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Abstract A direct representation of functional reference is proposed, such as occurs
in “All graduates received a job offer (at the job fair); all of them accepted their offer”.
The approach makes use of a variant of dynamic predicate logic wherein the values of
existentially quantified variables may be functions. The approach also appears helpful
with respect to some other problems in semantic representation, in particular bridging
anaphora and generic or frame/script-like knowledge.

Keywords Functional reference · Implicit Skolemization · DPL · Donkey anaphora ·
Scripts · Generic sentences

1 Introduction

Consider the following examples of functional reference.
(1) All of the graduates received a job offer (at the job fair), and all of them accepted

their offer.
(2) If all of the graduates received a job offer then all of them accepted their offer.
While these examples resemble the kinds of sentences that have motivated theories
of dynamic binding such as DRT and DPL (Groenendijk & Stokhof, 1991), they are
not easily handled within these standard frameworks. The problem is that the entity
referred to by “their offer” is variable. The logical form (LF) of (1) is not captured by
(3) (∀ x) [graduate(x) → (∃ y) job-offer(y) ∧ receive(x,y)] ∧

(∀ x) [graduate(x) → accept(x,y)],
since the final occurrence of y is not dynamically bound — the values assigned to y in
the existential clause do not persist beyond the scope of the initial ∀-quantifier. The
following LF does capture the meaning of (1):
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(4) (∀ x) [graduate(x) → (∃ y) job-offer(y) ∧ receive(x,y)] ∧
(∀ x) [graduate(x) ∧ (∃ y) (job-offer(y) ∧ receive(x,y))] → accept(x,y).

Here the final occurrence of y is dynamically bound by the existentially quantified
wff in the antecedent, and the binding evidently depends on the graduate x under
consideration, as required. However, this putative LF bears no simple, systematic
relation to (1); in essence, it repeats the content of the first half of (3) in order to
provide an appropriate dynamic binding environment for y in the second half. So
from a computational semantics perspective, this is not an attractive approach.

We propose a systematic alternative requiring no ad hoc repetition of material.
The idea is to generalize the state-change mechanism of DPL so that what is “carried
forward” as a value of y from a formula like that in the first half of (3) is a function — in
this case, one that maps graduates to their job offers. This function can then be applied
in the second half of (3) to pick out job offers corresponding to particular graduates;
i.e, the final phrase in (3) becomes accept(x, y(x)). We will indicate that this way of
treating the LFs of functionally dependent anaphors is applicable as well to many
instances of bridging anaphora. Finally we will briefly comment on the utility of our
generalization of DPL in representing definite reference to functionally dependent
entities of the sort encountered in frames, scripts, and generic sentences.

2 Generalized variable assignments and functional DPL

The consistent use of existentially quantified variables as functions entails some slight
changes in ordinary logical syntax. In particular, if a variable is bound anywhere by an
existential quantifier, it may not be bound anywhere else by an existential or universal
quantifier. Instead, any occurrences outside the scope of its ∃-quantifier should involve
application of the variable to 0 or more arguments, thus yielding a term. In effect,
existential variables will serve outside their ‘defining contexts’ as implicit Skolem con-
stants and functions. More precisely, suppose that a formula (∀x)φ contains a formula
(∃y)ψ in its scope. We say that y depends on x if (∃y)ψ does not lie within the scope of
a negation in φ. Then the ‘defining context’ (relative to a formula ) of y in a formula
(∃y)ψ (embedded by ) is (∃y)ψ itself if y does not depend on any ∀-variables (in ),
and otherwise it is the largest formula of form (∀x)φ (in ) such that y depends on
x. The adicity of an existential variable y used outside the scope of its ∃-quantifier is
then the number of ∀-variables on which it depends in its defining context, relative to
the smallest formula  that contains both the ∃-quantifier of y and the external occur-
rence of y. However, rather than insisting on conformity with this subtle constraint,
we will formulate the semantics of predication so that atoms containing ‘ill-formed’
terms will be treated as false.

Given a vocabulary Var of variables and a domain of interpretation D, a generalized
variable assignment (gva) is any partial function1

U : Var → F , where

F = ⋃
n∈N Fn, and

Fn = Dn → D
= D → (D → (. . . (D → D) . . .))

1 In a preliminary ESSLLI’04 version of this paper, the author used total functions (Schubert, 2004);
the use of partial functions allows some subtle problems to be addressed, and enables a fuller treatment
of generic sentences.
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(n arrows), the class of (curried) partial functions from Dn to D, where F0 is just D. In
the following, all occurrences of U and V (with or without subscripts) denote gva’s.
Uy:f , for any y ∈ Var and any individual or function f ∈ F , will denote the variant of
U which is the same as U except that its value at y is f . M = (D, I), where I is an
ordinary interpretation function.

Much as in DPL, the semantic value of a formula φ relative to a model M, written
[[φ]]M, will be a satisfaction set whose elements are pairs U, V of gva’s. If V = U
for all such elements, φ is said to be M-static, and otherwise it is M-dynamic.2 If
φ is M-static for all models M, it is (uniformly) static, and otherwise it is (poten-
tially) dynamic. Formulas containing no ∃-quantifiers and ones whose ∃-quantifiers
are embedded by negations turn out to be uniformly static, as in DPL. However,
certain formulas that are uniformly static in DPL, such as (∀x)[Q(x) → (∃y)P(y)] or
Q(x) ∨ (∃y)P(y), may be M-static or M-dynamic in our semantics, depending on M;
in particular, both formulas are M-static if I(P) = ∅ and M-dynamic otherwise. We
will consider some more meaningful examples after filling in a few semantic details
below. A useful related notion is the following: a variable y ∈ Var is M-static in φ if
V(y) = U(y) for all U, V ∈ [[φ]]M; otherwise it is M-dynamic in φ; y is (uniformly)
static in φ if it is M-static in φ for all models M, and it is (potentially) dynamic in φ

otherwise. Roughly speaking, stativity provides a semantic criterion for distinguish-
ing variables that are free or ∀-bound in φ from those that are ∃-bound in φ, except
that ∃-variables whose quantifier occurs within a static formula are themselves static.
(Again, occurrences within the scope of ¬, or the occurrences of (∃y)P(y) in the two
formulas above, with I(P) = ∅, illustrate this.)

