn~  > m~) . . .  ( 3 m , ) ( Y n ,  > m,)Q(n~, . . . ,  n,, . . . )  

(3m~)(Vn~ > m~) . . .  ( ~ i m , ) ( Y n ,  > m,)[P(n~, . . . ,  n,,  . . . )  & Q ( n ~ , . . .  , n , , . . . ) ] .  

LEMM~ 2. Composition of k-limiting recursive functionals yields a k-limiting recursive 
functional. 

PROOF. Consider the special case F' = k~bxy[F(4~, x, H(~b, y))],  where F and H are 
functionals k-limiting recursive on ,I~ X N 2 and ¢ X N respectively, and ~, ¢ are sets of 
total functions. The proof is easily extended to the case where F is r-ary and s of its 
arguments are values of k-limiting recursive functionals H~, H~, • • • , H,.  Since F and H 
are k-limiting recursive, there exist functionals G and K recursive on ,I~ X N *+2 and 
~I, X N *+~ respectively such that  

(V~b ~ ~ b ) ( Y x ) ( ~ z ) ( ~ m l ) ( Y n ~  > m,)  . . .  ( ~ m ~ ) ( Y n ,  > m~)[F(~b, x, z) 

= G ( ~ , x , z , n ~ ,  . . .  , n , ) l ,  (1) 

• Func t ions  are regarded as a special  case of funct ionals .  
• The equivalence follows from the fact that F(~) is independent of n~, • .. , n,, so that the iterated 
limit of G must exist. 

This differs from Gold's definition, which expresses limiting reeursive enumerability in terms of 
limiting semidecidability. However, the definitions can be shown to be equivalent (for k = 1). 
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and 

(V~ ~ ~) (Vy)(3m~)(Vnl  > m~) . . .  (3m~)(Vn~ > m~)[H(~, y) 

= K ( ~ b ,  y ,  n~ ,  . . .  , nk)]. (2) 
Since H(V~, y) is defined for all V~ E ~I, and all y, a consequence of (1) is 

(V$ E ~)(V~ E ~ ) ( V x ) ( V y ) ( 3 m ~ ) ( V n ~  > m~) . . .  (3mk)(Vn~ > m,)  

[F(4~, x, H(~b, y ) )  = G(~, x, H(~b, y),  n,, . . .  , n~)]. (3) 

By Corollary 1.1, (2) and (3) then give 

(V¢ E 'I~)(V~h E ~ ) ( V x ) ( V y ) ( 3 m l ) ( V n l  > ml) " "  (~mk)(Vn~ > mk) 

[F(¢, x, H ( ~ ,  y ) )  = G(¢, x, K ( ~ ,  y, n~, . . .  , nD ,  nl,  . . -  , n~)], 

so that F '  is k-limiting recursive on ¢ X • X N 2. Note that it has also been shown that 
a recursive functional whose iterated limit is the desired composed functional can be ob- 
tained simply by composing the recursive functionals whose iterated limits are the given 
functionals. 

COROLLARY 2 . 1 .  A predicate whose characteristic function(al) is expressible as a 
composition of k-limiting recursive function( al)s is k-limiting decidable. 

For example, let the unary predicates P and Q have k-limiting recursive characteristic 
functions Cp and Ce, and let f (x ,  y) = xy for all x and y; then R defined as R ( x )  
P ( x )  & Q(x) is k-limiting decidable, since Ca(x) = f (Ce(x ) ,  Ce(x) )  for all x and f is 
recursive and hence k-limiting recursive for all k. 

LEMMA 3. Application of the minimization operator to a k-limiting decidable predicate 
yields a k-limiting recursive functional, provided the requisite minimal value always exists. 

For example, if P is k-limiting decidable on ¢ X N 2, where ,I~ is a class of total func- 
tions, then X¢x[~yP(¢, x, y)] is k-limiting recursive on ,I~ X N, provided (V4~ E ~)(Vx)  
(3y)P(¢ ,  x, y).  The notation " ~ y . . . "  stands for "the least y such that  . . . .  " 

PROOF. Consider the ternary predicate P above (extension to the general case is 
straightforward). Let y~ be the Skolem functional in the existence criterion above, i.e. 
(V$ E ¢) (Vx)P(~ ,  x, y~,). Since P is k-limiting decidable, (W~ 6 ~ ) ( V x ) ( V y ) ( 3 m l )  
(Vnl > m~) -- .  (3mk)(Vn~ > m~)[P(4~, x, y) -~ Q($, x, y, n~, . - .  , n~)] where Q is 
decidable on ¢ X N ~+~. Restrict y to y < yo,, so that  the (Vy) quantifier becomes (Wy _< 
y~,). This bounded quantifier may be passed through the others: 

(We 6 ~ ) ( Y x ) ( ~ m ~ ) ( Y n l  > m~) . . .  (3m~)(Yn~ > m~)(Wy _< y~)  

[P(,~, x, y) --- Q(~, x, y, n~, . . .  , n~)] 

Hence 

[(~y _~ y , , )P(~ ,  x, y) = (~y < y,~)Q(~, x, y, n~, . . .  , n~)]. 

