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Abstract. Algorithmic theories of randomness can be related to theories of probabilis-
tic sequence prediction through the notion of a predictor, defined as a function which
supplies lower bounds on initial-segment probabilities of infinite sequences. An infinite bi-
nary sequence z is called unpredictable iff its initial-segment “redundancy” n+log p(z(n))
remains sufficiently low relative to every effective predictor p. A predictor which maxi-
mizes the initial-segment redundancy of a sequence is called optimal for that sequence.
It turns out that a sequence is random iff it is unpredictable. More generally, a sequence
is random relative to an arbitrary computable distribution iff the distribution is itself
an optimal predictor for the sequence. Here “random” can be taken in the sense of
Martin-Löf by using weak criteria of effectiveness, or in the sense of Schnorr by using
stronger criteria of effectiveness. Under the weaker criteria of effectiveness it is possible
to construct a universal predictor which is optimal for all infinite sequences. This predic-
tor assigns nonvanishing limit probabilities precisely to the recursive sequences. Under
the stronger criteria of effectiveness it is possible to establish a law of large numbers
for sequences random relative to a computable distribution, which may be useful as a
criterion of “rationality” for methods of probabilistic prediction. A remarkable feature of
effective predictors is the fact that they are expressible in the special form first proposed
by Solomonoff. In this form sequence prediction reduces to assigning high probabilities
to initial segments with short and/or numerous encodings. This fact provides the link
between theories of randomness and Solomonoff’s theory of prediction.
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Preface

This article makes available an extended study of the theoretical relationship between
predictability and randomness, for many years available only as a technical report in the
Computing Science Department of the University of Alberta (TR77-2, September 1977,
now no longer available). The typography in the TR was poor, as text formatting had
not come of age yet. In essence the article shows that definitions of (non)randomness
for infinite sequences in terms of computational nonrandomness tests, predictability, and
“compressibility” through encodings as programs are equivalent.

I conducted the research leading to the report from 1975-1977, unaware except in
the last months of the work that a 1970 article in a Soviet journal had reported many of
“my” theorems, without proofs (Zvonkin & Levin, 1970). I accordingly annotated those
theorems with (Leonid) Levin’s name, before submitting the work for publication. The
preempted theorems were limited to the semicomputable characterization of randomness,
while my manuscript also covered the recursively computable characterization by C.P.
Schnorr. However, while the manuscript was under review, a treatment of the latter
characterization appeared in an article by that author.∗ The reviewer mentioned the
possibility of extending the article to a more complete survey, but I found it difficult
to contemplate presenting my hard-won results as mostly a survey of results by others.
Thus, the report languished as a TR, even though all the proofs were new, and a few
unpublished propositions remained. Certain other researchers in this area later suggested
to me that the missing proofs in the Zvonkin & Levin survey should really have entitled
me to publication and co-discoverer status for at least the semicomputable results. In
any event, the existence of the arXiv system has made it possible to make the original
version easily accessible.

The apparently new results in the submitted article were Theorems 2-4 (on the
extent to which semicomputable measures actually allow probabilistic prediction), Th. 6
(which seems to slightly strengthen the previously known result that there is no recursive
universal distribution – “probabilities” assigned by “predictors” don’t have to add up to
1), Th. 7 (about a nearly optimal additive “predictor” – a nontrivial result), Th. 11 (a
kind of law of large numbers, which the reviewer said was implicit in some of Schnorr’s
published work, a comment that I did not succeed in confirming), and Th. 13, with
Corollaries 1 & 2 (though Levin had proved very closely related results).∗∗

I include the symbol glossary that prefaced the TR, even though the meanings of the
symbols are mostly clear from the text.

∗Claus-Peter Schnorr, & P. Fuchs, “General Random Sequences and Learnable Sequences,” J. Symb.
Logic 42(3), pp. 329-340 (1977); also,

C.P. Schnorr, “A survey of the theory of random sequences’, in R.E. Butts and J. Hintikka (eds.),
Basic Problems in Methodology and Linguistics, Dordrecht: D. Reidel, pp. 193–210 (1977).

∗∗In 1988 I communicated these points, along with the TR, to Professor Levin, by then at Boston
University.

2



Symbol Glossary

Symbol Meaning

0,1 unit strings; or numbers (clear from context)
N {0,1,2,...}
IR the nonnegative reals
IR+ the positive reals
R the real interval [0,1]
B the numbers in R with finite radix-2 representations
Q the rational numbers in [0,1]
X the 2-element alphabet {0,1}
X∗ the concatenation closure of X
X∞ the semi-infinite binary sequences
upper case Latin letters subsets of X∗ or X∗ × IR;
other than B,N,R,Q,X or, procedure variables

dom domain
f(S) {f(x)|x ∈ S}
f−1(S) {x|f(x) ∈ S}
log base 2 logarithm
p, p′, p′′, pi predictors or conditional predictors
p∗(x) surplus probability of x =df p(x)− p(x0)− p(x1)
pf the Solomonoff predictor determined by a process f
pf prefix-free
re recursively enumerable
rp(x) |x|+ log p(x)
x and other lower case
letters near the end of
the Latin alphabet binary sequence

x(n) prefix of length n of binary sequence x
x− finite binary sequence x with last digit complemented
x(n)− x(n) with nth digit complemented
δ an element of IR+

λ Church’s lambda operator
Λ the null sequence
µ a measure on subsets of X∞

σ σS =
∑

x∈S 2−|x|

ϕ partial recursive function from N to N or from X∗ ×N to Q
∅ the empty set
× Cartesian product
⊑ is a prefix of
< is a proper prefix of
⊒ is an extension of
= is a proper extension of

3



( ) open interval; syntactic delimiters
[ ] closed interval; assertion delimiters (numerical value 1 or 0

corresponding to true or false when used as arithmetic expression)
⟨ ⟩ ordered pair
−> is an encoding of
−≫ is a reduced encoding of
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1. Introduction

The decade beginning in 1963 saw the development of two types of computational theories
for infinite sequences. Theories of the first type are concerned with the algorithmic
distinction between random and nonrandom sequences, while theories of the second type
are concerned with prediction of infinite sequences or inductive discovery of programs
for them.

Relatively little attention has been paid to the connections between these two lines of
development, even though the existence of such connections has always been apparent.
Indeed, vonMises’ (1919) original proposal for characterizing random sequences involved
a notion similar to prediction, viz., a priori selection of digits from an infinite binary
sequence. Von Mises’ proposal, taken up by Wald (1937) and Church (1940) among
others, did not lead to a satisfactory characterization of random sequences (see the
critique of Ville, 1939). The later work of Kolmogorov (1965), Martin-Löf (1966), Chaitin
(1966), and Schnorr (1971) at last yielded several apparently successful approaches to this
problem. However, none of these approaches turned explicitly upon any proper notion
of sequence prediction (although the stakes wagered in Schnorr’s “gambling strategies”
could be viewed as implicit predictions).

On the other hand, the work on inductive inference was not directly concerned with
the definition of randomness. Solomonoff (1964) proposed several classes of methods for
predicting sequences probabilistically, and Willis (1970) showed that one of these classes
contains approximations to all recursive sequential probability distributions. Cover
(1974), like Schnorr (1971), investigated sequential gambling schemes. He explicitly re-
lated them to prediction schemes and devised an interesting variant of one of Solomonoff’s
universal prediction schemes. Subsequently Solomonoff (1976) proved convergence and
other desirable properties for his original universal predictor.

The studies most directly concerned with the relationship between prediction and
randomness are those of Chaitin and Levin. Chaitin (1975) defined randomness in terms
of Solomonoff-like probabilities, and has asserted (Chaitin, 1977) that his definition
is equivalent to that of Martin-Löf (1966). At first sight Chaitin’s probabilities seem
unsuitable for infinite sequence prediction: the probability assigned to an initial segment
may exceed the probabilities of shorter initial segments. However, it seems clear in
retrospect that Chaitin’s probabilities could have been used as a basis for the present
study. The probability of a sequence as discussed herein apparently corresponds to the
sum of Chaitin’s probabilities over all finite extensions of the sequence.

The Soviet† mathematician L.A. Levin made major contributions to the unification
of the theories of randomness and prediction in a series of papers sparked by Levin’s
association with Kolmogorov (Zvonkin & Levin, 1970, and Levin, 1973, 1976). Levin
introduced the notion of a semicomputable measure, which can be viewed intuitively as a

†at the time
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method of probabilistic sequence prediction. The theorems of Levin in Zvonkin and Levin
(1970) show, in effect, that semicomputable measures are expressible in the form pro-
posed by Solomonoff (1964), although Levin did not explicitly attach this interpretation
to his results. Furthermore, he established analogous results for computable measures
(similar to the results obtained independently by Willis (1970)). Subsequently Levin
(1973) made the crucial connection between semicomputable measures and randomness,
stating a theorem to the effect that a sequence is random in the sense of Martin-Löf
iff it is irredundant with respect to every semicomputable measure; indeed, he found
more generally that a sequence is Martin-Löf random relative to any given computable
distribution iff its redundancy as measured by any semicomputable measure is no greater
than its redundancy relative to the given distribution (apart from a constant). Later
Levin (1976) further generalized these results to sequences which are random relative
to arbitrary (not necessarily computable) measures, and related them to information
theory.

