
Iterated Limiting Recursion and the Program

Minimization Problem

L. K. SCHUBERT

University of Alberta, Edmonton, Alberta, Canada

ASS'tRACT. The general problem of finding minimal programs realizing given "program descriptions"
is considered, where program descriptions may be of finite or infinite length and may specify arbitrary
program properties. The problem of finding minimal programs consistent with finite or infinite input*
output lists is a special case (for infinite input-output lists, this is a variant of E. M. Gold's function
identification problem). Although most program minimization problems are not recursively solvable,
they are found to be no more difficult than the problem of deciding whether any given program re-
alizes any given description, or the problem of enumerating programs in order of nondecreasing
length (whichever is harder). This result is formulated in terms of k-limiting recursive predicates and
functionals, defined by repeated application of Gold's limit operator. A simple consequence is that
the program minimization problem is limiting recursiv~ly solvable for finite input-output lists and 2-
limiting recursively solvable for infinite input-output lists, with weak assumptions about t h e

measure of program size. Gold regarded limiting function identification (more generally, "black box"
identification) as a model of inductive thought. Intuitively, iterated limiting identification might be
regarded as higher-order inductive inference performed collectively by an ever-growing community
of Lower order inductive inference machines.

KEY WORDS AND PHRASES: minimal programs, limiting recursion, function identification, inductive
inference, degree of unsolvability, Kleene hierarchy, program properties, program length measures

CR CATEGORIES; 3.61, 5.27

1. Introduction

A question considered by Gold [1] was for what classes of computable functions there
exist machines which succeed in "identifying in the l imit" any member of the class.
Identifying a computable function in the limit consists of generating a sequence of
"guesses" (integers) convergent to an index for the function, successive guesses being
based on successively larger portions of an information sequence which lists all elements
of the function. An example of a practical problem to which these concepts are relevant
is the learning problem in pat tern recognition. Typically an adaptive pat tern recognition
system is caused to "learn" a mapping from patterns to responses by presenting to it a
sequence of labeled patterns, i.e. patterns vdth their appropriate responses. All of the
machine's responses will be correct once it has identified the pattern-response mapping,
in the sense that it has found an algorithm (equivalently, an index) for it. Two of Gold's
main results were tha t any r.e. class of total recursive functions is identifiable in the limit,
and that the class of total recursive functions is not identifiable in the limit (hence also
the class of partial recursive functions is not identifiable in the limit).

Copyright © 1974, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice i s

given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
This work was conducted under a National Research Council Postdoctorate Fellowship.
Author's address: Department of Computing Science, University of Alberta, Edmonton 7, Alberta,
Canada.

Journal of the Association for Computing Machinery, Vol. 21, No. 3, July 1974, pp. 436--445.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321832.321841&domain=pdf&date_stamp=1974-07-01

Iterated Limiting Recursion and the Program Minimization Problem 437

Here a modified version of Gold's problem is considered. The first modification is the
replacement of information sequences by (finite or infinite) "program descriptions"
which may specify arbitrary program properties. Descriptions which list input-output
pairs are then regarded as a special case. The second modification is that iterated limit
procedures (k-limiting recursive functionals) are admitted for program finding, since
finding suitable programs in the noniterated limit is impossible for many classes of pro-
gram descriptions. For this purpose k-limiting recursiveness is defined by straightforward
generalization of Gold's concept of limiting recursiveness. The third modification is the
added requirement that programs found in the (iterated) limit be minimal according to
some prescribed measure of program size. Accordingly problems of this modified type are
called program minimization problems.

There are various reasons for an interest in finding minimal-length programs. In work
on grammatical inference closely related to Gold's identification problem, Feldman [2]
considers inference schemes which try to find "good" grammars consistent with available
information about a language. One measure of goodness is the intrinsic complexity, or
size, of a grammar. In terms of the function identification problem, this corresponds to
finding programs which are small according to some measure of program size. Indeed, the
use of small (though not necessarily minimal) programs for inductive inference is a re-
curring theme in the literature (see, for example, [3-5]) ; allusion is usually made to the
scientific maxim known as "Occam's Razor," according to which "it is vain to do with
more what can be done with fewer" in accounting for known phenomena. The special
importance of minimal programs is also suggested by the work c,f Kolmogorov [6], Martin-
LSf [7], and others, showing that the number of symbols in the shortest program for
generating a finite sequence can be taken as a measure of the information content of the
sequence, and this measure provides a logical basis for information theory and probability
theory.