Now since P(¢, x, y~) holds, (uy _< y~,)P(¢, x, y) = uyP(~, x, y), But [uyP(~h, x, y) = 
( uy ~ y~)  Q( ¢, x, y, n~, . . .  , n~)] is equivalent to [#yP ( ¢, x, y) = ~yQ( ~, x, y, n~, . . .  , n~)] 
from the definition of y~,, and this is in turn equivalent to [uYP(4~, x, y) : ~y[Q(~, x, y, 
n~, • • • , n~) V y = n~]] provided n~ > y,~. Since the right side of the bracketed equality 
expresses a functional recursive on ~ X N TM and since m~ can be chosen greater than 
y,, ,  ~yP(¢, x, y) is k-limiting recursive on • X N. 

T ~ o ~ M  2. For any k-limiting recursive length measure, programs are (k  Jr 1)- 
limiting r.e. in order of nondecreasing length. 

PaOOF. There exists a recursive function f such that 

(Vx)(~m,)(Vnl  > m,) - . .  (~m~)(Vn~ > m~)Ef(x, n,, - . . ,  n~) = I x l  ]. (4) 

L e t g ( i )  = ( ~ x ~  S ~ ) ( V y ~  S , ) [ ] x ]  _< ] y l ]  for a l l i ,  where So = N, S~+~ -- ~, -- 
(g(i)}. Thus g enumerates programs (actually, their indices) in order of nondecreasing 
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length. Analogously let h(i,  n, nl, . ."  , nk) = (~tx E S ~ , ) ( V y  E S~,)[f(x,  nl, . . .  , n~) < 
f(y:. hi, . . .  , nk)] for all i, n, nl, . . .  , nk, where Son ffi {0, - . -  , n}, S~+I.~ -- ( S ~  - 
{h(i,  n, nl, . . .  , n~)}) 0 {n} for all i, n. As Si,  is finite for all i, n a n d f  is recursive, h 
is also recursive. 

For x _< n the first quantifier in (4) is bounded and can be passed through the others: 

( 3 m l ) ( V n l  > ml)  . . .  (~m~) (Vn~  ) m k ) ( V x  _< n)~f(x,  nl, • , nk) = I x l ]- (5) 

From the definition of h 

( Y i ) ( V n ) ( 3 m l ) ( V n l  > ml)  . . .  ( 3mk) (Wnk  > mk)[h(i, n, nl, - . -  , n~) 

= (gx E S~.)(Yy E S~,,)[f(x, nl, . . .  , n~) _< f ( y ,  nl, "." , nk)]]. (6) 

By  Corollary 1.1, (5) and (6) give 

( V i ) ( V n ) ( 3 m l ) ( V n l  > ml)  . . .  (3mk)(Vn~ > m,)[h( i ,  n, n~, - . .  , n~) 

= (~tx E S , , ) ( V y  E S i , ) [ f ( x ,  nj, . . .  , n~) .< f ( y ,  n~, . . .  , nk)] 

& ( Y x  g n )[ f (x ,  nl, . . .  , nk) = ]x  I] & ( V y  < n)[ f (y ,  n~, . . .  , nk) = I Y l ]]. 

Since x, y _< n in the definition of h, 

( V i ) ( V ~ ) ( 3 m l ) ( V n l  > ml) . . .  (~m~)(Vnk > ink) 

[h(i, n, nx, . . .  , n~) = (gx E S , = ) [ [ x l  _< ] Y Ill- (7) 

For any given i, let m = max{g( j )  IJ  -< i}. Then for all n > m, a l l j  < i, and all 
choices of nl, • • • , nk which guarantee the equality in (7), it is easily shown by induction 
on j tha t  S¢. = Sj - {x [ x > n} and h( j ,  n, nl, . . .  , nk) = g ( j ) .  Hence 

( V i ) ( 3 m ) ( V n  > m ) ( 3 m l ) ( V n l  > ml)  . . .  (3mk)(Vnk > ink) 

[h(i, n, hi, . . .  , nk) = g(i)], 

so tha t  g is (k + 1)-limiting recursive. 
Some examples of sets of program descriptions may help the reader interpret  the theo- 

rems tha t  follow. An example of a set of uniformly (0-limiting) decidable descriptions is 
= {the program converges in at  most i ~ steps on the first i inputs; the output  of the 

program on each of the first i inputs is i I i E N}. An example of a set of uniformly limit- 
ing decidable descriptions is 5 = {for any input n, the program converges in a t  most  
( i  + n) ~+" steps with output  i + n ] i E N} ; a set of infinitely long descriptions equiva- 
lent to the last (and still limiting decidable) is A = {each of the following triples gives 
an input, corresponding output,  and corresponding maximum number of steps for the 
program to converge : (0, i, ii), (1, i + 1, ( i  + 1)~+~), (2, i + 2, ( i  + 2)~+~), • . . ,  I i ~ N}. 