The results of the present paper were obtained before the author became aware of
Levin’s work. The central concern is with sequence prediction in the sense of prior
(“subjective”) probability assignments to initial segments of infinite sequences. The
objective is to relate this notion of prediction to definitions of randomness due to Martin-
Löf and Schnorr on the one hand and to Solomonoff’s ideas about prediction on the
other. Several of the main results of Secs. 3 and 5 are contained in the cited papers of
Levin. The presentation of new proofs is justified in part by the differences in approach
(e.g., the construction of an optimal predictor in Th. 8 without reduction of predictors
to Solomonoff’s form) and in part by the fact that Levin did not publish proofs for all
of his results (e.g., the connection between predictability and Martin-Löf randomness,
Th. 5). The present paper is more explicitly concerned with sequence prediction than
Levin’s studies; the terminology and techniques reflect this concern.

A topic not treated here is the extrapolation of recursive sequences or inductive
discovery of programs for such sequences (e.g., Gold, 1967, and Blum & Blum, 1973).
Although nonprobabilistic extrapolation of recursive sequences can be viewed as a special
case of probabilistic prediction, the results herein are of too general a nature to shed any
new light on this special case.

Sec. 2 introduces the formal notation and some basic concepts. An incrementable
predictor (cf. Levin’s semicomputable measure) is defined as a lower bound on a se-
quential probability distribution which is approachable from below. Thus the class of
incrementable predictors contains all recursive methods of prediction, as well as certain
nonrecursive methods. Alternative intuitive interpretations of predictors are considered,
and some computability properties of prediction schemes based on incrementable pre-
dictors are examined.

In Sec. 3 it is shown that any infinite binary sequence z is Martin-Löf random iff its
initial-segment redundancy n + log p(z(n)) is bounded relative to every incrementable
predictor p. Actually this is established as a corollary of the fact that z is Martin-
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Löf random relative to distribution p iff p is optimal for z, where optimality means
maximization of initial-segment redundancy. An optimal universal predictor is then
constructed, i.e., one which maximizes the initial-segment redundancy of every infinite
binary sequence. This predictor assigns nonvanishing limit probabilities precisely to the
recursive sequences.

In Sec. 4 attention is restricted to recursive predictors. It is shown that an infinite
sequence is Schnorr-random iff its initial-segment redundancy does not grow “noticably”
(in a suitable sense) relative to any recursive predictor. Again this is a corollary of a
result about Schnorr-randomness relative to a recursive predictor, viz., that z is Schnorr-
random relative to p iff p is “weakly optimal” for z. A related fact is that a recursive
predictor maximizes the initial-segment redundancy of a sequence only if the conditional
probabilities it assigns to events occurring in that sequence agree with the frequencies
of those events. For example, for about 70% of the cases where a 1-digit is predicted
with 70% conditional probability, a 1-digit actually occurs. Thus an optimal predictor
exhibits a type of consistency which seems desirable in any sequential inductive method.

In Sec. 5 it is shown that the class of incrementable predictors coincides with one
of Solomonoff’s classes of predictive methods based on program lengths. Also some
variants of Willis’ 1970) and Levin’s (Zvonkin & Levin, 1970) results about the reduction
of recursive predictors to Solomonoff’s form are presented.

2. Predictors

The following basic notation and terminology will be used. N is the set of natural
numbers including 0, IR is the set of nonnegative real numbers, IR+ is IR−{0}, R is the
real interval [0,1], Q is the set of rational numbers in R, B is the set of numbers in R
with finite radix-2 representations, X = {0,1}, X∗ is the set of finite binary sequences
including the null sequence Λ, and X∞ is the set of infinite binary sequences. |x| is
the length (number of digits) of a sequence x ∈ X∗. If |x| = n then x is said to be an
n-sequence. The notation x ⊑ y (or y ⊒ x) expresses that x is a prefix of y (y is an
extension of x), where x ∈ X∗ and y ∈ X∗ ∪X∞. Similarly x < y (or y = x) expresses
that x is a proper prefix of y, i.e., x ⊑ y and x ̸= y. A prefix of length n of a finite or
infinite sequence x is denoted by x(n) (x(n) is undefined if n > |x|). The concatenation
of two sequences x and y is written as xy. Similarly {xy|x ∈ S, y ∈ T} is written as ST .
Set concatenations involving singletons (e.g., {x}X∗) are shortened by omitting braces
of the singletons (e.g., xX∗). Also n-fold self-concatenation of a sequence x or set of
sequences S is written as xn or Sn respectively. Note that ∅S = S∅ = ∅. A set S ⊂ X∗

is prefix-free (pf) iff S ∩ (SXX∗) = ∅, i.e., it contains no proper extension of any of its
members. Such a set is also called an instantaneous code (Abramson, 1963).

A predictor is a total function p : X∗ → R such that p(x) ≥ p(x0) + p(x1) for all
x ∈ X∗. Thus p corresponds either to a subadditive measure µ on X∞ such that µxX∞
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= p(x) or to an additive measure µ on X∗ ∪X∞ such that µx(X∗ ∪X∞) = p(x), for all
x ∈ X∗. Intuitively p(x) may be regarded as the prior probability of x or as a lower bound
on its prior probability (see below). The difference p+(x) = p(x)−p(x0)−p(x1) is called
the surplus probability of x. A predictor satisfying p(Λ) = 1 and p(x) = p(x0) + p(x1)
for all x ∈ X∗ is called a sequential probability distribution (Martin-Löf, 1966), or a
distribution, for short.1

A total function f : X∗ → R is incrementable iff there is a recursive function g :
X∗ × N → Q which is nondecreasing in its second argument such that

f(x) = limn g(x, n) for all x ∈ X∗;
i.e., f(x) is approachable from below, with each increase in n supplying a nonnegative
rational increment in the approximation g(x, n) to f(x).2 When a recursive function g
and a function f are related as above, g is said to underlie f .

One of the primary concerns in this paper will be the class of incrementable predic-
tors.3 The importance of this class of predictors lies in its relationship to the class of
Martin-Löf random sequences on the one hand (Sec. 3) and to the class of processes on
the other (Sec. 5).

The following two simple facts about predictors are noteworthy.

Theorem 1. (a) Every incrementable distribution is recursive.
(b) Every recursive predictor can be increased to a recursive distribution.

Proof. (a) If p is any incrementable distribution then p(Λ) is trivially computable. As-
sume for induction on n that p(x) is computable for every n-sequence x. Now from
p(x0) = p(x) − p(x1) it is seen that p(x0) is approachable from above, since p(x) is
computable by assumption and p(x1) is approachable from below. But p(x0) is also
approachable from below, so that p(x0) is computable; similarly for p(x1).

(b) For any recursive predictor p, a distribution p′ such that p′(x) ≥ p(x) for all x ∈ X∗

can be defined as follows: Let p′(Λ) = 1, p′(x0) = p′(x) − p(x1), and p′(x1) = p(x1) for
all x ∈ X∗. Then it is easily verified by induction on sequence length that p′ meets the
requirements of the theorem. 2

In what sense and under what conditions does a predictor allow sequence prediction?
If the predictor is a recursive distribution the answer is straightforward. Consider any
nonterminating process which generates a succession of binary digits; then p(xy)/p(x)

1Solomonoff (1964) used the term “normalized probability evaluation methods” for computable dis-
tributions. Schnorr (1971) defined randomness in terms of martingales, where a martingale f : X∗ → IR+

satisfies f(x) = (f(x0) + f(x1))/2 for all x ∈ X∗. Thus if f(x) ≤ 2|x| for all x ∈ X∗, then 2−|x|f(x)
defines a sequential probability distribution. See Sec. 4.

2It is assumed that procedures which accept rational numbers as inputs or generate them as outputs
utilize some effective encoding of the rational numbers, e.g., integer pairs ⟨m,n⟩ such that m/n =
q. Instead of the rational numbers a more restricted set such as B (the numbers with finite radix-2
representations), or a less restricted set such as the computable numbers in R could have been used.

3These correspond exactly to Levin’s semicomputable measures (Zvonkin & Levin, 1970), apart from
the inessential condition p(Λ) = 1, i.e., µX∗ ∪X∞ = 1, on any semicomputable measure µ.
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can be regarded as the conditional probability that x will be followed by y, given that x
has occurred (replace any ratio 0/0 by 0). Thus a “prediction” of a sequence continuation
is analogous to a weather forecast, say, which attributes a probability to some future
weather condition (e.g., “60% chance of rain tomorrow”).4

Arbitrary predictors, however, admit two intuitive interpretations, corresponding to
the two measure-theoretic interpretations mentioned above. In the first interpretation a
predictor supplies lower bounds on prior probabilities of initial output sequences gener-
ated by a nonterminating process. Corresponding upper and lower bounds on conditional
probabilities are supplied in Th. 2. These are approachable from above and below re-
spectively, whenever the given predictor is incrementable (Th. 3).