In the following the unsolvability of most nontrivial program minimization problems
is first noted. After establishment of some basic properties of k-limiting recursive predi-
cates and functionals, it is shown that any program minimization problem is k-limiting
recursively solvable if the problem of determining whether any given program satisfies
any given description is k-limiting recursively solvable and programs are k-limiting r.e.
in order of nondccreasing size. Simple consequences are that the problem of finding
minimal programs for finite functions is limiting recursively solvable, and that the prob-
lem of finding minimal programs for arbitrary computable functions (given an explicit
listing) is 2-limiting recursively solvable, with weak assumptions about the measure of
program size. Lower bounds on the difficulty of these problems are already known from
the work of Pager [8] and Gold [1].

Finally, the point is emphasized in the concluding remarks that limiting recursively
solvable induction problems, though strictly "unsolvable" in general, ate nonetheless
within the reach of mechanical procedures in the important sense described by Gold, and
that even problems unsolvable in the limit may be regarded as solvable in a weakened
sense by an expanding community of mechanisms performing limit computations.

2. Program Minimization Problems

To fix ideas, any programmable machine M may be thought of as a 2-tape Turing machine,
with one tape regarded as input-output (I /O) tape and the other as program tape. One
or both tapes also serve as working tape. A computation begins with the finite-state
control of 'the machine in a unique start state and with a program on the program tape
and an input on the I /O tape. If and when the machine halts, the I /O tape expression
gives the output. I t is assumed that there is an effective 1-1 coding from tape expressions
(same syntax for both tapes) onto the integers N. The program (or I /O tape expression)
corresponding to code number (index) x will be written as 4. If M eventually halts with
output ~ when supplied with program ~ and input ~, one may write ~b~(y) -- z. I f M

438 L. K. SCHUBERT

does not halt, 4 ~ (y) is undefined. Thus M computes a partial function 4~ ~ with pro-
grara ~. However, it will be convenient to think of ~ not merely as a program for 4, M,
but as a program for any subset of 4= ~. In other words, ~ is a p r o ~ a m for a function 4
provided only that 4 ~ (y) -- 4(y) for all y in the domain of 4~; 4 ~ (y) need not be un-
defined for y outside that domain. If such an ~ exists for a given 4, 4 will be said to be
programmable (on M). A machine M such that the sequence ¢ ~ , 4i ~, 42 ~, • • • contains
every partial recursive function is universal.

A program length measure assigns a nonnegative integral length to each program such
that only a finite number of programs are of any particular length. The length of a pro-
grana ~ will be denoted by] x I. A length measure need not be reeursive, though this is a
frequent assumption; furthermore, programs are often assumed to be effectively enumera-
ble in order of nondecreasing length. For example, the number of elementary symbols in
a program provides such a length measure.

In the following, obviously machine and length-measure dependent concepts will
sometimes be used without explicit reference to a particular machine or length measure.
This should be kept in mind for a correct interpretation of the results.

A minimal program for a function 4 is one whose length does not exceed the length of
any other program for 4. The problem of finding a minimal program (or all minimal pro-
grams) for a function ~, given a (possible infinite) list of the argument-value pairs of 4,
is an example of a program minimization problem. More generally, a program minimiza-
tion problem is the problem of finding a minimal program (or all minimal programs)
meeting the conditions listed in any "program description" belonging to some class of
such descriptions. Program descriptions are loosely defined as follows. Suppose that a
(possibly infinitary) logical system is given along with an interpretation based on a fixed
M such that every wff in the system expresses some program property (i.e. every wff is a
unary predicate over programs). Then the wff's comprising the system will be called
program descriptions. Typically a program description might specify relationships be-
tween inputs and outputs (e.g. particular input-output pairs), structural properties (e.g.
the number of occurrences of a particular symbol in the program), operational properties
(e.g. computational complexity), or combinations of such properties. If ~ is a program
description, a program ~ will be said to realize ~ if • has the property expressed by 5;
more briefly, ~(£) will be written for "~ realizes ~." If an ~ exists such that $(~), then
will be said to be realizable. For some descriptions (such as listings of input-output pairs)
the truth value of the assertion $(~) depends only on the function computed by M with
program :~, i.e. [4, M = 4~ ~] ~ [~(£) ¢~ ~(~)]. Such descriptions will be termed I /O de-
scriptions. As examples of I /O descriptions which do not merely list functions, consider
the following expressions (in a quasilogical notation with the obvious interpretation) :

(i) [4=i(a) = 9 Y 4~M(3) = 11] & 4 ~ (5) divergent,
(ii) (Yy)[4,M(y) convergent & even],

(YY)[4~ (Y) = V -~ (iii) M ~ V 475(y)1 (y)[4~ (y + 5) 4=M(y) + 6].