The semantics of terms, predication, equality, negation and conjunction are identi-
cal to those of DPL, modulo the use of gva’s. Thus predication, equality, and negation
are necessarily static, while conjunctions may be dynamic. One minor wrinkle is that
in order to deal with undefined values of partial functions, and to render adicity vio-
lations in the use of variables as functors harmless, we assume that a term σ (τ ) lacks
a value (relative to a model and a gva) if σ lacks a value or denotes an individual, or τ

lacks a value or denotes a function. The usual semantics of predication will then make
atoms containing valueless terms false, assuming that a tuple with undefined elements
cannot be a member of a set, and that [[σ = τ ]]M is reckoned as false if either or
both terms are undefined. (By “false” we mean here that a gva U that renders a term
valueless relative to the given model cannot give rise to an element U, V in the
satisfaction set of the atom containing that term.)

The intuitive idea in the following semantics of quantification is this. We want a set
of n nested universally quantified sentences, all embedding an existentially quantified
sentence (∃y)φ to ‘output’ an n-place function as the value of y, at least when y is not
static in the scopes of the ∀-quantifiers. The semantics of universal quantification relies
on our semantic criterion for ‘detecting’ nonstatic ∃-variables, using it to assign a func-
tion as value of any such existential variable in its scope, in each ‘output’ assignment it
produces. The function is chosen so that it ‘works’ uniformly for all values of the uni-
versally quantified variable. The correct adicity of these functions is obtained through
the use of curried functions, i.e., each level of universal quantification embedding an
existential adds another level of functional dependence.

2 Static formulas are often termed conditions, but this terminology makes it awkward, for instance,
to talk about the conditions under which a formula is a ‘condition’.
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(5) [[(∃y)φ]]M = {U, V | for some d ∈ D, Uy:d, V ∈ [[φ]]M},
(6) [[(∀x)φ]]M = {U, V | for all d ∈ D, there is a gva V such that

Ux:d, V
x:d ∈ [[φ]]M, where for all variables y, V(y) = V(y) = U(y)

if y is M-static in φ, and V(y) = V(y)(d) if y is M-dynamic in φ}.
(We assume that truth of V(y) = V(y)(d) requires V(y) to be a function, i.e. an ele-
ment of F \ D, even if V(y) is undefined — in which case V(y) must be undefined
at d.3) Note how (5) and (6) formalize the above intuitions: in (6), because of the final
clause, a function V(y) may be returned (in the ‘output’ state of (∀x)φ) as the denota-
tion of a variable y that is ∃-quantified within φ, provided that the values V(y)(d) of
that function for all d ∈ D may be produced as values of y in the ‘output’ state of φ,
i.e. as values of V(y). In turn, (5) ensures (as in standard DPL) that values produced
for y are ones that verify the scope of the ∃-quantifier.

It is also clear from the definition of static/dynamic variables that (6) allows only
variables ∃-quantified within φ to export (new) functional output values. We have
already noted that not all such ∃-quantified variables export (new) functional output
values. An intuitively meaningful example is the following:

(∀ x) [mule(x) → ¬ (∃ y) offspring(y,x)].

Here y receives no (new) value since all negated formulas are static by definition.
Likewise no functional value (distinct from the input value) is exported for y in

(∀ x) [unicorn(x) → (∃ y) magical-horn(y,x)]

as long as there are no unicorns in the model under consideration, since a conditional
with a false antecedent is static (see below). If the model allows for unicorns but
not magical horns, then of course the satisfaction set of the conditional is empty and
so certainly no values are exported for y or for any other variable. The following
“Implicit Skolemization” theorem formalizes and generalizes the above observations.

Theorem (Implicit Skolemization) For any formula φ and model M, if U, V ∈
[[φ]]M then for any variable y that is M-dynamic in φ, φ contains a (unique) ∃-quanti-
fier binding y, where that quantifier is not embedded by any negation in φ, and V(y) ∈ Fn
where n is the number of ∀-quantifiers in φ embedding the ∃-quantifier for y.

Proof (see Appendix). The proof of course depends on the completion of the defini-
tion of [[·]]M, which follows.

Disjunction and conditionals do not behave as in standard DPL: they can ‘export’
dynamic bindings of existential variables. At least for conditional sentences this is
essential to our enterprise, since otherwise universally quantified contexts whose
scope is a conditional sentence (the usual case — see (3)) would fail to export func-
tional values for existentials lying within those conditionals:

(7) [[φ ∨ ψ]]M = {U, V | either U, V ∈ [[φ]]M or U, V ∈ [[ψ]]M}
(8) [[φ → ψ]]M = {U, V | either V = U and for no gva U, U, U ∈ [[φ]]M,

or for some gva U, U, U ∈ [[φ]]M and U, V ∈ [[ψ]]M}.
3 To see that V(y) can be undefined, even when y is M-dynamic in φ, consider for instance
φ = Q(x) ∨ (∃y)P(x, y), where Q(x) is true in M for a certain value of x, say d, and (∃y)P(x, y) is
true for other values (and for all values of x, at least one of the disjuncts is true). Then we can have
Ux:d, Ux:d ∈ [[φ]]M, thanks to the first disjunct, even if U(y) is undefined.
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(Note that we could have written the second alternative on the right-hand side of (8)
as U, V ∈ [[(φ ∧ψ)]]M.) So for instance the anaphoric “it” in the following sentences
could be translated in terms of dynamically bound variables in the LFs (imagine a
euphoric physicist uttering (9), and a somewhat verbose robber uttering (10)):

(9) Either I’ve lost my mind, or I’ve come up with a Theory of Everything. It com-
bines ideas from string theory, holographic-universe theory, and loop quantum
gravity.

(10) If you value your life, you’ll hand over some cash fast. It had better be more than
a few bucks.

(11) Holmes reasoned that if an intruder had opened the safe, he must have left
fingerprints on the knobs of the safe ?And indeed he had.