In the second interpretation a predictor supplies prior probabilities on nonempty
output sequences of a process which may or may not terminate. The surplus probability
of a sequence x ∈ XX∗ is then the probability that the process will generate x and
halt. As in the case of distributions, p(xy)/p(x) is the probability that y will follow x,
given that x has been generated, but with no guarantee that a continuation of length |y|
will be generated at all. These conditional probabilities need not be approachable from
below, even if the given predictor is incrementable (Th. 4).

The following theorem gives the sharpest possible bounds on conditional probabilities
implicit in the values of a predictor, when these are interpreted as lower bounds on
initial-segment probabilities in a nonterminating process (first interpretation). For any
x ∈ XX∗, x− denotes the sequence obtained by changing the last digit of x to its
complement. Thus v(i)− is v(i) with the ith digit complemented. A sum over no terms
(in particular, a sum from a higher to a lower summation index) is taken to be 0. As
before, occurrences of 0/0 are to be replaced by 0.

Theorem 2. If p is any predictor and p′ is any distribution such that ∀y ∈ X∗ : p′(y) ≥
p(y), then ∀v ∈ X∗ : ∀w ∈ XX∗:

p(vw)

1−
∑|v|

i=1 p(v(i)
−)

≤ p′(vw)

p′(v)
≤

1−
∑|vw|

i=1 p((vw)(i)−)

1−
∑|v|

i=1 p(v(i)
−)

.

Furthermore, these are the sharpest possible bounds derivable from p in the sense that
∀v ∈ X∗ : ∀w ∈ XX∗: ∃ distributions p′, p′′: ∀x ∈ X∗ : p′(x), p′′(x) ≥ p(x) and

p′(vw)

p′(v)
=

p(vw)

1−
∑|v|

i=1 p(v(i)
−)

and
p′′(vw)

p′′(v)
=

1−
∑|vw|

i=1 p((vw)(i)−)

1−
∑|v|

i=1 p(v(i)
−)

.

Proof. The lower bound on p′(vw)/p′(v) is obtained from the lower bound p(vw) on

p′(vw) and upper bound p′(Λ) =
∑|v|

i=1 p(v(i)
−)

4The “rationality” of such predictions depends on the frequency with which events assigned particular
conditional probabilities occur; see discussion preceding Th. 11.
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on p′(v), which is easily inferred from the distribution property of p′ and the fact that
each p(v(i)−) is a lower bound on p′(v(i)−), for i = 1, ..., |v|. The upper bound on
p′(vw)/p′(v) is obtained by noticing that the difference between p′(v) and p′(vw) is at
least∑|vw|

i=|v|+1 p((vw)(i)
−),

so that p′(vw)/p′(v) is maximized by choosing p′(vw) as large as possible while keeping
p′(v)− p′(vw) to its minimum.

The second part of the theorem is proved by constructing p′ such that

p′(x) = 1−
∑|x|

i=1 p(x(i)
−), and

p′(x−) = p(x−) for all x < vw;

p′(vw) = p(vw); and

p′(vw−) = 1−
∑|vw|−1

i=1 p((vw)(i)−)− p(vw).

Then p′ is easily seen to be a distribution bounded below by p for all x and x− such that
x ⊑ vw; its extension to other x ∈ X∗ is straightforward. Evidently p′(vw)/p′(v) equals
the lower bound of the theorem. Similarly p′′ is constructed such that

p′′(x) = 1−
∑|x|

i=1 p(x(i)
−), and

p′′(x−) = p(x−) for all x ⊑ vw.

Again p′′ is easily seen to be a distribution bounded below by p for all x and x− such
that x ⊑ vw; its definition is easily completed. Evidently p′′(vw)/p′′(v) equals the upper
bound of the theorem. 2

Theorem 3. If the predictor p of Th. 2 is incrementable, then the upper and lower
bounds on conditional probability of that theorem are approachable from above and
below respectively.

Proof. Since p is approachable from below, the given lower bound on p′(vw)/p′(v) is
approachable from below. Inspection of the upper bound indicates that whenever p(x−)
is incremented for some x ⊑ vw, the numerator will decrease while the denominator
will either decrease by the same amount or remain unchanged. In neither case does the
upper bound increase, since the numerator is at most as large as the denominator. 2

Thus the conditional predictor determined by an incrementable predictor under the
first interpretation is itself incrementable. This is not the case under the second inter-
pretation, i.e., the probability p′(x, y) that y follows x is not approachable from below,
as the following theorem shows. The theorem also deals with the non-incrementability,
under the second interpretation of predictors, of the probability p′′(x, y) that y follows x,
given that the process does not terminate prematurely (i.e., after generating xy′ < xy).
This probability would be of interest if it were known that a continuation of length ≥ |y|
had been generated, but its digits were still unknown. Solomonoff’s (1964, 1976) and
Cover’s (1974) conditional probabilities are of this type.

Theorem 4. If p is a predictor then p′ defined as
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p′(x, y) = p(xy)/p(x) for all x, y ∈ X∗

and p′′ defined as
p′′(x,Λ) = p(x)/p(x),
p′′(x,w) = p(xw)/(p(xw) + p(xw−)), and
p′′(x, yw) = p′′(x, y) p′′(xy,w) for all x, y ∈ X∗ and w ∈ X,

are not in general approachable from below.

Proof. Let ϕi : N → N, i = 0, 1, 2, ... be a recursive enumeration of the partial recursive
functions. Let

p(0m) = 2−min{n|n≥m, ϕn defined} for all m ∈ N , and
p(x) = 0 for all x ∈ X∗1X∗.

Clearly p is a predictor. Since {n|ϕn(n) defined} is recursively enumerable (re), p is
incrementable. It is easily seen that p(0m+1)/p(0m) > .5 iff ϕm(m) is undefined. But
p(0m+1)/p(0m) = p′(0m, 0). Hence if p′ were approachable from below one could even-
tually verify that p(1m+1)/p(1m) > .5 whenever this is the case. But then one could
recursively enumerate {m|ϕm(m) undefined}, which is well-known to be impossible (e.g.,
see Rogers, 1967). Hence p′ is not approachable from below.

Now let p be redefined as follows:
p(0m1) = 2−m−1 if ϕm(m) is defined,

= 0 otherwise, for all m ∈ N ;
p(0m) =

∑∞
i=0 p(0

m+i1) for all m ∈ N ; and
p(x) = 0 for all x ∈ X∗ − {0}∗{Λ, 1}.

Again p is easily shown to be an incrementable predictor, with the property that ∀m ∈ N :

p(0m+1)/(p(0m+1) + p(0m1) > .5 iff ϕm(m) is undefined.
But this ratio is p′′(0m, 0) so that if p′′ were approachable from below, {m|ϕm(m) undefined}
would be re. Hence p′′ is not approachable from below. 2

This result indicates that some incrementable predictors are far from “effective”
as methods of prediction, particularly under the second interpretation of predictors.
Therefore it is important to study narrower classes of predictors, such as the recursive
predictors (Sec. 4).

3. Quasipredictability and Martin-Löf Randomness

The redundancy of a sequence x ∈ X∗ relative to a predictor p is defined as rp(x) =
|x| + log p(x), with logarithms taken to base 2 and log 0 = −∞. This can be thought
of as the maximum possible information of x, viz. |x|, less (the upper bound on) its
actual information, viz.− log p(x). For a sequence z ∈ X∞ the redundancy relative to p
is defined as rp(z) = lim supn rp(z(n)). Note that every sequence has zero redundancy
relative to the uniform distribution p(x) = 2−|x|.

An important related notion is that of optimality. A predictor is optimal for a given
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infinite sequence if it “reveals the regularities (redundancies)” of that sequence essentially
as well as any other predictor. Formally, an incrementable predictor p is optimal for z
z ∈ X∞, iff rp′(z(n))− rp(z(n)) is bounded above for every incrementable predictor p′.

A sequence z ∈ X∞ is quasipredictable iff its redundancy is ∞ relative to some incre-
mentable predictor. The prefix “quasi” indicates that prediction with an incrementable
predictor is not fully effective.

Quasipredictability will now be related to Martin-Löf randomness.

A Martin-Löf (M-L) sequential test is a set V ⊂ X∗ × N with the following 4 prop-
erties, where Vm denotes {x| ⟨x,m⟩ ∈ V }:

(a) Effectiveness: V is re.
(b) Nestedness: Vm+1 ⊆ Vm for all m ∈ N .
(c) Numerosity: the number of n-sequences in Vm ≤ 2n−m for all m,n ∈ N .
(d) Monotonicity: x ∈ Vm ⇒ xy ∈ Vm for all x, y ∈ X∗.