Gold's identification problem can evidently be reformulated in terms of infinite descrip-
tions (i.e. wff's belonging to an infinitary logical system) such as

(iv) 4,M(0) = 0 & 4 ~ (1) -~ 1 &4,~(2) = 4&4~M(3) = 9 & - . - , e t c .

Ii~ is assumed that descriptions can be coded numerically. If only finite descriptions
are involved, an effective coding of descriptions into integers is appropriate. If infinite
descriptions are involved, these can be coded as total number-theoretic functions on N
by means of a 1-1 mapping from elementary symbols into integers) For example, con-
sider illustration (iv) above; if the numbers from 1 to 5 are used to encode the symbols

A code into total functions would also be used for a mixture of finite and infinite descriptions; one
digit, say 0, would be reserved as terminator and all function values corresponding to points beyond
the end of a finite description would be set to 0.

Iterated Limiting Reeursion and the Program Minimization Problem 439

¢ ~ , (,), = , and &, respectively, and numerals within the description are represented
by adding 6, the code sequence 1, 2, 6, 3, 4, 6, 5, 1, 2, 7, 3, 4, 7, 5, .. • is obtained; ex-
pressed as a total function this is {(0, 1), (1, 2), (2, 6), (3, 3), (4, 4), (5, 6), . . -} . Thus
when functions of encoded descriptions are considered later on, these become functionals
in the case of infinite descriptions.

The coded version of a description ~, whether it is finite or infinite, will be written as &
Since no confusion can result, coded representations of descriptions will also simply be
called descriptions. A set of descriptions will be called infinitely diverse if every set of
programs containing at least one that realizes any given one of the descriptions is infinite.
Otherwise the descriptions are finitely diverse, i.e. some finite set of programs suffices for
their realization.

Theorem 1 is concerned with I / O descriptions only, while Theorems 3 and 4 will apply
to arbitrary program descriptions.

THEOREM 1. Let M be a universal programmable machine and let a recursive length
measure be given. Then the program minimization problem is not recursively solvable for any
effectively enumerable, infinitely diverse set of I / 0 descriptions.

PROOF. Pager [8] previously noted this fact for the case when I /O descriptions specify
finite functions, and remarked that the proof involves the Recursion Theorem. The theo-
rem also follows directly from a theorem of Blum [9]. The denial of the theorem allows
an infinite set of minimal programs to be enumerated, by enumeration of the I / O descrip-
tions and computation of the corresponding minimal programs. If h(x, y) is a function
which simulates the first minimM program enumerated of size greater than I x I, then
clearly h(x, y) is partial reeursive, and hence by the S - m - n Theorem and the Re-
cursion Theorem, for some xo, h(xo, y) ~ for Thus ~0 = Cx0(y) all y. is shorter than one of
the supposed minimal programs in the enumeration.

To demonstrate the unsolvability of a program minimization problem (for a universal
machine), it is therefore sufficient to show that the descriptions concerned include an
effectively enumerable, infinitely diverse set of I / O descriptions. This implies, for example,
that the program minimization problem for the singleton functions, for the finite decision
functions, and even for the decision functions of cardinality 2 is unsolvable, ~ whenever
the length measure is recursive.

Pager [10] has shown that the last-mentioned problem is unsolvable even when the
length measure is not recursive. Further, he established the surprising fact tha t the
minimization problem is unsolvable for a certain finitely diverse set of decision functions,
regardless of the length measure employed [8].

In view of Pager's results it may be asked whether the requirement tha t the length
measure be recursive is superfluous in Theorem 1. The answer is no (although the re-
qnirement can be weakened somewhat). To prove this, it is only necessary to specify
some sequence of finite decision functions such that any program is a program for at
most one of these functions, plus an arbitrary procedure for obtaining a particular pro-
gram for each function in the sequence; then the length measure can readily be defined to
guarantee the minimality of these particular programs.

I t is interesting to note that Theorem 1 still holds for certain non-I /O descriptions.
For example, suppose the minimal programs are required to operate within a certain
bound on the computational complexity (e.g. time or tape complexity), apart from an
arbitrary additive constant. Then it is clear that the proof of Theorem 1 is applicable
without change.

For the finite decision functions, note that the functions computed with any finite set of programs
can be diagonalized to yield a finite decision function which requires a program not in the given set.
To prove infinite diversity for the 2-element decision functions, it is sufficient to show that no set of
n programs can include a program for each 2-element decision function whose argmnents are in a
fixed set of 2 "+1 integers; but for this many arguments at least 2 of the programs must give identical
results (if any), so that two unsymmetric decision functions are missed.