While anaphoric reference to an indefinite within a disjunction or conditional is typ-
ically infelicitous as a result of Gricean implicatures, there seems to be no particular
advantage to blocking such reference in the target logic for semantic representation.
In fact, when the implicatures are blocked (as in (9), where one presumes the falsity
of the first disjunct, or in (10), where one presumes the truth of the antecedent of the
conditional), we want dynamic binding to be enabled. In a sense, the proposed seman-
tics ‘explains’ why an attempted reference to an indefinite (∃y)φ occurring within a
disjunction or conditional is typically infelicitous: if nothing can be presumed about
the truth of the immediate constituents of such a sentence, then even if the sentence
as a whole is true, an external anaphor y may fail to refer to anything pertinent (or
anything at all).4

In addition, (8) differs from standard DPL in that it presupposes a ‘weak’ interpre-
tation of conditionals. For example, it renders the sentence

If John received a job offer today, then he accepted it
true in circumstances where John received multiple job offers but accepted just one;
whereas on a ‘strong’ reading, the sentence would be false. While it would be possible
to change the semantics to deliver strong readings (while still allowing export of var-
iable bindings from conditionals), we take weak readings to be basic (as for instance
in Chierchia, 1995, Schubert, 1999).5

We will also have occasion in Sect.3.1 to consider the following ‘maximally dynamic’
version of (7), in order to deal with referential difficulties posed by quantified sen-
tences with a disjunctive restrictor:

4 It can be argued that we may want to refer into doubly negated contexts as well, in view of exam-
ples such as “It is not true that this house doesn’t have a bathroom. It is in the attic.” This point can be
generalized to locutions creating downward-entailing contexts, such as the object positions of deny
and lack in “I deny that this house lacks a bathroom. It is in the attic.” However, allowing for this in the
proposed semantics appears to require adding negative satisfaction sets (bearing witness to the falsity
of a sentence) to the semantic machinery, a significant complication that we do not pursue here.
5 Geurts (2002) suggests that subjects confronted with the task of judging the truth of donkey sen-
tences for given states of affairs (e.g., presented visually) don’t actually discern and choose between
separate “readings”; rather, they use the form of the sentence, certain intuitions about individuation
(i.e., how hard or easy it is to ‘count’ an individual more than once in evaluating multiple situations),
and weak uniqueness implicatures to arrive at a truth value judgement directly. His view seems recon-
cilable with the position taken here. For instance, the supposed strong reading of “Every student who
received a job offer turned it down” can be regarded as the result of counting students with multiple
job offers multiple times, once for each job offer — thereby preserving the uniqueness presumption
that there is just one job offer per student (as offeree).
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(7) [[φ ∨ ψ]]M = { U, V | (a)U, V ∈ [[φ]]M and for no U, U, U ∈ [[ψ]]M;
or (b) U, V ∈ [[ψ]]M and for no U, U, U ∈ [[φ]]M;
or (c) U, V ∈ [[(φ ∧ ψ)]]M }.

For this semantics, reference will be successful in (9) even if the speaker has, in fact,
lost his mind, as long as he has also come up with a Theory of Everything. (Note that
by the second part of condition (7)(a), no pair U, V that verifies the first disjunct
alone can verify the disjunction, if the conjunction is true.) Likewise reference will be
successful in the following example, even if both disjuncts are true:

(12) Either John has a very bad violin, or he plays it very poorly.

The definitions of truth and entailment are as follows, for formulas φ and ψ .

(13) φ is true [false] in model M relative to gva U iff for some [no] gva V, U, V ∈
[[φ]]M.

(14) φ | ψ iff for all models M and all U, V, if U, V ∈ [[φ]]M then for some gva’s
V, W, U, V ∈ [[φ]]M and V, W ∈ [[ψ]]M.

(14) aligns entailment with the conditional semantics (8), in the sense that it supports
the equivalence

(15) φ | ψ iff | φ → ψ .

This is easily proved in both directions from (13) and (14). (14) also allows for the
following sort of detachment:

(16) [(∃x P(x)) → Q(x)], ∃y P(y) | Q(x),

where the premises are ordered as shown.
It is also useful, for application to linguistic semantics, to define a notion of truth

for a text, viewed as a nonempty sequence of formulas. This notion of truth is not
relativized to a gva:

(17) Text φ1, . . . , φn is true [false] in model M iff for some [no] gva V,
∅, V ∈ [[(φ1 ∧ · · · ∧ φn)]]M.

In other words, we start out with the empty assignment, and allow this to be dynam-
ically extended by existential quantifiers (and by universal quantifiers within their
scopes). This notion of truth will be relevant to some examples discussed in the fol-
lowing section. Note that under this definition, since we are ‘filling in’ undefinedness
with falsity, a text consisting of (or containing as sequence element, with no prior
occurrence of x) an open sentence such as P(x) is simply false in all models. However,
we count a formula as logically false only if it is false in all models relative to all gva’s,
not just the empty gva. The presumption is that truth/falsity of texts is of interest
chiefly for dynamically closed texts, i.e., ones in which all variables receive values
either through local binding by a quantifier or through dynamic binding via a prior
existentially quantified formula.

3 Some applications

The semantics just outlined allows for a very simple, direct logical representation of
(disambiguated) referential connections in ordinary discourse, including not only the
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familiar types of donkey anaphora, but also anaphora involving functional depen-
dencies, as in (1) and (2). (We will shortly delve into some subtleties in the use of
such functional terms.) The present proposal is related to the author’s scheme of
dynamic Skolemization (Schubert, 1999), but deals satisfactorily with negative envi-
ronments such as “It is not the case that John owns a donkey and beats it” (which under
dynamic Skolemization is true if John owns two donkeys and beats only one).6

In the remainder of this discussion, we consider three issues: the appropriate use of
functional expressions as logical forms of anaphoric noun phrases; bridging anaphora;
and frame/script-like knowledge.

3.1 Using functional expressions for anaphoric noun phrases

Ordinary language typically quantifies over restricted nominal domains (rather than
over the entire domain of individuals), so to facilitate the discussion of LFs for func-
tional anaphora we will generalize (6) to allow for a restrictor. We could have simply
relied on the equivalence

(∀x : φ)ψ ⇔ (∀x)(φ → ψ),

but we wish to set the stage as well for a discussion of quantifiers like Most, for which
no such equivalence is available.