For motivation of these properties see Martin-Löf (1966).5 Intuitively, ⟨x,m⟩ ∈ V means
that the test V rejects the randomness hypothesis at significance level 2−m for all infinite
sequences beginning with x.

The critical level mV (x) of a sequence x ∈ X∗ relative to a M-L sequential test V
is max{m| ⟨x,m⟩ ∈ V }, where max ∅= 0 (this latter condition in effect extends V0 to
X∗). A sequence z ∈X∞ is M-L random iff there is no M-L sequential test V such that
limnmV (z(n)) = ∞.

More generally, a M-L sequential test for p where p is any recursive distribution, is
defined as above except that the numerosity condition becomes∑

y∈Xn∩Vm
p(y) ≤ 2−m for all m,n ∈ N .6

Accordingly a sequence z ∈ X∞ is M-L random relative to p where p is any recursive
distribution, iff there is no M-L test V for p such that limn mV (z(n)) = ∞. Note that
“M-L random” is the same as “M-L random relative to the uniform distribution”.7

Intuitively, one would expect that if a distribution is optimal for a sequence z ∈ X∞,
i.e., if it reveals all the regularities (redundancies) of z, then z should appear to behave
randomly relative to the probability assignments of the distribution. This is indeed the
case.

Theorem 5 (Levin). For any recursive distribution p and any z ∈ X∞, z is M-L

5Alternative definitions can be found in Zvonkin & Levin (1970) and Schnorr (1971, 1973).
6Martin-Löf originally used strict inequality to facilitate the construction of a universal test (because

equality of computable reals is not effectively confirmable). However, extension of V0 to X∗ is then
no longer possible, and in any case the construction of a universal test is still possible with non-strict
inequality (see Zvonkin & Levin, 1970).

7It should be mentioned that the notion of randomness relative to recursive distributions does not
allow for randomness relative to Bernoulli distributions of the form p(Λ) = 1, p(x0) = p(x)(1−r), p(x1) =
p(x)r for any (not necessarily computable) r ∈ R. For a treatment of Bernoulli sequences see Martin-Löf
(1966) and Schnorr (1971). For randomness tests relative to arbitrary distributions see Levin (1976).
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random relative to p iff p is optimal for z.

Proof. ⇒: Suppose that rp′(z(n))−rp(z(n)), i.e., log p′(z(n))− log p(z(n)), is unbounded
for some incrementable predictor p′. Let

V = {⟨x,m⟩|x ∈ X∗ & m ∈ N & ∃y ⊑ x : p′(y) > 2mp(y)}.
V will be shown to be a M-L test for p such that z is not M-L random relative to p.

Nestedness and monotonicity are obviously satisfied by V . V is clearly re since p′ is
incrementable and p is recursive. The numerosity condition can be verified by considering
a partitioning of the n-sequences in Vm into groups such that group i consists of all n-
sequences extending some yi with p′(yi) > 2mp(yi). Then

1 ≥
∑
i

p′(yi) > 2m
∑
i

p(yi) = 2m
∑
|x|=n

x⊒yi

p(x) = 2m
∑
|x|=n

x∈Vm

p(x),

so that 2m
∑
|x|=n

x∈Vm

p(x) < 2m.

Now from the definition of V , ⟨z(n),m⟩ ∈ V if log p′(z(n)) > m+ log p(z(n)). But
lim supn[log p

′(z(n)) − log p(z(n))] = ∞, hence limnmV (z(n)) = ∞ and z is not M-L
random relative to p.
⇐: Assume without loss of generality that p(z(n)) does not vanish for any n (otherwise
log p′(z(n)) − log p(z(n)) will certainly be unbounded for any nonvanishing p′). Let V
be a M-L test for p such that limnmV (z(n)) = ∞. Let p′(x) be defined for all x ∈ X∗ as

p′(x) = limn q(x, n), where
q(x, n) =

∑
y⊒x

|y|=n
mV (y)p(y) for n > |x|.

p′ will be shown to be an incrementable predictor such that log p′(z(n)) − log p(z(n))
is unbounded. First observe that q(x,n) is nondecreasing in n, as mV (y0),mV (y1) ≥
mV (y), so that

∑
y⊒x

|y|=n+1

mV (y)p(y) =
∑
y⊒x

|y|=n

[mV (y0)p(y0) +mV (y1)(p(y1)]

≥
∑
y⊒x

|y|=n

mV (y)p(y).

Furthermore q(x, n) ≤ q(Λ, n) ≤ 1 for all x, n since

13



q(Λ, n) =
∑
|y|=n

mV (y)p(y) =
∑
m∈N

m
∑
|y|=n

mV (y)=m

p(y)

=
∑
m∈N

m

 ∑
y∈Xn∩Vm

p(y)−
∑

y∈Xn∩Vm+1

p(y)


=

∞∑
m=1

∑
y∈Xn∩Vm

p(y) ≤
∞∑

m=1

2−m = 1.

Thus limn q(x, n) exists and is ≤ 1 for all x. From q(x, n) = q(x0, n) + q(x1, n) for all
n > |x|, it follows that p′(x) = p′(x0) + p′(x1) ≥ 0 so that p′ is a predictor (in fact, an
additive predictor). From the fact that V is re and that for all x ∈ X∗ and r ∈ R

p′(x) > r ⇒ ∃n : q(x, n) > r

it is easy to see that p is incrementable. Now since q(x, n) is nondecreasing in n,

p′(z(n)) ≥ q(z(n), n) = mV (z(n))p(z(n)).

Hence if mV (z(n)) is unbounded, so is p′(z(n))/p(z(n)) and hence also log p′(z(n)) −
log p(z(n)). 2

Remark. It would have been possible to use

q(x, n) =
∑
y⊒x

|y|=n

f(mV (y))p(y)

in the proof, where f is any unbounded nondecreasing recursive function from N to IR
such that ∑

m∈N
f(m)2−m−1 ≤ 1;

the reason is that q(Λ, n) then becomes

f(0) +
∞∑

m=1

(f(m)− f(m− 1))
∑

y∈Xn∩Vm

p(y)


≤ f(0) +

∞∑
m=1

(f(m)− f(m− 1))2−m =

∞∑
m=0

2−m−1.

A particularly interesting corollary of Th. 5 results from specializing p to the uniform
distribution. This provides the link between quasipredictability and M-L randomness.

Corollary 1. A sequence z ∈X∞ is M-L random iff it is not quasipredictable.

In other words, the M-L random sequences are those for which the uniform predictor
is optimal.

14



The next corollary supplies a predictor which is universal in the weak sense that it
assigns infinite redundancy to all nonrandom sequences. A predictor which is optimal
for all sequences (and hence certainly universal) is given in Th. 8.

Corollary 2 (universal predictor). There is an incrementable predictor p such that for
any z ∈ X∞ and any incrementable predictor p′

rp′(z) = ∞ ⇒ rp(z) = ∞.

A suitable p is given by

p(x) = lim
n

2−n
∑
y⊒x

|y|=n

mU (y),

where U is a universal M-L sequential test (Martin-Löf, 1966).

Corollary 3. If p is a universal predictor then p(x) > 0 for all x ∈ X∗.

Proof. For any x ∈ X∗, consider the sequence z = xy, where y ∈ X∞ is some fixed
recursive sequence. Clearly there is an incrementable predictor p′ such that p′(z(n)) = 1
for all n ∈ N . Hence z is nonrandom and hence rp(z) = ∞. But if p(x) were 0, rp(z(n))
would be −∞ for all n ≥ |x|. 2

Universal predictors are not recursive. This is the analogue of the fact that there is
no recursive universal M-L sequential test.

Theorem 6. There is no recursive universal predictor.

Proof. By Cor. 3 of Th. 5 it is only necessary to prove that any nonvanishing recur-
sive predictor p is not universal. Now if p is recursive then arbitrarily tight upper and
lower bounds on p(x) can be effectively computed for any x ∈ X∗. This fact allows
the construction of a recursive sequence y ∈ X∞ whose redundancy is bounded relative
to p, showing that p is not universal. Specifically, the (n + 1)st digit of y is chosen as
follows. Increasingly tight upper and lower bounds on p(y(n)), p(y(n)0), and p(y(n)1)
are computed. y(n+ 1) is assigned the value y(n)0 if the inequality

p(y(n)0) < p(y(n))22
−n−1,

is first confirmed, or the value y(n)1 if

p(y(n)1) < p(y(n))22
−n−1

is first confirmed. One of these inequalities will be confirmed eventually since the multi-
plier of p(y(n)) on the right-hand side exceeds 1/2 for all n ∈ N , and p(y(n)0), p(y(n)1)
cannot both exceed p(y(n))/2. Thus

p(y(n+ 1)) < p(y(n))22
−n−1

for all n and hence

p(y(n)) < p(Λ)

n−1∏
i=0

22
−i−1 = p(Λ)22−2−n+1−n.