440 L. K. SCHUBERT

These unsolvability results do not mean that all interesting program minimization
problems are entirely beyond the reach of mechanical procedures, as Theorem 3 will show.

The following definitions generalize the concept of limiting reeursion introduced by
Gold [11.

Definitions. Let A be a subset of ~ X • • • X ~ X N" where the @~ are sets of unary
total functions and r, s >_ 0. A functional a F is k-limiting recursive on A if there exists a
functional G recursive on A X N k such tha t

(Y~ E h) (3 m l) (Y n l > ml) . . . (3m~) (Ynk > ink)IF(a) = G(a, nl, . - . , n~)].

Equivalently one may write (Vd E h)[lim,~ . . - lim,~ G(~, nl, . . . , nk) ~- F(~)]. 4 For
k = 1, these statements say that for all arguments 6, G(~, n) is the same as F(~) when-
ever n is sufficiently large, or equivalently, tha t the limit of G($, n) with respect to n is
F(~) (the limit is attained in finitely many steps) ; for k = 2, they say that for all argu-
ments ~ and all sufficiently large n~, G(~, nl, n2) is the same as F(~) whenever n2 is suffi-
cientiy large, or equivalently, tha t in the limit of large nl the limit of G(~, n~, n2) with
respect to n2 is F(6) ; etc. I t can be shown (with the aid of the Kleene T-predicate and the
Recursion Theorem) that for all k there are (k + 1)-limiting recursive functionals tha t
are not k-limiting recursive. Similarly a predicate P is k-limiting decidable on A if there is
a predicate Q decidable on A X N ~ such that (V~ E A) (~m~) (Vnl > m~) . . - (3ink) (Vnk
> mk)[P(~) ~ Q(~, nl, . - . , n~)]. Descriptions comprising a set & will be called uniformly
k-limiting decidable (with a particular M understood) if there is a predicate P k-limiting
decidable on h X N such that for all $ E A, P(~, x) holds iff ~(~). A set of integers is
k-limiting r.e. if it is empty or the range of a function k-limiting recursive on N 3 0-limiting
recursive is the same as recursive, and I-limiting recursive is abbreviated as limiting
recursive.

Gold (also Pu tnam [11]) has shown that limiting decidable is equivalent to member-
ship in the intersection of classes ~2 and I12 of the Kleene arithmetical hierarchy. I t can
be shown that if P is k-limiting r.e., then it is in ~k and if P is k-limiting decidable, it is
in Z~, A I]2,, for all k. I conjecture the converse statements to be false for k > 1; the
proof (or disproof) of this conjecture is an open problem. The following is easily verified.

LEMMA 1. I f P and Q are predicates of at least one number variable (and possibly ad-
ditional number and function variables), then (3 m) (Y n > m)P(n,. . .) & (~ m) (Y n > m)
Q(n, . . .) -~ (3 m) (Y n > m)[P(n , . . .) & Q(n, . . .)] .

COROLLARY 1.1. I f P and Q are predicates of at least k number variables (and possibly
additional number and function variables), then

(~ml) (Yn~ > m~) . . . (~m~) (Y n , > m~)P(n~, . . . , n~, . . .)

& (~ml) (Yn~ > m~) . . . (3 m ,) (Y n , > m,)Q(n~, . . . , n,, . . .)

(3m~)(Vn~ > m~) . . . (~ i m ,) (Y n , > m,)[P(n~, . . . , n,, . . .) & Q (n ~ , . . . , n , , . . .)] .

LEMM~ 2. Composition of k-limiting recursive functionals yields a k-limiting recursive
functional.

PROOF. Consider the special case F' = k~bxy[F(4~, x, H(~b, y))], where F and H are
functionals k-limiting recursive on ,I~ X N 2 and ¢ X N respectively, and ~, ¢ are sets of
total functions. The proof is easily extended to the case where F is r-ary and s of its
arguments are values of k-limiting recursive functionals H~, H~, • • • , H,. Since F and H
are k-limiting recursive, there exist functionals G and K recursive on ,I~ X N *+2 and
~I, X N *+~ respectively such that

(V~b ~ ~ b) (Y x) (~ z) (~ m l) (Y n ~ > m,) . . . (~ m ~) (Y n , > m~)[F(~b, x, z)

= G (~ , x , z , n ~ , . . . , n ,) l , (1)

• Func t ions are regarded as a special case of funct ionals .
• The equivalence follows from the fact that F(~) is independent of n~, • .. , n,, so that the iterated
limit of G must exist.