For convenience we define the notion of a truth domain, for any variable x, formula
φ, model M, and gva U as follows:

(18) TM,U(x, φ) = def {d ∈ D| for some gva V, Ux:d, V ∈ [[φ]]M}.
We now generalize (6) to

(19) [[(∀x : φ)ψ]]M = {U, V| (a) TM,U(x, φ) = ∅ and V = U, or else
(b) TM,U(x, φ) = ∅ and for all d ∈ D, there is a gva V such that

(1) if d ∈ TM,U(x, φ) then Ux:d, V
x:d ∈ [[φ ∧ ψ]]M and otherwise

V = U; and
(2) for all variables y, V(y) = V(y) = U(y) if y is M-static in

(φ ∧ ψ), and V(y) = V(y)(d) if y is M-dynamic in (φ ∧ ψ)}.

We should observe, first of all, that this definition is indeed semantically equivalent to
(∀x)(φ → ψ):

Proposition 1 For all models M, [[(∀x : φ)ψ]]M = [[(∀x)(φ → ψ)]]M.

Proof See Appendix.
Note that according to condition (a), when the restrictor truth domain is empty,

V(y) is the same as U(y) for all variables y. For example, as we observed previously
for the sentence “Every unicorn x has a magical horn y,” if our model has no unicorns,
then a subsequent term such as y(Indigo) will refer to something arbitrary or will
fail to refer (leading to falsity of the embedding predication). This is a reasonable
outcome under the assumed circumstances.

Note also that for d outside TM,U(x, φ), ‘old’ values U(y) of variables are preserved
by V, since in that case V(y)(d) in (b)(2) equals U(y), by the “otherwise”-clause in
(b)(1). So in particular undefinedness is preserved in the application of the notion

6 The idea of treating variables as functions is suggested as an alternative to dynamic Skolemization
at the end of that paper.
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of textual truth (17). Thus if we consider a restrictor φ that is true relative to some
x-variants Ux:d of U and false relative to others, then V(y)(d) will be U(y) (which can
be arbitrary, or undefined) for those d ∈ D that fail to verify φ relative to Ux:d.

However, these spurious or missing values are irrelevant to uses of a term such
as y(z) as the LF of an anaphor, as long as in the context of use, z is guaranteed to
satisfy the ‘applicability conditions’ for y, i.e., the conditions C such that the defin-
ing context for y could be rewritten as (∀x : C(x))(∃y)[. . .]. (More generally, there
may be nested quantifiers, with applicability conditions contributed by each level of
∀-quantification.) For example, in the following sentence,
(20) Every student x wrote a paper y, but no students x who took the

exam handed in their paper on time,
y would be assigned a function whose value for any student is a paper written by that
student, while its value for other arguments would be arbitrary or undefined. In other
words, the applicability condition for y is that the value of the argument of y must be
a student. This certainly holds for students who took the exam, and so y(x) can be
properly used as the LF of “their paper.” On the other hand, use of such an LF would
violate the suggested applicability conditions in the sentence
(21) Every student x wrote a paper y or took the exam, but no students

x handed in their paper on time. 7

Here the applicability condition for y is that its argument should denote a student who
didn’t take the exam, since the defining context for y is equivalent to “Every student
x who didn’t take the exam wrote a paper y;” but the quantification “no students x . . .”
iterates over all students, including those who took the exam, and for these students,
y(x) may ‘accidentally’ denote some entity (such as an exam booklet) that was indeed
handed in (on time) by x; thus “no students x handed in y(x) on time” may well be
formally false even when “no students x handed in their paper on time” is intuitively
true.

However, if we rigidly enforce applicability conditions we are left with the problem
of assigning an LF to anaphors like that in (21). While the use of “their paper” in (21)
does seem to falsely presuppose or at least implicate that every student has a paper,
the sentence seems true even if that presupposition or implicature is violated, as long
as none of the students who wrote a paper handed it in on time. A possible answer is
that y(x) provides the correct interpretation when we employ the ‘maximally dynamic’
disjunction semantics (7) rather than (7), and bring to bear our notion of textual truth
(as per (17)), rather than truth relative to an arbitrary assignment. Observe that if
(21) is treated as a text and our initial assignment is empty, then for any assignment
V that can result from the first clause, V(y)(d) will be well-defined for all and only
the students d who wrote a paper, where that paper is given by V(y)(d). Thus if we
formalize “their paper” as y(x) in the second clause, this will have a reference precisely
for those students who wrote a paper, and the desired claim will be made about these
students. For students who did not write a paper, the value of y(x) will be undefined,
but the claim that they did not hand in y(x) will be true, as an undefined entity cannot
be handed in, according to our semantics of predication. If “but no” in (21) were
replaced by “and all,” then truth of the text would indeed require that all students
wrote and handed in a paper. This seems intuitively reasonable—cf., Ahn’s discussion
of the sentence “Every German loves his kangaroo” in Ahn (2003).

7 (21) was suggested by Ken Shan (personal communication); its variant (20) and the discussion of
these sentences were motivated by his comments.
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3.2 Bridging anaphora

The phenomena we have been focusing on appear in a slightly different guise in
bridging anaphora, illustrated in (22).

(22) Cora walked up to a house. She knocked on the door.

First, we want to point out the simplicity of the logical form of the second sentence
on a functional analysis. Suppose that part of the background knowledge for (22) is

(23) (∀x)[house(x) → (∃y)door(y) ∧ part-of(y,x) ∧ at-front-of(y,x)]
(Every house has a front door). On our semantics, this makes available a function,
namely y, for referring to the door of a house. Thus the (resolved) LF of the second
sentence of (22) becomes (ignoring tense)

(24) knock-on(Cora,y(z)),

where z is the ∃-variable for the house in the LF of the first sentence.
This LF also has significant semantic advantages: while y(z) is a specific choice of

referent for “the door” (viz., the front door), it does not commit us to a presumption
of uniqueness, in contrast with a more ‘literal’ interpretation of the definite such as
ıw[door(w) ∧ part-of(w, z)]. A uniqueness assumption may well be incorrect; (22) is
perfectly felicitous even if houses are also known to have back doors, or, occasionally,
multiple front doors.8

3.3 Frames, scripts, and generic sentences

In AI, general knowledge of the sort exemplified by (23) has traditionally been rep-
resented using frames (Minsky, 1975)—packets of knowledge about particular kinds
of things (such as a house) belonging to an inheritance hierarchy (perhaps including
buildings, architectural objects, or artifacts more generally), and providing informa-
tion about various parts or aspects of those kinds of things (such as walls, doors,
windows, location, etc.) via ‘slots’ interpreted as functions. Over time, frames have
evolved into description logics (Baader, Calvanese, McGuinness, Nardi, & Patel-
Schneider, 2003), but the idea remains much the same. Closely related to frames are
scripts (Schank & Abelson, 1977), except that these attempt to formalize familiar
kinds of structured events (such as dining at a restaurant) rather than structured
objects. But just as in the case of frames, the relevant aspects (i.e, participants, and
subevents, such as entering, getting seated, ordering, etc.) can be modelled as entities
(‘roles’) functionally dependent on the whole, and thus frame or description logic
formalisms can be applied.