Consequently the redundancy of y satisfies
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n+ logP (y(n)) < log p(Λ) + 2− 2−n+1

and so is bounded above. Thus p is not universal. 2

Corollary. There is no incrementable universal distribution.

Proof. Immediate from Th. 1(a) and Th. 6. 2

Note that this implies that for any additive universal predictor p(Λ) is not computable.

The predictor of Cor. 2, Th. 5 was seen to be universal in that it assigns infinite
redundancy to all infinite nonrandom sequences. However, it is nonoptimal, i.e., it
does not in general maximize initial-segment redundancy. The fact that any universal
M-L sequential test maximizes the initial-segment critical level of any infinite sequence,
apart from a constant (Martin-Löf, 1966), suggests that it should be possible to derive an
optimal predictor from such a M-L test. The following theorem does not quite succeed in
confirming this intuition. The predictor exhibited falls short of maximizing redundancies
by a term logarithmic in the redundancy. Its special interest lies in the fact that it is
additive. In Th. 8 the existence of a truly optimal (but nonadditive) universal predictor
will be established without reliance on the properties of M-L tests.

Theorem 7. There is an additive incrementable predictor p such that for any incre-
mentable predictor p′ and any real c > 1

rp′(x)− rp(x) < c log rp′(x)

for all x ∈ X∗ such that rp′(x) is sufficiently large (i.e., larger than some constant
dependent on p′ and c). A suitable p is given by

p(x) = lim
n

2−n
∑
y⊒x

|y|=n

f(mU (y)),

where log f(m) = m− log(m+ 2)− 2 log log(m+ 5) for all m ∈ N ,

and U is any universal M-L sequential test.

Proof. It can be verified that f is nondecreasing and satisfies∑
m∈N f(m)2−m−1 ≤ 1.

By the proof of Th. 5 and the remark following it, p is an additive incrementable pre-
dictor. Given any incrementable predictor p′, let

V = {⟨x,m⟩|x ∈ X∗ & m ∈ N & ∃y ⊑ x : p′(y) > 2m−|y|.}
For this M-L sequential test it is known that if log p′(x) > m − |x| then mV (x) ≥ m.
Also, since U is universal there is an integer a such that mU (x) ≥ mV (x) − a for all
x ∈ X∗. Clearly p(x) ≥ 2−|x|f(mU (x)) or,

log p(x) ≥ −|x|+mU (x)− log(mU (x) + 2)− 2 log log(mU (x) + 5).

Thus log p′(x) > m− |x| implies mU (x) ≥ m− a which in turn implies

log p(x) ≥ −|x|+m− a− log(m− a+ 2)− 2 log log(m− a+ 5)

provided that m− a ≥ 0 (in view of the fact that f(i) is nondecreasing in i for i ∈ N);
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or, |x|+ log p′(x) > m ≥ a implies

|x|+ log p(x) ≥ m− [a+ log(m− a+ 2) + 2 log log(m− a+ 5)];

or, choosingm such thatm+1 ≥ |x|+log p′(x) > m and assuming that |x|+log p′(x) > a,

log p′(x)− log p(x)

< 1 + a+ log(|x|+ log p′(x)− a+ 2) + 2 log log(|x|+ log p′(x)− a+ 5)

< c log rp′(x) for all sufficiently large rp′(x)

and the theorem follows. 2

Essentially the following lemma says that the class of incrementable predictors is re,
and that the function underlying a predictor can be chosen to be subadditive (like the
predictor itself). This fact facilitates the construction of an optimal predictor (Th. 8)
and the reduction of predictors to Solomonoff’s form (Th. 12).

Lemma 1. There is a re class of recursive functions {hi : X∗ ×N → Q, i ∈ N} each of
whose members hi underlies a predictor pi and satisfies

hi(x, n) ≥ hi(x0, n) + hi(x1, n)

for all x ∈ X∗, n ∈ N . Furthermore {pi|i ∈ N} is the class of all incrementable predictors.

Proof. It will first be shown that the class of incrementable functions is re. From any
partial recursive function ϕ : X∗ ×N → Q a recursive function g : X∗ ×N → Q can be
obtained uniformly effectively, such that λn g(x, n) is nondecreasing and

limn g(x, n) = supϕ(x, n)|n ∈ N for all x ∈ X∗, where sup ∅ = 0.

Given a procedure for ϕ, g(x, n) can be computed by simulating the computation of
ϕ(x, 0), ..., ϕ(x, n) for n steps each and returning the largest of the outputs obtained (0 if
none are obtained). If ϕ is already a recursive nondecreasing function, then limn g(x, n)
will clearly be the same as limn ϕ(x, n). Since the class of partial recursive functions is
re, it follows that the class of incrementable functions is re.

The members of this class can now be further modified to yield only (and all) incre-
mentable predictors. For any incrementable g, let

(1) h(x, 0) = 0,
(2) h(Λ, n) = g(A,n)
(3) h(x0, n) = min{g(x0, n), h(x, n)− h(x1, n− 1)} if n > 0, and
(4) h(x1, n) = min{g(x1, n), h(x, n)− h(x0, n)}, for all x ∈ X∗, n ∈ N .
Assume for induction on |x| that h(x, n) ≥ h(x, n − 1) for all n > 0 and all x of
length ≤ k. Then the inductive step requires proving h(x0, n) ≥ h(x0, n − 1) and
h(x1, n) ≥ h(x1, n− 1), i.e.,

(5) g(x0, n) ≥ h(x0, n− 1),
(6) h(x, n)− h(x1, n− 1) ≥ h(x0, n− 1),
(7) g(x1, n) ≥ h(x1, n− 1), and
(8) h(x, n)− h(x0, n) ≥ h(x1, n− 1).
Since g is nondecreasing and since g(x, n) ≥ h(x, n) for all x, n (by inspection of (1)-(4)),

17



therefore (5) and (7) hold. From (4)

(9) h(x, n− 1) ≥ h(x0, n− 1) + h(x1, n− 1)
for all x and n > 0, and together with the induction assumption this implies (6). (8)
is immediate from (3). The basis of the induction is h(Λ, n) = g(Λ, n) ≥ g(Λ, n − 1) =
h(Λ, n− 1). Thus h is nondecreasing and hence (9) holds in the limit as n → ∞, i.e., h
underlies a predictor.

Whenever g underlies a predictor p, h underlies the same predictor. This is proved by
assuming for induction that for all x of length ≤ k and all r ∈ R, if ∃n ∈ N : g(x, n) > r
then ∃n ∈ N : h(x, n) > r. Suppose that ∃r ∈ R : ∃n ∈ N : g(x0, n) > r. Then
since g underlies predictor p, ∃n′ ∈ N : g(x, n′) > r + p(x1), and hence ∃n′′ ∈ N :
h(x, n′′) > r + p(x1), by the induction assumption. Hence by (3) either h(x0, n′′) =
g(x0, n′′) > r (assuming w.l.g. that n′′ ≥ n) or h(x0, n′′) = h(x, n′′) − h(x1, n′ − 1) >
r + p(x1) − g(x1, n′′ − 1) ≥ r. The argument for h(x1, n) is similar, and equation (2)
starts the induction. Since the transformation from g to h is uniformly effective, and h
is subadditive (see equation (9)), the proof of the lemma is complete. 2

The construction of the following optimal predictor is modelled on Martin-Löf’s
(1966) costruction of a universal test. An alternative construction follows as an easy
corollary of the reduction of incrementable predictors to Solomonoff predictors (see corol-
lary of Th. 12); this was the approach used by Levin (in Zvonkin & Levin, 1970). How-
ever, the required reduction is itself nontrivial, so that an approach not dependent upon
it is of some interest.

Theorem 8 (Levin, optimal universal predictor). There is an incrementable predictor
p such that for any incrementable p′ there is a constant c satisfying

rp′(x)− rp(x) ≤ c for all x ∈ X∗.

Proof. With pi, i ∈ N , defined as in Lemma 1, the optimal universal predictor is given
by

p(x) =
∑∞

i=0 2
−i−1pi(x) for all x ∈ X∗.

Then p(x) = limn h(x, n) for all x ∈ X∗, where

h(x, n) =
∑−i−1

i=0 hi(x, i).

Clearly h is recursive and nondecreasing and

p(x0) + p(x1) ≤ p(x) ≤
∑∞

i=0 2
−i−1 = 1 for all x ∈ X∗.

and hence p is an incrementable predictor. Furthermore if p′ is any incrementable pre-
dictor then there is an i ∈ N such that p′ = pi, so that p(x) ≥ 2−i−1p′(x) for all x ∈ X∗.
The theorem follows with c = i+ 1. 2

Corollary (Levin). For any optimal predictor p and recursive distribution p′, the infinite
sequences z with absolutely bounded rp(z(n))−rp′(z(n)) are the sequences which are M-
L random relative to p′. In particular, the infinite sequences whose redundancy relative
to p is absolutely bounded are the M-L random sequences.