This differs from Gold's definition, which expresses limiting reeursive enumerability in terms of
limiting semidecidability. However, the definitions can be shown to be equivalent (for k = 1).

Iterated Limiting Recursion and the Program Minimization Problem

and

(V~ ~ ~) (Vy)(3m~)(Vnl > m~) . . . (3m~)(Vn~ > m~)[H(~, y)

= K (~ b , y , n~ , . . . , nk)]. (2)
Since H(V~, y) is defined for all V~ E ~I, and all y, a consequence of (1) is

(V$ E ~)(V~ E ~) (V x) (V y) (3 m ~) (V n ~ > m~) . . . (3mk)(Vn~ > m,)

[F(4~, x, H(~b, y)) = G(~, x, H(~b, y), n,, . . . , n~)]. (3)

By Corollary 1.1, (2) and (3) then give

(V¢ E 'I~)(V~h E ~) (V x) (V y) (3 m l) (V n l > ml) " " (~mk)(Vn~ > mk)

[F(¢, x, H (~ , y)) = G(¢, x, K (~ , y, n~, . . . , nD , nl, . . - , n~)],

so that F ' is k-limiting recursive on ¢ X • X N 2. Note that it has also been shown that
a recursive functional whose iterated limit is the desired composed functional can be ob-
tained simply by composing the recursive functionals whose iterated limits are the given
functionals.

COROLLARY 2 . 1 . A predicate whose characteristic function(al) is expressible as a
composition of k-limiting recursive function(al)s is k-limiting decidable.

For example, let the unary predicates P and Q have k-limiting recursive characteristic
functions Cp and Ce, and let f (x , y) = xy for all x and y; then R defined as R (x)
P (x) & Q(x) is k-limiting decidable, since Ca(x) = f (Ce(x) , Ce(x)) for all x and f is
recursive and hence k-limiting recursive for all k.

LEMMA 3. Application of the minimization operator to a k-limiting decidable predicate
yields a k-limiting recursive functional, provided the requisite minimal value always exists.

For example, if P is k-limiting decidable on ¢ X N 2, where ,I~ is a class of total func-
tions, then X¢x[~yP(¢, x, y)] is k-limiting recursive on ,I~ X N, provided (V4~ E ~)(Vx)
(3y)P(¢ , x, y). The notation " ~ y . . . " stands for "the least y such that "

PROOF. Consider the ternary predicate P above (extension to the general case is
straightforward). Let y~ be the Skolem functional in the existence criterion above, i.e.
(V$ E ¢) (Vx)P(~ , x, y~,). Since P is k-limiting decidable, (W~ 6 ~) (V x) (V y) (3 m l)
(Vnl > m~) -- . (3mk)(Vn~ > m~)[P(4~, x, y) -~ Q($, x, y, n~, . - . , n~)] where Q is
decidable on ¢ X N ~+~. Restrict y to y < yo,, so that the (Vy) quantifier becomes (Wy _<
y~,). This bounded quantifier may be passed through the others:

(We 6 ~) (Y x) (~ m ~) (Y n l > m~) . . . (3m~)(Yn~ > m~)(Wy _< y~)

[P(,~, x, y) --- Q(~, x, y, n~, . . . , n~)]

Hence

[(~y _~ y , ,)P(~ , x, y) = (~y < y,~)Q(~, x, y, n~, . . . , n~)].

Now since P(¢, x, y~) holds, (uy _< y~,)P(¢, x, y) = uyP(~, x, y), But [uyP(~h, x, y) =
(uy ~ y~) Q(¢, x, y, n~, . . . , n~)] is equivalent to [#yP (¢, x, y) = ~yQ(~, x, y, n~, . . . , n~)]
from the definition of y~,, and this is in turn equivalent to [uYP(4~, x, y) : ~y[Q(~, x, y,
n~, • • • , n~) V y = n~]] provided n~ > y,~. Since the right side of the bracketed equality
expresses a functional recursive on ~ X N TM and since m~ can be chosen greater than
y,, , ~yP(¢, x, y) is k-limiting recursive on • X N.

T ~ o ~ M 2. For any k-limiting recursive length measure, programs are (k Jr 1)-
limiting r.e. in order of nondecreasing length.