While well-studied from a logical and computational perspective, frames and
description logics have been developed more or less independently of linguistic con-
siderations. In particular, there has been little discussion of the relation between
knowledge expressed in language and knowledge expressed in frames or description
logics. Knowledge engineers who employ the latter simply use their intuitions and
their understanding of the target formalisms to code knowledge about the domain
of interest. But one would expect that such work would become much easier if the

8 This of course means that y(z) may not be the only possible choice of referent, but that is an issue
that any reference resolution strategy must face. Similar examples are “He reached into his pocket,”
“He likes his neighbor”, “He went to the doctor,” etc.
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knowledge to be formalized could be expressed in ordinary language and automati-
cally translated into a formal representation. Indeed, much knowledge coding could
be avoided altogether if the general knowledge that can be found in on-line lexicons,
encyclopedias, manuals, and other text corpora could be automatically interpreted
and extracted.

What is potentially attractive about the present proposal (and this is something it
shares with dynamic Skolemization) is that it shows how the functional dependencies
expressed by slots in frames and roles in scripts (and slots or attributes in description
logics) might be directly derived from linguistically expressed general knowledge. For
example, an LF similar to (23) might be the logical translation of an ordinary sen-
tence (something like “Every house has [as part of it] a door at its front”), and this
translation provides a ‘front-door function’ y that can subsequently be used outside
its defining context, just like a slot or role name, to refer to a particular aspect—the
front door—of instances (or subtypes) of the general type, house.

In the case of structured events, we would similarly obtain functions for referring to
participants or subevents simply by ∃-quantification. For example, the LF of a verbal
description of the events that transpire when a person dines at a restaurant would
probably involve, among other things, an ∃-quantified entering event, an ∃-quantified
getting-seated event, an ∃-quantified server, and so on. (See Schubert, 1999 for a
simple verbally expressed ‘dining’ script and the interpretation of its roles/subevents
as functions.) Since the ∃-quantifiers lie within the scope of a ∀-quantifier over dining
events (and perhaps patrons and restaurants), they make available functions that can
subsequently be used to refer to roles and subevents in specific dining events (or
special cases of such events).

One advantage of using ‘ordinary logic’ (adapted as suggested here, and perhaps
enriched in other ways) rather than frames, scripts or description logics as the tar-
get language for linguistically expressible knowledge is that we gain flexibility and
expressiveness. For example, the fact that chimneys of houses serve to vent combus-
tion gases from furnaces or fireplaces would be virtually inexpressible in description
logics developed so far.9 It would also be hard to integrate, say, a frame for a din-
ing establishment with a script for dining—allowing for such facts as that tables for
patrons are placed in close proximity to one another, and that servers serve patrons
at multiple tables.

Our proposals here also seem extensible in a way that would meet the referential
requirements of general knowledge admitting exceptions, i.e., generic knowledge. In
keeping with the literature on generics (e.g., Carlson & Pelletier, 1995, Ahn, 2004),
let us assume the availability of generalized quantifiers such as Most and Few. The
semantics of Most would be given by the following analogue of (19), with “most”
interpreted in some specific way (say, more than half, in the case of finite sets).

(25) [[( Most x : φ)ψ]]M = {U, V| (a) TM,U(x, φ) = ∅ and V = U,
or else (b) TM,U(x, φ) = ∅ and most of its elements are contained
in TM,U(x, φ ∧ ψ), and for all d ∈D, there is a gva V such that

(i) if d ∈ TM,U(x, φ ∧ ψ) then Ux:d, V
x:d ∈ [[φ ∧ ψ]]M and otherwise

V = U; and
(ii) for all variables y, V(y) = V(y) = U(y) if y is M-static in (φ ∧ ψ), and

V(y) = V(y)(d) if y is M-dynamic in (φ ∧ ψ)}.

9 Well, we could have a purpose slot with value vent-combustion-gases-from. . . etc., but that would
hardly support useful inferential linkages to notions like ‘venting’, ‘combustion’, etc.
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One point to note about this definition is that the implicit Skolem functions that
are generated by existentials within the restrictor or nuclear scope provide meaning-
ful values corresponding not only to most elements of the restrictor domain, but to
all elements for which the restrictor and nuclear scope are true—which potentially
includes the entire restrictor domain (namely, in the case where ‘most’ could truthfully
be strengthened to “all”).

Now, one thing we can express with such an extension of our language is generic
reference to dependent entities whose defining context is universal. For example,
consider again the front-door function y ‘generated’ in (23) (its defining context);
we could express that the front door of a house usually (in most instances) opens
inward as

(26) (Most x: house(x)) opens-into(y(x),x)

(26) is much simpler (and arguably more easily obtainable from surface form) than
DRT- or DPL-based LFs, which would require ‘copying-over’ of the defining proper-
ties of y from (26) into the restrictor of Most in (26).

Further, suppose that the defining context for a dependent entity like the front
door in (23) is itself generic, i.e., it states that most (rather than all) houses have a
front door. Then functional anaphors based on such defining contexts still behave as
we would want. In particular, the truth of (24) would guarantee that Cora knocked on
the front door of z, even if there are more houses with a front door than are required
to verify the weakened, generic version of (23). For a z that is not a house (e.g., if (22)
had said “Cora walked up to a house or a trailer home”, and only the latter alternative
is true), y(z) could have an arbitrary denotation that accidentally verifies (24). How-
ever, under our text semantics (17), such a misapplied reference would again just lead
to falsity of the predication containing it, here (24).