Roughly speaking, Theorem 3 states that  finding minimal programs is no more diffi- 
cult than enumerating programs in order of nondecreasing length or deciding whether a 
given program realizes a given description (whichever is harder) ,  where the "difficulty" 
of a k-limiting recursive functional is k. 

THEOREM 3. Given: a programmable machine M,  a length measure such that programs 
are k-limiting r.e. in order of nondecreasing length, and a set A of realizable, uniformly k- 
limiting decidable program descriptions. Then the program minimization problem for ,5 is 
k-limiting recursively solvable. 

PROOF. Since programs are k-limiting r.e. in order of nondecreasing length, there is a 
k-limiting recursive function f which maps N onto N such tha t  j > i ~ t f ( J )  [ >- [ f (  i) I. 
Also, since program descriptions are uniformly k-limiting decidable, there is a k-limiting 
decidable predicate P such tha t  for all $ E ~ and x ~ N, P(~, x) ¢=~ ~(~). 

Let  is = giP(~, f ( i )  ) ; thus f(i~) is the first minimal program realizing $ in the sequence 
] ~ ,  f(1), " - . .  By  the lemmas, i~ is k-limiting recursive on ~. 

THEOREM 4. Given: a k-limiting recursive length measure such that programs are k- 
limiting r.e. in  order of nondecreasing length and a set ~ of realizable, uniformly k-limiting 
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decidable program descriptions. Then the problem of finding all minimal programs realizing 
any ~ E ~ is k-limiting recursively solvable. 

PROOF. Define i~ as in the proof of Theorem 3 and let i~' = td[ I f('i) I > I f(i~) I ]. The  
predicate expressed by the bracketed inequality, with i and ~ regarded as variables, is 
k-limiting decidable by Lemma 2, as f, i~, I [, and the characteristic function of { (x, y) [ x > 
y} are all k-limiting recursive. Hence by Lemma 3, i~' is k-limiting recursive on ,~. 

Now if the set of indices of the minimal programs realizing ~ is expressed by  its canonical 
index e~ = ~ 0  2~(°Ce(~, f ( i ) ) ,  where Ce is the characteristic function of P,  with P 
defined as in Theorem 3, then application of Lemma 2 shows ~ to be k-limiting recursive 
on 5. 

Note that  because of the assumption in Theorem 4 tha t  the length measure is k-limiting 
reeursive, Theorem 3 cannot be regarded as a consequence of Theorem 4. Note  also tha t  
any (k - 1)-limiting recursive length measure satisfies the conditions of Theorem 4 (by  
Theorem 2). 

Theorems 3 and 4 are the main results of this paper. The remaining theorems illustrate 
their application. 

THEOREM 5. For any recursive length measure, the problem of.finding all minimal pro- 
grams for finite programmable functions is limiting recursively solvable (each .finite function 
is assumed to be specified by a program description which lists the argument-value pairs of 
the function in any order). 

PROOF. By Theorem 2, programs are limiting r.e. in order of nondecreasing length. 
Let  the finite function encoded by any particular ~ E A be { (y~, z~ ~) I i ~ n~}. Let  Q = 
{ (~, x, n) [ for all i _< n~, M with program £ and input ~ halts within n steps with output  
~6}. Clearly Q is decidable and (V8 C ~ ) ( V x ) ( 3 m ) ( V n  > m)[Q(~, x, n) ~ P(~, x)], 
where P(~, x) ¢:* ~(~). Hence the problem of finding all minimal programs for any finite 
function is limiting recursively solvable. (Use of Theorem 2 could easily have been 
avoided.) 

THEOREM 6. Given a reeursive length measure and a machine M which computes total 
functions only, the problem of finding minimal programs for functions programmable on M 
is limiting recursively solvable (each programmable function is assumed to be specified by a 
program description which lists the argument-value pairs of the function in any order). 

PROOF. For all i, let (y~, z~ 8) be the i th argument-value pair specified by  any descrip- 
tion ~, and let Q = / (~, x, n) I for all i _~ n, M with program ~ and input 9~ ~ computes 
output  ~} .  Q is decidable since M always halts; if there is an m such tha t  M fails to 
output  2~ with program £ and input .~5, then Q(~, x, n) will be false for all n > m; if 
there is no such m (so tha t  £ realizes ~), then Q(~, x, n) is true for all n. Evidently the 
descriptions are uniformly limiting decidable and the theorem follows. 