PaOOF. There exists a recursive function f such that

(Vx)(~m,)(Vnl > m,) - . . (~m~)(Vn~ > m~)Ef(x, n,, - . . , n~) = I x l]. (4)

L e t g (i) = (~ x ~ S ~) (V y ~ S ,) [] x] _<] y l] for a l l i , where So = N, S~+~ -- ~, --
(g(i)}. Thus g enumerates programs (actually, their indices) in order of nondecreasing

4 4 2 ~. K. SCHUBERT

length. Analogously let h(i, n, nl, . ." , nk) = (~tx E S ~ ,) (V y E S~,)[f(x, nl, . . . , n~) <
f(y:. hi, . . . , nk)] for all i, n, nl, . . . , nk, where Son ffi {0, - . - , n}, S~+I.~ -- (S ~ -
{h(i, n, nl, . . . , n~)}) 0 {n} for all i, n. As Si, is finite for all i, n a n d f is recursive, h
is also recursive.

For x _< n the first quantifier in (4) is bounded and can be passed through the others:

(3 m l) (V n l > ml) . . . (~m~) (Vn~) m k) (V x _< n)~f(x, nl, • , nk) = I x l]- (5)

From the definition of h

(Y i) (V n) (3 m l) (V n l > ml) . . . (3mk) (Wnk > mk)[h(i, n, nl, - . - , n~)

= (gx E S~.)(Yy E S~,,)[f(x, nl, . . . , n~) _< f (y , nl, "." , nk)]]. (6)

By Corollary 1.1, (5) and (6) give

(V i) (V n) (3 m l) (V n l > ml) . . . (3mk)(Vn~ > m,)[h(i , n, n~, - . . , n~)

= (~tx E S , ,) (V y E S i ,) [f (x , nj, . . . , n~) .< f (y , n~, . . . , nk)]

& (Y x g n)[f (x , nl, . . . , nk) =]x I] & (V y < n)[f (y , n~, . . . , nk) = I Y l]].

Since x, y _< n in the definition of h,

(V i) (V ~) (3 m l) (V n l > ml) . . . (~m~)(Vnk > ink)

[h(i, n, nx, . . . , n~) = (gx E S , =) [[x l _<] Y Ill- (7)

For any given i, let m = max{g(j) IJ -< i}. Then for all n > m, a l l j < i, and all
choices of nl, • • • , nk which guarantee the equality in (7), it is easily shown by induction
on j tha t S¢. = Sj - {x [x > n} and h(j , n, nl, . . . , nk) = g (j) . Hence

(V i) (3 m) (V n > m) (3 m l) (V n l > ml) . . . (3mk)(Vnk > ink)

[h(i, n, hi, . . . , nk) = g(i)],

so tha t g is (k + 1)-limiting recursive.
Some examples of sets of program descriptions may help the reader interpret the theo-

rems tha t follow. An example of a set of uniformly (0-limiting) decidable descriptions is
= {the program converges in at most i ~ steps on the first i inputs; the output of the

program on each of the first i inputs is i I i E N}. An example of a set of uniformly limit-
ing decidable descriptions is 5 = {for any input n, the program converges in a t most
(i + n) ~+" steps with output i + n] i E N} ; a set of infinitely long descriptions equiva-
lent to the last (and still limiting decidable) is A = {each of the following triples gives
an input, corresponding output, and corresponding maximum number of steps for the
program to converge : (0, i, ii), (1, i + 1, (i + 1)~+~), (2, i + 2, (i + 2)~+~), • . . , I i ~ N}.

Roughly speaking, Theorem 3 states that finding minimal programs is no more diffi-
cult than enumerating programs in order of nondecreasing length or deciding whether a
given program realizes a given description (whichever is harder) , where the "difficulty"
of a k-limiting recursive functional is k.

THEOREM 3. Given: a programmable machine M, a length measure such that programs
are k-limiting r.e. in order of nondecreasing length, and a set A of realizable, uniformly k-
limiting decidable program descriptions. Then the program minimization problem for ,5 is
k-limiting recursively solvable.

PROOF. Since programs are k-limiting r.e. in order of nondecreasing length, there is a
k-limiting recursive function f which maps N onto N such tha t j > i ~ t f (J) [>- [f (i) I.
Also, since program descriptions are uniformly k-limiting decidable, there is a k-limiting
decidable predicate P such tha t for all $ E ~ and x ~ N, P(~, x) ¢=~ ~(~).

Let is = giP(~, f (i)) ; thus f(i~) is the first minimal program realizing $ in the sequence
] ~ , f(1), " - . . By the lemmas, i~ is k-limiting recursive on ~.

THEOREM 4. Given: a k-limiting recursive length measure such that programs are k-
limiting r.e. in order of nondecreasing length and a set ~ of realizable, uniformly k-limiting

Iterated Limiting Recursion and the Program Minimization Problem 443

decidable program descriptions. Then the problem of finding all minimal programs realizing
any ~ E ~ is k-limiting recursively solvable.