3.4 Related work and concluding comments

The author’s previous “dynamic Skolemization” proposal Schubert (1999) was aimed
at the same kinds of applications as the present one, but involved syntactic substitu-
tion of constants/functions for existentials, accompanied by stipulation of definitional
clauses for these constants/functions. The advantage of this strategy is that it directly
yields ordinary first-order sentences, avoiding dynamic semantics. Most instances of
donkey anaphora and functional anaphora are amenable to it. However, as already
noted, dynamic Skolemization is viable in unnegated contexts only; and extending it
to negated contexts would require rather complex restructuring of the original logical
forms. Thus the present approach is more general and theoretically satisfactory.

Steedman (1999) sketches an approach to donkey anaphora wherein an indefinite
like “a donkey” would receive an initial logical form like arb‘donkey’, which would
in turn yield a Skolem term like Skdonkey(x), x being the universally quantified vari-
able(s) in whose quantifier scopes the indefinite is included. This appears to be similar
to dynamic Skolemization, though the syntactic details and mechanism weren’t spelled
out at the time. Steedman subsequently elaborated this idea in Steedman (2003),
essentially rendering an indefinite NP of form “an N” as skolemi(λxN(x)), regarded
as an underspecified term with unique index i, to be replaced by an ordinary Skolem
function when the functional dependency of the individual ‘arbitrarily selected’ from
the truth set of the predicate can be determined. However, the Skolem constants
and functions are not treated in the semantics as ordinary constants and functions, but
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rather are dynamically interpreted, rather like DRT discourse referents or DPL ∃-vari-
ables, apart from the introduction of explicit functional dependencies. In that respect,
Steedman’s approach has similarities with both dynamic Skolemization (though the
latter treats Skolem constants/functions as ordinary, nondynamic constants/functions),
and implicit Skolemization (though the latter retains the ∃-quantified form of indefini-
tes). Detailed comparisons are difficult at this point because of the extensive technical
differences between the two approaches, and because different phenomena have been
focused on (e.g., scope ambiguity in Steedman’s work, and extension to quantifiers
like Most in the present work).

The use of Skolem functions for indefinites has also been studied by a number of
other researchers (e.g., Winter, 1997; Schlenker, 1999, 2004; Barker, 2001; Dekker,
2002; Hardt, 2003), often with a view towards sorting out the strengths and weak-
nesses of various approaches to the logic of E-type pronouns (Evans, 1980), scope
ambiguity, and branching quantifiers. Besides Skolem function-based approaches,
these approaches include choice functions and ‘pronoun of laziness’ accounts. The
motivating examples in these discussions are often very similar to the ones that pro-
vided the impetus for the dynamic Skolemiztion proposal and for the present work.
For example, Dekker (2002) cites an example attributed to Gabriel Sandu,

(27) Most men had a gun, but only a few used it,

which clearly involves functional reference, and which lends itself nicely to the implicit
Skolemization proposal herein. The same paper also cites a sentence due to Schlenker
(1999),

(28) If each student x improves in two subjects y, then noone will
fail the exam (variables x, y added here for convenience),

where the speaker has in mind not only that the two subjects vary from student
to student, but that they are any given student’s worst subjects. Again, this could be
straightforwardly expressed in the current framework, with the speaker’s presumption
stated as

(29) For each student x, y(x) are x’s worst two subjects.

However, while the literature provides some nice examples motivating a Skolemized
approach, the mechanism for Skolem function introduction has generally not been
spelled out in detail, either as a systematic syntactic strategy, or as an implicit semantic
phenomenon.

Two other kinds of theories of anaphora, formulated within DPL-like frameworks
but with little resemblance to Skolemized approaches and emphasizing the interpreta-
tion of plural pronouns, have formally addressed some of the phenomena motivating
implicit Skolemization. One kind of theory, exemplified by the work of Krifka (1996)
and of Wang, McCready & Asher (2006), models the dependency of variables on
other variables by using augmented variable assignments whose values are individu-
als paired with variable assignments. For example, the dependence of y on x in “Every
student x wrote a paper y” would be reflected in augmented assignments where the
various possible individuals assigned to x are paired with assignments that assign
appropriate dependent values to y. The second kind of theory, exemplified by the
work of van den Berg (1993, 1996a,b) and Nouwen (2003), relies simply on sets of
(partial) variable assignments as input and output states of utterances. In this case
the dependence of a variable y on a variable x is implicit in the fact that when we
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examine different assignments within the same state, we find that a particular value of
y co-occurs with some value of x, but not with some other value of x (even though both
values of x occur in the same state). For simple plural reference, as in “The students x
were smart and the papers y were of high quality,” these dependencies play no role—
what matters is just the set of values assigned to x or to y by different assignments in
the output state of the utterance that provides the plural referents for x and y. But the
dependencies can be exploited by use of a distribution operator that can be thought
of as interpreting the English floating quantifier each. Thus “They x each submitted it
(their paper y) to L&P” is understood formally as involving a distribution operator
that ensures that a given input state will generate a given output state only if for any
given value d of x, the subset of assignments of the input state that assign d to x can
generate the subset of assignments in the output state that assign d to x.10

Both types of theories are aimed at pronominal anaphora, such as we find in

(30) Every man loves a woman. They send them flowers.

Dependencies in such examples are always ‘short-range’—a pronoun cannot be used
to refer to a distant linguistic antecedent, especially not if a functional dependency
is involved. For example, we cannot paraphrase the second sentence in (22) as “She
knocked on #it,” intending it to refer to a front door or front-door function introduced
many utterances earlier and not mentioned subsequently. In the writings cited above,
determining referents of anaphoric definite descriptions is viewed as an AI problem
lying outside the immediate purview of dynamic semantics. Still, here is an attempt
to use Nouwen (2003) formalism11 to deal with the second sentence in (22), assum-
ing that a sentence like (23) (interpreting “Every house has a front door”) has been
introduced at some earlier point, setting up correlated variables x (for houses) and y
(for front doors) in the variable assignments comprising the resultant state; assume
that x is the variable introduced for the house that Cora walked up to:

∃x · x ⊆ x · x = x · δ∗(λu. knock-on(Cora,y))(x).

This introduces a new variable x, setting its value to the house x under consideration
(where the subset relation means that any (partial) variable assignment that supplies
a value for x must supply the same value for x). The purpose of the new variable
is to ensure that any assignment that provides a value for x will also provide the
appropriate correlated value for y, i.e., the front door of x (and hence x, in view of
the equality x = x). This then makes it possible to apply the distribution operator
δ∗ to a predicate expressing the property of being an entity u such that Cora knocks
on a certain thing or set of things y. Though the λ-abstraction is vacuous, application
of the distributed version of the predicate to x ensures that the only values of y that
can verify knock-on(Cora,y) are ones corresponding to possible values of x, of which
there is but one — the front door of the house x = x.