Gold had already shown tha t  the problem of finding any programs (not necessarily 
minimal) for members of an r.e. class of total  functions is limiting recursively solvable, 
and Feldman [2] remarked tha t  this can be extended in an obvious way to finding minimal 
programs ~ when programs are r.e. in order of nondecreasing length. Theorem 6 strengthens 
this result slightly, as there are recursive length measures for which programs are not r.e. 
in order of nondecreasing length (e.g. define I [ so tha t  the sequence [ 0 [, [ 1 [, [ 2 I / " "  
enumerates an r.e., nonrecursive set without repetition). 

THEOREM 7. For any M and any limiting recursive length measure, the problem of 
.finding minimal programs for functions programmable on M is 2-limiting recursively solvable 
(as in Theorem 6, the problem is interpreted in terms of program descriptions, where any 
description lists the argument-value pairs of a programmable function in any order). 

PROOF. Let  Q = I (~, x, n~, n~) [ for all i _< n~, M with program ~ and input ~ halts 
within n: steps with output  2~}, with y~, z~ * defined as in Theorem 6. For fixed $, x, n~, 

Actually, Feldman was concerned with "occams enumerations" of formal grammars, but the prob- 
lem of finding minimal grammars for languages is essentially the same as that of finding miniraal pro- 
grams for decision functions. 
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Q(~, x, nl, n2) holds in the limit of large n2 iff ~ is a program for {(y~, z~ ~) I i _< nl}. If  
:is a program for {(y a, z~) I i E NI, then (Vnl) lim.~ Q(~, x, nl, n2); if not, there is a 

pair (y6,  z~),  contained in all sets { (y~, z~ ~) I i < nl} for which nl > m, such that  M 
with program ~ fails to compute output ~ for input ~ ;  hence (Vnl > n~) -1 lim.~ Q(~, 
x, n~, n~). I t  follows that  the descriptions are uniformly 2-limiting decidable. Since pro- 
grams are 2-limiting r.e. in order of nondecreasing length by Theorem 2, the program 
minimization problem is 2-limiting recursively solvable. 

Note that  it is known from the work of Gold that the problem is not in general limiting 
recursively solvable. 

The theorem is readily generalized to descriptions which prescribe divergent computa- 
tions for some inputs. The minimization problem remains 2-1imiting recursively solvable. 

3. Remarks on Induction and Iterated Limiting Recursion 

Deduction is concerned with the derivation of particular consequences from general 
premises, while induction proceeds in the opposite direction. The problem of finding an 
algorithm (minimal or otherwise) for a function, after inspection of some but not all 
values of the function, is clearly of the inductive type: the complete algorithm proposed 
on the basis of incomplete information expresses a generalization about the function 
sampled. Nontrivial inductive problems are inherently "unsolvable" in the sense that  no 
terminating procedure exists for generating "correct" generalizations; any unverified 
consequence of a proposed generalization may turn out to be in error. This motivated 
Gold's definition of limiting recursive predicates and functionals, which are more power- 
ful than their nonlimiting counterparts. He noted that  a "thinker" employing a procedure 
for function (or "black-box") identification in the limit and using the current guess of a 
fimetion's identity as a basis for goal-directed activity would be acting on correct informa- 
tion eventually. I n  this sense, therefore, some unsolvable problems are within the reach of 
mechanical procedures. The most general function identification problem, however, is 
2-limiting recursive. Can any mechanical system be conceived which in some sense 
"solves" a 2-limiting recursive problem? Not if attention is restricted to a single "thinker" 
generating a single sequence of guesses; however, suppose that instead of a single thinker, 
each of an ever-growing number of such thinkers To, T~, • • • with universal computational 
power observes the nonterminating sequence (y0, z0), (yl, zt), • • • which enumerates some 
partial recursive function cb. At any time the ith thinker T~ regards as his best guess the 
shortest program (if any) he has been able to find which, in the time available, has given 
correct outputs for inputs y0, y~, • • • , y~ and either no output or a correct output for any 
other argument tested. I t  is clear that  each thinker will eventually be guessing a program 
ibr a subset of 4; furthermore, all but a finite number of the thinkers will be guessing pro- 
grams for 4~ eventually. In this iterated limiting sense the expanding community success- 
fully identifies 4~. Of course there is no strategy effective in the limit for deciding in general 
which thinkers are guessing programs for ~b at any time. To interpret third-order limit 
processes, one might envisage a growing number of expanding communities of the above 
type, each committed to a distinct value of a certain parameter. At most finitely many 
of the unbounded communities would in general be "unsuccessful." Similarly still higher- 
order processes could be interpreted. 
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