PROOF. Define i~ as in the proof of Theorem 3 and let i~' = td[I f('i) I > I f(i~) I]. The
predicate expressed by the bracketed inequality, with i and ~ regarded as variables, is
k-limiting decidable by Lemma 2, as f, i~, I [, and the characteristic function of { (x, y) [x >
y} are all k-limiting recursive. Hence by Lemma 3, i~' is k-limiting recursive on ,~.

Now if the set of indices of the minimal programs realizing ~ is expressed by its canonical
index e~ = ~ 0 2~(°Ce(~, f (i)) , where Ce is the characteristic function of P, with P
defined as in Theorem 3, then application of Lemma 2 shows ~ to be k-limiting recursive
on 5.

Note that because of the assumption in Theorem 4 tha t the length measure is k-limiting
reeursive, Theorem 3 cannot be regarded as a consequence of Theorem 4. Note also tha t
any (k - 1)-limiting recursive length measure satisfies the conditions of Theorem 4 (by
Theorem 2).

Theorems 3 and 4 are the main results of this paper. The remaining theorems illustrate
their application.

THEOREM 5. For any recursive length measure, the problem of.finding all minimal pro-
grams for finite programmable functions is limiting recursively solvable (each .finite function
is assumed to be specified by a program description which lists the argument-value pairs of
the function in any order).

PROOF. By Theorem 2, programs are limiting r.e. in order of nondecreasing length.
Let the finite function encoded by any particular ~ E A be { (y~, z~ ~) I i ~ n~}. Let Q =
{ (~, x, n) [for all i _< n~, M with program £ and input ~ halts within n steps with output
~6}. Clearly Q is decidable and (V8 C ~) (V x) (3 m) (V n > m)[Q(~, x, n) ~ P(~, x)],
where P(~, x) ¢:* ~(~). Hence the problem of finding all minimal programs for any finite
function is limiting recursively solvable. (Use of Theorem 2 could easily have been
avoided.)

THEOREM 6. Given a reeursive length measure and a machine M which computes total
functions only, the problem of finding minimal programs for functions programmable on M
is limiting recursively solvable (each programmable function is assumed to be specified by a
program description which lists the argument-value pairs of the function in any order).

PROOF. For all i, let (y~, z~ 8) be the i th argument-value pair specified by any descrip-
tion ~, and let Q = / (~, x, n) I for all i _~ n, M with program ~ and input 9~ ~ computes
output ~} . Q is decidable since M always halts; if there is an m such tha t M fails to
output 2~ with program £ and input .~5, then Q(~, x, n) will be false for all n > m; if
there is no such m (so tha t £ realizes ~), then Q(~, x, n) is true for all n. Evidently the
descriptions are uniformly limiting decidable and the theorem follows.

Gold had already shown tha t the problem of finding any programs (not necessarily
minimal) for members of an r.e. class of total functions is limiting recursively solvable,
and Feldman [2] remarked tha t this can be extended in an obvious way to finding minimal
programs ~ when programs are r.e. in order of nondecreasing length. Theorem 6 strengthens
this result slightly, as there are recursive length measures for which programs are not r.e.
in order of nondecreasing length (e.g. define I [so tha t the sequence [0 [, [1 [, [2 I / " "
enumerates an r.e., nonrecursive set without repetition).

THEOREM 7. For any M and any limiting recursive length measure, the problem of
.finding minimal programs for functions programmable on M is 2-limiting recursively solvable
(as in Theorem 6, the problem is interpreted in terms of program descriptions, where any
description lists the argument-value pairs of a programmable function in any order).

PROOF. Let Q = I (~, x, n~, n~) [for all i _< n~, M with program ~ and input ~ halts
within n: steps with output 2~}, with y~, z~ * defined as in Theorem 6. For fixed $, x, n~,

Actually, Feldman was concerned with "occams enumerations" of formal grammars, but the prob-
lem of finding minimal grammars for languages is essentially the same as that of finding miniraal pro-
grams for decision functions.

444 L. K. SCHUBERT

Q(~, x, nl, n2) holds in the limit of large n2 iff ~ is a program for {(y~, z~ ~) I i _< nl}. If
:is a program for {(y a, z~) I i E NI, then (Vnl) lim.~ Q(~, x, nl, n2); if not, there is a

pair (y6, z~), contained in all sets { (y~, z~ ~) I i < nl} for which nl > m, such that M
with program ~ fails to compute output ~ for input ~ ; hence (Vnl > n~) -1 lim.~ Q(~,
x, n~, n~). I t follows that the descriptions are uniformly 2-limiting decidable. Since pro-
grams are 2-limiting r.e. in order of nondecreasing length by Theorem 2, the program
minimization problem is 2-limiting recursively solvable.