We will not make any similar attempt to formulate a ‘long-range’ functional
anaphor in the syntactically rather novel and semantically quite complex formalisms
of Krifka (1996) or Wang, McCready, & Asher (2006); even the above van den Berg /

10 It may appear from these remarks that the dynamics of meaning in the theories mentioned here
depends on the names of variables used—as it does for existential variables in implicit Skolemiza-
tion. While this is true for most of the theories, Nouwen’s formalization is actually variable-free, and
provides a basis for a bottom-up dynamic semantics for natural language that is compositional in the
strong sense of not requiring a level of semantic representation.
11 With some slight adjustments harking back to van den Berg (1993), for expository reasons.
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Nouwen-like representation may be remote from what those authors would propose.
Obviously, this is a matter for further research and for the time being no definite
conclusions can be drawn about the relative merits of these theories and the approach
based on implicit Skolemization, with respect to the general phenomenon of function-
ally dependent anaphora. Implicit Skolemization does seem to have some advantages
from a computational semantics perspective, in that the syntax of (restricted) quan-
tification is conventional, and functional reference is syntactically simple and explicit
and is semantically ‘persistent’ in the sense that implicitly established Skolem func-
tions remain available for anaphoric reference even if their defining context lies in an
arbitrarily large knowledge base (as mentioned in the discussion of bridging anaphora
and frame- or script-like knowledge).

An interesting question raised by the cited work on plural anaphora, however, is
whether implicit Skolemization could be extended to deal systematically with plurals.
For example, do we have a way of picking out the set of students and the set of papers
they wrote, given that “Most students x wrote a paper y”? Here are some cursory
observations. In the example, we could access the set of students who wrote papers
and the set of papers that were written, respectively, as the domain and range of the
implicit Skolem function, i.e., {c|(∃d)d = y(c)} and {d|(∃c)d = y(c)} (which of course
could be reformulated in terms of set membership and quantification over sets, or in
various other ways).12 However, what if no functional dependency is involved, as in
“Most students stayed home; they felt the recitation was redundant”? One possibility is
to introduce Davidsonian event variables into sentence predicates, which would then
be implicitly Skolemized and could thus supply the required sets. Another possibility
is to introduce existentially quantified set variables with all noun phrase interpreta-
tions, which is essentially the strategy in Wang, McCready & Asher (2006). Various
issues arise concerning accessibility of referents and the ‘division of labor’ between
semantics and pragmatics (cf. Nouwen, 2003; Wang, McCready & Asher, 2006), but
these are matters for future investigation.
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Appendix: proofs

We prepare for the proof of the Implicit Skolemization theorem by noting the follow-
ing:

Lemma Regardless of M and φ, only ∃-variables can be M-dynamic in φ.

Proof Assume an arbitrary model M and formula φ. Variables not bound in φ can be
seen to be uniformly static in φ by an easy induction, with atomic formulas as basis.

12 The way we have formulated the partial function semantics would ensure that the domain will
be the set of all students who wrote a paper, and the range will contain one paper for each of these
students.
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Note that in the ∀-semantics in (6), any variable y that is not bound in the scope will be
static by the induction assumption, and so we will have V(y) = U(y), i.e., the variable
remains static. By the same token, we have V(x) = U(x), where x is the ∀-quantified
variable in (6) (and is thus not bound within the scope of the quantifier), so variables
that are ∀-quantified in a formula φ are also uniformly static. On the other hand, for
the ∃-quantified variable y in (5), U may differ from Ux:d at x, and thus the induction
argument showing that variables that are static in smaller formulas are also static in
larger ones fails for ∃-quantified variables, and only for these. 2

Theorem (Implicit Skolemization) For any formula φ and model M, if U, V ∈
[[φ]]M then for any variable y that is M-dynamic in φ, φ contains a (unique) ∃-quanti-
fier binding y, where that quantifier is not embedded by any negation in φ, and V(y) ∈ Fn
where n is the number of ∀-quantifiers in φ embedding the ∃-quantifier for y.

Proof Let φ be any formula, let M be any model, let U, V ∈ [[φ]]M, and assume that
y is M-dynamic in φ. Then by the lemma, y is ∃-quantified in φ. Its quantifier cannot
be embedded by a negation, since the semantics of negation renders any variable y
in its scope M-static, and this property is inherited by all larger formulas embedding
the negation except possibly a larger formula that ∃-quantifies y (by the same sort of
inductive argument that was sketched in the proof of the lemma)—but according to
our assumed syntax a variable cannot be ∃-quantified at a ‘higher’ level, when it is
already ∃-quantified within the scope of the higher-level quantifier.

It remains to show that V(y) ∈ Fn where n is the number of ∀-quantifiers in φ

embedding the ∃-quantifier for y. As a basis for induction, consider the case φ = (∃y)ψ .
By (5), and since y is static in ψ , V(y) = Uy:d(y) = d for some d ∈ D, and so V(y) ∈ F0.
The induction hypothesis is that the theorem holds for all formulas of a certain size
s or less. We now consider the cases where φ is (χ ∧ χ ), (χ  ∧ χ), (χ ∨ χ ), (χ  ∨ χ),
(χ → χ ), (χ  → χ), (∃x)χ , or (∀x)χ , where χ , χ  are of size s or less, χ contains
(∃y)ψ , and χ  does not contain an ∃-quantified occurrence of y (and no occurrence of
y at all in the three cases where χ  precedes χ). (Note that we are omitting φ = ¬χ ,
as this form is inconsistent with the assumption that y is M-dynamic in φ.) We show
in each case that V(y) ∈ Fn, with n as stipulated above.