18



Proof. rp(z(n)) − rp′(z(n)) is bounded above for any sequence z ∈X∞ which is M-L
random relative to p′, by Th. 5. Clearly it is also bounded below for if it were not then
rp′(z(n))− rp(z(n)) would not be bounded above, in contradiction with Th. 8. 2

This section will be concluded with a proof of the fact that any optimal universal pre-
dictor assigns nonvanishing limit probabilities precisely to the recursive sequences. This
interesting result was previously obtained by de Leeuw et al (1956) in a paper on proba-
bilistic machines, and was given its present interpretation by Levin (in Zvonkin & Levin,
1970). Levin’s own proof depended on properties of Loveland’s “uniform complexity”
(Loveland, 1970). For a closely related result see also Chaitin (1976).

Theorem 9 (de Leeuw et al., Levin). If p is an optimal universal predictor then z ∈ X∞

is recursive iff limn p(z(n)) > 0.

Proof. ⇒: For any recursive z ∈ X∞ define p′(z(n)) = 1 for all n ∈ N and p′(x) = 0 for
x ̸< z. By Th. 5 there exists a constant c such that rp′(z(n))−rp(z(n)) = − log p(z(n)) ≤
c for all n ∈ N , or p(z(n)) ≥ 2−c for all n ∈ N .

⇐: Let z ∈ X∞ be any sequence such that for some c ∈ N p(z(n)) > 2−c for all n ∈ N .
Thus limn p(z(n)) ≥ 2−c. There are fewer than 2c such infinite sequences, i.e., with
limiting probability ≥ 2−c. Let z(k) be the shortest prefix of z which is not a prefix of
any of the other sequences with limiting probability ≥ 2−c; let l be the smallest integer
such that all finite sequences of length > l with probability > 2−c are prefixes of infinite
sequences with limiting probability ≥ 2−c (it is not hard to see that such an l exists –
note that if there were infinitely many finite sequences whose probabilities exceed 2−c

but which are not prefixes of a finite number of infinite sequences, then p(Λ) = ∞
would hold); finally, let m = max{k, l}. Then z(n) can be computed for any n > m
by enumerating pairs ⟨x, g(x, i)⟩ where g underlies p, until a pair is obtained such that
|x| = n, z(m) < x, and g(x, i) > 2−c; this x is z(n). 2

Note that another way of stating Th. 9 is that if p is any optimal universal predictor
then z ∈ X∞ is recursive iff there is a c ∈ N such that rp(z(n)) ≥ n − c for all n ∈ N ,
i.e., the recursive sequences are those whose redundancy as a function of initial-segment
length n is approximately n.

4. Predictability and Schnorr Randomness

Schnorr (1971) drew attention to the fact that the criteria of effectiveness employed by
Martin-Löf in defining sequential tests are too weak by the standards of constructive
mathematics. In particular, the measure µVmX∞ is not in general a recursive function
of m for a M-L sequential test V . Putting the criticism another way, Schnorr pointed out
that M-L tests classify as nonrandom certain sequences whose nonrandomness cannot
be effectively observed, in any reasonable sense of effective observation.

He therefore proposed several alternative ways of strengthening the criteria of effec-
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tiveness for distinguishing between random and nonrandom sequences, and showed that
these lead to equivalent characterizations of randomness (Schnorr, 1971, 1973). One
proposal is to require µVmX∞ to be a recursive function of m. The random sequences
are taken to be those with bounded critical level relative to all such tests. An equivalent
proposal is contained in the definition of Schnorr randomness which follows.

A growth function is a recursive nondecreasing unbounded function g : N → N .
A sequence z ∈ X∞ is Schnorr (S-) random iff there does not exist a M-L sequen-
tial test V , a recursive lower bound f of mV , and a growth function g such that
lim supn f(z(n))/g(n) > 0.

Evidently this definition expresses a specific thesis about what it means for the non-
randomness in a sequence to be effectively observable, viz., one must be able to confirm
effectively that the upward excursions of the critical level are bounded below by some
growth function. (Note incidentally that one could equally well use 1 or any other posi-
tive constant in place of 0 on the right-hand side of the inequality).8

It has already been noted that there is no universal recursive predictor, and hence
certainly no optimal universal recursive predictor. Nevertheless the concept of optimality,
i.e., maximization of initial-segment redundancy, is of as much interest in connection with
recursive predictors as in connection with incrementable predictors.

In Sec. 3 an optimal predictor was required to maximize initial-segment redundancy
apart from a constant. Adherence to Schnorr’s criteria of effectiveness calls for a slightly
weaker notion of optimality. A recursive distribution p is said to be weakly optimal for z
where z ∈ X∞, iff for every recursive distribution p′ and every growth function g,
lim supn(rp

′(z(n)) − rp(z(n)))/g(n) ≤ 0. Thus no recursive distribution reveals the
redundancy of z noticably better than a predictor which is weakly optimal for z.

For example, corresponding to any computable r ∈ R, the predictor p(x) = rn(x)(1−
r)|x|−n(x), where n(x) = the number of ones in x, is weakly optimal for all Bernoulli
sequences with success probability r, when the following notion of S-randomness relative
to a recursive distribution is substituted in Martin-Löf’s definition of Bernoulli sequences.

A sequence z ∈ X∞ to be S-random relative to p where p is a recursive distribution,
iff there is no M-L sequential test V for p, recursive lower bound f of mV and growth
function g such that lim supn f(z(n))/g(n) > 0.

Once again a direct connection between optimality and randomness can be estab-
lished, much as in Th. 5.

First it should be noted that the numerosity condition of a M-L test V for p can be

8Schnorr’s contention that the S-random sequences best correspond to the intuitively random se-
quences is not universally accepted. Indeed Müller (1972) proposes weaker criteria of effectiveness than
Martin-Löf, citing the existence of M-L random sequences which are limiting recursively computable as
a defect of Martin-Löf’s conception of randomness.
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restated as∑
y∈Y ∩Vm

≤ 2−m

for every finite pf Y ⊂ X∗. Also the following fact will be used.

Lemma 2. Let V be a M-L sequential test for a distribution p, and let g be a growth
function. Then for any x ∈ X∗, any integer k ≥ |x|, and any finite pf Y ⊂ xXk−|x|X∗,∑

y∈Y ∩Vg(|y|)
g(|y|)p(y) ≤ (g(k) + 1)2−g(k).

Proof. By the numerosity condition the total probability of sequences in Y ∩ Vg(k) is at

most 2−g(k), that of sequences in Y ∩Vg(k)+1 at most 2−g(k)−1, etc. Hence the above sum
is at most

g(k)2−g(k)−1 + (g(k) + 1)2−g(k)−2 + ... = (g(k) + 1)2−g(k). 2

Theorem 10. For any recursive distribution p and any z ∈ X∞, z is S-random relative
to p iff p is weakly optimal for z.

Proof. The proof parallels that of Th. 5.
⇒: Suppose that p is not weakly optimal for z, i.e., there is a recursive distribution p′

and a growth function g such that lim supn[rp
′(z(n)) − rp(z(n))]/g(n) > 0. The test V

is defined as in Th. 5, and its required properties established as before. Thus ∃c > 0:
for infinitely many n: log p′(z(n))− log p(z(n)) > cg(n), and hence for infinitely many n:
mV (z(n))/g(n) > 0. Since mV is recursive, this implies that z is not S-random relative
to p.

⇐: Suppose that V is a M-L test for p such that for some recursive lower bound f of
mV and some growth function g, lim supn f(z(n))/g(n) > 1.

From this point on the situation is more complicated than in Th. 5, because limn q(x, n)
need not be recursive, even with f replacing mV in the definition of q. The limit opera-
tion must somehow be cut short, without violating (sub-) additivity.

Let p′(x) = p1(x) + p2(x) + p3(x) for all x ∈ X∗, where p1, p2, and p3 are defined
recursively as follows:

p1(Λ) = 0, p2(Λ) = (g(1) + 1)2−g(1), p3(Λ) = 1− p2(Λ),
and for all u ∈ X and x ∈ X∗

p1(xu) = maxpf Y⊆xu(X∗−Xk−|x|−1X∗)

∑
y∈Y

f(y)≥g(|y|)
g(|y|)p(y),

p2(xu) = (g(k) + 1)2−g(k), and
p3(xu) = p3(x)/2− (g(k) + 1)2−g(k) + [p1(x) + p2(x)− p1(x0)− p1(x1)]/2,

where k = least integer ≥ |x|+ 2 such that (g(k) + 1)2−g(k) < p3(x)/2. p
′ will be shown

to be a recursive distribution, assuming without loss of generality that g(n) ≥ 2 for all
n ∈ N .