Note that it is known from the work of Gold that the problem is not in general limiting
recursively solvable.

The theorem is readily generalized to descriptions which prescribe divergent computa-
tions for some inputs. The minimization problem remains 2-1imiting recursively solvable.

3. Remarks on Induction and Iterated Limiting Recursion

Deduction is concerned with the derivation of particular consequences from general
premises, while induction proceeds in the opposite direction. The problem of finding an
algorithm (minimal or otherwise) for a function, after inspection of some but not all
values of the function, is clearly of the inductive type: the complete algorithm proposed
on the basis of incomplete information expresses a generalization about the function
sampled. Nontrivial inductive problems are inherently "unsolvable" in the sense that no
terminating procedure exists for generating "correct" generalizations; any unverified
consequence of a proposed generalization may turn out to be in error. This motivated
Gold's definition of limiting recursive predicates and functionals, which are more power-
ful than their nonlimiting counterparts. He noted that a "thinker" employing a procedure
for function (or "black-box") identification in the limit and using the current guess of a
fimetion's identity as a basis for goal-directed activity would be acting on correct informa-
tion eventually. I n this sense, therefore, some unsolvable problems are within the reach of
mechanical procedures. The most general function identification problem, however, is
2-limiting recursive. Can any mechanical system be conceived which in some sense
"solves" a 2-limiting recursive problem? Not if attention is restricted to a single "thinker"
generating a single sequence of guesses; however, suppose that instead of a single thinker,
each of an ever-growing number of such thinkers To, T~, • • • with universal computational
power observes the nonterminating sequence (y0, z0), (yl, zt), • • • which enumerates some
partial recursive function cb. At any time the ith thinker T~ regards as his best guess the
shortest program (if any) he has been able to find which, in the time available, has given
correct outputs for inputs y0, y~, • • • , y~ and either no output or a correct output for any
other argument tested. I t is clear that each thinker will eventually be guessing a program
ibr a subset of 4; furthermore, all but a finite number of the thinkers will be guessing pro-
grams for 4~ eventually. In this iterated limiting sense the expanding community success-
fully identifies 4~. Of course there is no strategy effective in the limit for deciding in general
which thinkers are guessing programs for ~b at any time. To interpret third-order limit
processes, one might envisage a growing number of expanding communities of the above
type, each committed to a distinct value of a certain parameter. At most finitely many
of the unbounded communities would in general be "unsuccessful." Similarly still higher-
order processes could be interpreted.

ACKNOWLEDGMENTS. I am indebted to C. G. Morgan for several stimulating and help-
ful discussions and to J. R. Sampson for his many useful comments on the manuscript.
I. N. Chen's help on some aspects of the paper is also gratefully acknowledged.

REFERENCES
1. GOLD, E.M. Limiting recursion. J. Symb. Logic 10 (1965), 28---48.
2. FELDMAN, J. Somedecidabilityresults ongrammatical inference and complexity. Stanford Artif.

Intel. Project Memo AI-93, 1969; also Inform. and Contr. ~0 (1972), 244--262.

Iterated Limiting Recursion and the Program Minimization Problem 445

3- SOLOMONOFF, R. A formal theory of inductive inference. Inform. and Contr. 7 (1964), 1-22,
224--254.

4. CHAITIN,,G. On the difficulty of computations. IEEE Trans. Inf. Theory. 1T-16 (1970), 5--9.
5. WILL~S, D.G. Computational complexity and probability constructions. J. ACM 17, 2 (April

1970), 241-259.
6. KOLMOGOROV, A.N. Three approaches to the quantitat ive definition of information. Inform.

Transmission I (1965), 3-11, also Int. J. Comp. Math. ~ (1968), 157-168.
7. MARTIN-LOF, P. The definition of random sequences. Inform. and Contr. 9 (1966), 602--619.
8. PAGER, D. On the problem of finding minimal programs for tables. Inform. and Contr. 14 (1969),

550---554.
9. BLUM, M. On the size of machines. Inform. and Contr. 11 (1967), 257-265.

10. PAGER, D. Further results on the problem of finding the shortest program for a decision table.
Presented at Symposium on Computational Complexity, Oct. 25-26, 1971; abstracted in SIGACT
News, no. 13 (Dec. 1971), p. 14.

11. PUTNAM, H. Trial and error predicates and the solution of a problem of Mostowski. J. Symb.
Logic 80 (1965), 49-57.

RECEIVED OCTOBER 1972; REVISED JULY 1973

Journal of the Association for Computing Machinery, Vol. 21, No. 3, July 1974