(χ ∧χ ): According to the semantics of conjunction, there is a gva U such that U, U
∈ [[χ ]]M, and U , V ∈ [[χ ]]M. Since y is assumed to be dynamic in φ, and since it
is ∃-quantified in χ , the induction hypothesis implies that U(y) ∈ Fk, where k is the
number of ∀-quantifiers embedding (∃y)ψ in χ (for some ψ). But y is not ∃-quantified
in χ , so it is static in χ , and so V(y) = U(y) and hence V(y) ∈ Fk, and of course
n = k here.
(χ  ∧ χ), (χ ∨ χ ), (χ  ∨ χ): The argument for each of these cases is quite similar to
the preceding one.
(χ → χ ): Here the assumption that y is M-dynamic in φ entails that the first clause
in (8), concerned with the case of a false antecedent (relative to U), does not apply.
The second clause in (8) is essentially the semantics of conjunction, and so the same
argument as for (χ ∧ χ ) applies.
(χ  → χ): Much the same argument as for (χ → χ ) applies.
(∃x)χ : Since y is ∃-quantified in χ , hence by our syntax x and y are distinct variables,
and so y must be M-dynamic in χ (if it were M-static in χ it would also be M-static
in φ), and the induction hypothesis applies to χ . Now, according to the ∃-semantics
in (5), any pair U, V satisfying (∃x)χ differs from a corresponding pair Ux:d, V
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satisfying χ at most in the value assigned by U to x; so the value of V(y) is inherited
by φ from the scope χ , and this is ∈ Fk by the induction hypothesis, where k is the
number of ∀-quantifiers embedding the ∃-quantifier of y in χ ; and of course n = k.
(∀x)χ : Again, since y is M-dynamic in φ, it is M-dynamic in χ . (If y were M-static in
χ , it would be M-static in φ, by the condition for M-static variables in (6).) So the
induction hypothesis applies to y in χ . Hence in the condition derived from (6), that
for all d ∈ D, Ux:d, V

x:d ∈ [[χ ]]M, we know that V
x:d(y) ∈ Fk, where k is the number

of ∀-quantifiers embedding the ∃-quantifier for y in χ . But (6) also posits that for y
M-dynamic in χ , V(y) = V(y)(d). Thus V(y) is a function which, when applied to
any d ∈ D, yields a function in Fk, provided that V(y) is defined. In other words,
V(y) ∈ Fk+1, and of course k + 1 = n, the number of ∀-quantifiers embedding the
∃-quantifier for y in φ (= (∀x)χ). 2

Proposition 1 For all models M, [[(∀x : φ)ψ]]M = [[(∀x)(φ → ψ)]]M.

Proof ⇐: Let U, V be in [[(∀x)(φ → ψ)]]M. From (6), for all d ∈ D, there is a gva
V such that Ux:d, V

x:d ∈ [[φ → ψ]]M, where for all variables y,

V(y) = V(y) = U(y) if y is M-static in (φ → ψ), and

V(y) = V(y)(d) if y is M-dynamic in (φ → ψ).

Consider any d ∈ D and the corresponding V. First suppose TM,U(x, φ) = ∅. Then
Ux:d, V

x:d ∈ [[φ → ψ]]M implies that Ux:d = V
x:d, by (8). But x is static in (φ → ψ),

so V(x) = U(x) and so V = U. In fact, with TM,U(x, φ) = ∅, (8) implies that all
variables are M-static in (φ → ψ), so V = V = U. This confirms case (a) of the
(∀x : φ)ψ-semantics.

Now suppose TM,U(x, φ) = ∅. Then from the premise that Ux:d, V
x:d ∈ [[φ →

ψ]]M and the further assumption that d ∈ TM,U(x, φ), it follows that Ux:d, V
x:d

∈ [[φ ∧ ψ]]M. If that further assumption is false, Ux:d, V
x:d can be an element of

[[φ → ψ]]M only if there is no U such that Ux:d, U ∈ [[φ]]M, by (8); in that case
V

x:d = Ux:d, and thus V = U, since x is static in (φ → ψ). In either case, noting that
a variable y is M-static [-dynamic] in (φ ∧ ψ) iff it is M-static [-dynamic] in (φ → ψ)

(as is easily verified, since with [[φ]]M = ∅, every variable is M-static in (φ ∧ ψ)),

V(y) = V(y) = U(y) if y is M-static in (φ ∧ ψ), and

V(y) = V(y)(d) if y is M-dynamic in (φ ∧ ψ).

This confirms case (b) of the (∀x : φ)ψ-semantics.
⇒: Conversely, let U, V be in [[(∀x : φ)ψ]]M. Then from (19), either (a)

TM,U(x, φ) = ∅ and V = U, or (b) TM,U(x, φ) = ∅ and for all d ∈ D there is a
gva V such that (i) if d ∈ TM,U(x, φ), then Ux:d, V

x:d ∈ [[φ ∧ ψ]]M, and otherwise
V = U; and (ii) for all variables y,

V(y) = V(y) = U(y) if y is M-static in (φ ∧ ψ), and

V(y) = V(y)(d) if y is M-dynamic in (φ ∧ ψ).

We want to show that U, V is in [[(∀x)(φ → ψ)]]M, i.e., for all d ∈ D, there is a gva
V such that Ux:d, V

x:d ∈ [[φ → ψ]]M, where for all variables y, V(y) = V(y) = U(y)

if y is M-static in (φ → ψ), and V(y) = V(y)(d) if y is M-dynamic in (φ → ψ).
For case (a), TM,U(x, φ) = ∅, so for any d ∈ D, Ux:d, Ux:d ∈ [[φ → ψ]]M by

(8), and so U provides the required V in the preceding statement. For case (b),
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where TM,U(x, φ) = ∅, consider any d ∈ D and the corresponding V assured by (b).
Then if d ∈ TM,U(x, φ), we have Ux:d, V

x:d ∈ [[φ ∧ ψ]]M, hence by (8), Ux:d, V
x:d ∈

[[φ → ψ]]M, and by (ii), and the previously noted equivalence of (φ∧ψ) and (φ → ψ)

with respect to the M-static/M-dynamic distinction for any variable y,

V(y) = V(y) = U(y) if y is M-static in (φ → ψ), and

V(y) = V(y)(d) if y is M-dynamic in (φ → ψ).

If d ∈ TM,U(x, φ), then with V = U, Ux:d, V
x:d = Ux:d, Ux:d and this is in

[[φ → ψ]]M by (8). Also, we again have from (ii) that

V(y) = V(y) = U(y) if y is M-static in (φ → ψ), and

V(y) = V(y)(d) if y is M-dynamic in (φ → ψ),

where in this case V(y) = U(y). 2
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