The properties p′(Λ) = 1, additivity, and recursiveness are easily verified assuming
that a suitable k exists for each x ∈ X∗. To prove the correctness of the latter assumption
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by induction, assume that for all x of length l or less

(a) p1(x), p2(x), and p3(x) are well-defined; and
(b) p3(x) > 0.

Consider any particular x of length l. Denote the corresponding value of k by k′ (if
x = Λ, use k′ = 1). Since g is a growth function, (g(k) + 1)2−g(k) → 0 as k → ∞. Also
p3(x) > 0, hence the new value of k required in the definition of p′(xu), u ∈ X, exists.
Denote it by k′′. Thus p1(xu), p2(xu), and p3(xu) are well-defined. From the definition
of p3, observe that p3(xu) > 0 if p1(x) + p2(x) ≥ p1(x0) + p1(x1). But

p1(x0) + p1(x1)

= max
pf Y⊆ xX(X∗−Xk′′−|x−1X∗)

∑
y∈Y

f(y)≥g(|y|)

g(|y|)p(y)

≤ max
finite pf ⊆ xX∗

∑
y∈Y

f(y)≥g(|y|)

g(|y|)p(y)

≤ max
pf Y⊆ x(X∗−Xk′−|x|X∗)

∑
y∈Y

f(y)≥g(|y|)

g(|y|)p(y)

+ max
finite pf ⊆ xXk′−|x|X∗

∑
y∈Y

f(y)≥g(|y|)

g(|y|)p(y)

≤ p1(x) + (g(k′) + 1)2−g(k′) by Lemma 2

= p1(x) + p2(x),

so that the inductive step is complete. The induction starts at l = 0. In this case (a)
certainly holds and p3(Λ) ≥ 1/4, since g(1) ≥ 2 by assumption.

Now the definition of p1 ensures that p′(x) ≥ g(|x|)p(x) whenever f(x) ≥ g(|x|). But
f(z(n)) > g(n) for infinitely many n, hence p′(z(n)) ≥ g(n)p(z(n)) for infinitely many
n, i.e., lim supn[rp

′(z(n)) − rp(z(n))]/log g(n) ≥ 1, so that p is not weakly optimal for
z. 2

In conformity with Schnorr’s notion of effectively observable growth, a sequence
z ∈ X∞ is defined to be predictable iff there exists a recursive predictor p and a growth
function g such that lim supn rp(z(n))/g(n) > 0; i.e., the redundancy of z grows “not-
icably”. Note that p may as well be taken to be a recursive distribution, by Th. 1(b).
Also, since (p(x) + 2−|x|)/2 defines a positive recursive distribution, p(x) may be taken
to be positive for all x ∈ X∗. This leads to the following

Corollary. A sequence z ∈ X∞ is S-random iff it is not predictable.

Proof. Let p in Th. 10 be the uniform distribution. 2

An alternative proof of the corollary is easily obtained from one of Schnorr’s (1971) re-
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sults about martingales. Such a proof is given below, partly because of the significance of
the corollary and partly because of the inherent interest of Schnorr’s result. Martingales
(first used by Ville, 1939) describe the capital of a gambler who bets on the occurrence
of 0 and 1 as next digit in a sequence and subsequently wins the amount wagered on the
digit which actually follows and loses the amount wagered on its complement. Formally,
a martingale is a total function f : X∗ → IR+ such that f(x) = (f(x0) + f(x1))/2 for
all x ∈ X∗. Schnorr showed that a sequence z ∈ X∞ is S-random iff there does not exist
a recursive martingale f and a growth function g such that lim supn f(z(n))/g(n) > 0.
Again this embodies the previous notion of effectively observable growth, in this case of
the gambler’s capital.

Alternative proof of corollary. ⇒: Suppose that there is a positive recursive distribution
p and a growth function g such that lim supn rp(z(n))/g(n) > 0. Then f defined by
f(x) = 2|x|p(x) for all x ∈ X∗ is a recursive martingale and lim supn f(z(n))/2

g(n) =
lim supn 2

rp(z(n))/2g(n) > 0. Hence z is not S-random.

⇐: Suppose that there is a recursive martingale f and a growth function g such
that lim supn f(z(n))/g(n) > 1. Then p defined by p(x) = 2−|x|f(x)/f(Λ) for all
x ∈ X∗ is a recursive distribution and lim supn rp(z(n))/ log g(n) = lim supn(log f(x)−
log f(Λ))/ log g(n) > 0. Hence z is predictable. 2

It is tempting, in view of Ths. 5 & 10, to identify optimal methods of prediction with
“rational” methods of prediction, i.e., to stipulate as a general requirement for any “ra-
tional” method of probabilistic prediction that any sequence of observations to which the
method is applied should appear to behave randomly relative to the probability assign-
ments of the method. This seems to be Levin’s view (Zvonkin & Levin, 1970, and Levin,
1973, 1976), since he identifies the probabilities of the optimal semicomputable measure
with intuitive prior probabilities. However, this requirement is surely too strong, since
no universal (and hence no generally optimal or weakly optimal) computable predictor
exists; i.e., no predictive method exists which is both effective and “rational” in so strong
a sense.

Therefore it seems appropriate to admit as “rational” those methods of prediction
relative to which any sequence passes some, but not necessarily all, tests for randomness.
In particular, it may be sufficient to require all sequences to satisfy a law of large num-
bers relative to the predictive method. Then it becomes possible to construct effective
methods of prediction which are “rational”.

Th. 10 is thus best viewed as providing a method for comparing “rational” predictors
as to their predictive “power”: a predictor is powerful to the extent that sequences pass
a variety of randomness tests (in addition to those criterial to “rationality”) relative to
the pedictor. The second part of the proof of Th. 10 also indicates how a predictive
method might be improved if a sequence is known which does not pass some randomness
test relative to the method.

What kind of law of large numbers can be formulated relative to an arbitrary recursive
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predictor? The law should express that the frequencies of the predicted events conform
with the probabilities assigned to them. Specifically, the frequency of occurrence of
events which are assigned conditional probabilities within some particular interval should
lie in that same interval. The next theorem shows that this law is satisfied by relatively
S-random sequences.

First a rational-computable distribution is defined as one whose values are rational
numbers which can be found uniformly effectively for all arguments. Note that if p
is a recursive distribution then there is a rational-computable approximation p′ to p
which attributes the same redundancy as p to all x ∈ X∗, apart from a constant. p′(x)
need only lie within distance 2−|x|p(x) of p(x) for all x ∈ X∗; this guarantees that
ln p(x) − ln p′(x) < 2 for all x ∈ X∗. Hence if p is weakly optimal for a sequence, so
is p′. Thus the restriction to rational-computable distributions in the following theorem
detracts little from its interest. It is assumed that an assertion in square brackets has
numerical value 1 if the assertion is true and value 0 otherwise.

Theorem 11. Let p be a rational-computable distribution which is weakly optimal for
some z ∈ X∞. Let r, s be rational numbers such that .5 < r ≤ s < 1 and

lim infn
∑n

i=0

∑
w∈X [r ≤ p(z(i))w)/p(z(i)) ≤ s]/g(n) > 0

for some growth function g, i.e., the frequency of next-digit predictions with probabilities
in [r, s] is nonnegligible. Then the proportion of confirmed predictions with probabilities
in this range satisfies

lim{ infn
supn

}
∑n

i=1[r ≤ p(z(i+ 1))/p(z(i)) ≤ s]∑n
i=0

∑
y∈X [r ≤ p(z(i)y)/p(z(i)) ≤ s]

{ ≥ r
≤ s

}.

Proof. In view of Th. 10 one might attempt a proof by formulating a suitable M-L test
for p. Instead the following argument proceeds directly from the assumption that p is
weakly optimal for z.

Suppose contrary to the theorem that the lim inf of the above ratio < r− a for some
real a > 0. As before let x− denote the sequence obtained by changing the last digit of
x ∈ XX∗ to its complement. Let b be any rational number such that 0 < b < a, and
define p′ by

p′(Λ) = 1 and for all x ∈ X∗, u ∈ X

p′(xu)/p′(x) = p(xu)/p(x)− b if p(xu)/p(x) ∈ [r, s],
p′(xu)/p′(x) = p(xu)/p(x) + b if p(xu−)/p(x) ∈ [r, s],
p′(xu)/p′(x) = p(xu)/p(x) otherwise,

where any occurrences of 0/0 are replaced by 0. Clearly p′ is a recursive distribution
(note that p(xu)/p(x) ∈ [r, s] is decidable if p is rational-computable).

By supposition, for infinitely many n ∈ N : ∃k, l ∈ N :
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k =
∑n−1

i=0 [r ≤ p(z(i+ 1))/p(z(i)) ≤ s],

l =
∑n−1

i=0 [r ≤ p(z(i+ 1)!13)/p(z(i)) ≤ s] > 0, and

k/(k + l) < r − a.

For any such n denote the k values of p(z(i + 1))/p(z(i)) in [r, s] by p1, ..., pk and the l
values of p(z(i+1))/p(z(i)) in [1−s, 1−r] by q1, ..., ql (observe that p(z(i+1))/p(z(i)) ∈
[1 − s, 1 − r] iff p(z(i + 1)!13)/p(z(i)) ∈ [r, s]). The corresponding values of p′(z(i +
1))/p′(z(i)) are p1 − b, ..., pk − b and q1 + b, ..., ql + b respectively. Since the conditional
probabilities of the digits of z determined by p and p′ for i ≤ n are otherwise identical
and nonzero,

ln p′(z(n)− ln p(z(n))

>
k∑

i=1

b

pi − b
+

l∑
i=1

b

qi + b

≥ − kb

r − b
+

lb

1− r + b
= b

(k + l)(r − b)− k

(r − b)(1− r + b)

> b
(k + 1)(a− b)

(r − b)(1− r + b)
since (k + 1)r − k > (k + 1)a.

But k + l, as a function of n, is bounded below by g(n) times some constant for all
sufficiently large n, hence

lim supn[rp
′(z(n))− rp(z(n))]/g(n) > 0,

in contradiction with the assumption that p is weakly optimal for z. The proof of the
second part of the theorem is entirely analogous to that of the first. 2

It may be possible to strengthen the theorem in various ways, for example by spec-
ifying the rate of convergence towards the two limits (more precisely, by specifying the
critical levels associated with deviations of the proportion of confirmed predictions from
lower bound r or upper bound s). It may also be possible to formulate the theorem so
as to apply to arbitrary subsequences extracted from infinite sequences by application
of recursive selection rules, or to apply to prediction of more general types of events,
such as arbitrary cylinder sets of sequences. However, the theorem in its present form
sufficiently illustrates the conformity between the predictions of an optimal predictor
and the occurrences of the predicted events.

5. Solomonoff Predictors

In this section incrementable predictors will be related to one of the classes of sequence
predictors proposed by Solomonoff (1964) in his pioneering work on inductive inference
for infinite sequences (see also Willis, 1970, Zvonkin & Levin, 1970, Chaitin, 1975, Cover,
1974, Leung-Yan-Cheong & Cover, 1975, and Solomonoff, 1976 for closely related stud-
ies).
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Actually Solomonoff considered four methods of predicting sequences probabilisti-
cally. In the first three methods the probability p(y) of a sequence y ∈ X∗ is obtained
by summing terms of the type 2−|x|, where x is an encoding or program from which y
can be generated on a fixed machine. This formalizes the intuitive idea that the highest
prior probability should go to sequences with short and/or numerous encodings. The
three methods differ in the types of machines considered and in other relatively minor
respects. Solomonoff conjectures that they are essentially equivalent.

Here a machine-independent formulation of Solomonoff’s second method will be used.
The formulation is based on Schnorr’s notion of a process (or monotone function defined
as a partial recursive function f : X∗ → X∗ such that f(x) ⊑ f(xy) for all x, xy in
the domain of f (Schnorr, 1971, 1973; also Zvonkin & Levin, 1970). Thus processes
map extensions of inputs into extensions of outputs. x is said to be an encoding of y
relative to process f , abbreviated as f(x)−>y, whenever f maps x, but no proper prefix
of x, into an extension of y. In symbols, f(x)−>y iff x ∈ f−1(yX∗)− f−1(yX∗)XX∗. A
Solomonoff predictor is now defined as a function p : X∗ → R such that for some process
f

p(y) =
∑

f(x)−>y

2−|x| for all y ∈ X∗,

where a sum over no terms is 0, as before. The symbol pf denotes the Solomonoff
predictor determined by any process f . The notation σS will be used as an abbreviation
for

∑
x∈S 2−|x|.

Thus pf (y) = σ{x|f(x)−>y}. Note that for any pf set S ⊂ X∗, µSX∞ = σS, where
µ is the uniform measure on X∞.

The equivalence of Solomonoff predictors and incrementable predictors will now be
established. Thus in considering methods of probabilistic sequence prediction, one can
in principle restrict attention to methods which attribute high probability to sequences
with short and/or numerous encodings, just as Solomonoff suggested.

In the following it will sometimes be helpful to think of any set S ⊆X* as a set of
nodes of a binary tree rooted at Λ, with a pf set containing leaf nodes only. At other
times it will be useful to think of a sequence x = x1x2...xn (xi ∈ X) as the real interval

[
∑n

i=1 xi2
−i ,

∑n
i=1 xi2

−i + 2−n),

i.e., the least interval containing all numbers in B whose (finite) radix-2 representation
begins with x. Then pf sets of sequences correspond to sets of disjoint intervals, and
extensions of sequences correspond to subintervals.

Theorem 12 (Levin). A function p : X∗ → R is an incrementable predictor iff it is a
Solomonoff predictor.

Proof. ⇐: For any y ∈ X∗, sequences mapped by a process f into extensions of y0 or
y1 are certainly mapped into extensions of y. Hence pf (y0) + pf (y1) ≤ pf (y) ≤ 1. pf
is incrementable because f is re and for any finite process f ′ ⊆ f , pf ′(y) is rational and
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≤ pf (y) for all y ∈ X∗.

⇒: As previously indicated2, the ranges of the functions underlying incrementable pre-
dictors might equally well have been confined to B (instead of Q). Also, by Lemma 1
the function h underlying an incrementable predictor can be chosen to be subadditive,
i.e., h(y, n) ≥ h(y0, n)+h(y1, n) for all y ∈ X∗, n ∈ N . The elements of a process f such
that pf = p can now be generated as follows. At stage n of the generation procedure
a finite set of elements is added to the process for each y of length 0, 1, ..., n (in that
order), so as to increase the Solomonoff probability of y from h(y, n−1) to h(y, n). Each
new element ⟨x, y⟩ added to the process is chosen so that no extension of x is as yet
in the domain of the process, and x properly extends some x′ where ⟨x′, y(|y| − 1)⟩ was
added to the process earlier (the latter condition is omitted for y = Λ). The required sets
of additions to increase the Solomonoff probabilities of y0 and y1 from h(y0, n− 1) and
h(y1, n−1) to h(y0, n) and h(y1, n) respectively always exist because of the subadditivity
of h (a detailed argument using induction on n and |y| is easily supplied). The sets are
always finite because the required probability increments are in B. The construction is
illustrated in Fig. 1, using the interval representation of certain sequences in the domain
of the process being constructed. 2

0 1
| | | | | | | | |

0 11
|.......................| |...........|

01 110
|***********| |*****|

010 0111 1100 1101
|-----| |==| |==|==|

Graphical symbolism:

|.....| mapped into proper prefixes of y
|*****| mapped into y
|-----| mapped into y0
|=====| mapped into y1

Fig. 1. Construction of process f corresponding to given incrementable predictor. At the
point shown pf (y) = 3/8, pf (y0) = 1/8, pf (y1) = 3/16.

A process f is said to be universal iff for every process f ′ : ∃x ∈ X∗ : λy f(xy) = f ′.
Levin (in Zvonkin & Levin, 1970) and also Schnorr (1973) proved the existence of a
universal process.

Corollary. If f is a universal process then pf is an optimal universal predictor.

Proof. Let p be an optimal universal predictor and f ′ a process such that pf ′ = p. Then
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∃x ∈ X∗ : λy f(xy) = f ′. Hence

pf ′(z) = σ{y| f(xy)−>z} = 2|x|σ{xy|f(xy)−>z} ≤ 2|x|pf (z)

for all z ∈ X∗, and the corollary follows.2

An optimal Solomonoff predictor, as defined in the corollary, is not quite the same as
Cover’s universal prediction scheme (Cover, 1974). Cover’s scheme could be obtained by
retaining only certain terms of pf , namely those contributed by encodings x such that x
is the shortest argument for which f assumes value f(x). Optimal Solomonoff predictors
do appear to be essentially the same as Solomonoff’s own measures P ′

M (Solomonoff,
1976) apart from the normalization term employed by Solomonoff. To prove this one
would have to relate processes to Solomonoff’s computational model, which permits finite
and infinite inputs and outputs, as well as finite outputs generated by nonterminating
computations.

Willis (1970) called a distribution p binary-computable iff it is a recursive mapping
into B. As in the case of rational-computable distributions it is easily seen that any
recursive distribution p can be approximated by a binary-computable distribution which
attributes the same redundancy as p to all x ∈ X∗, apart from an arbitrarily small
constant.

A class of processes will now be characterized which corresponds to the class of
binary-computable distributions. This leads to a machine-independent formulation of
one of Willis’ main results (a closely related result is proved in Zvonkin & Levin, 1970).

A process f is called endless iff the set f(z(n)|n ∈ N) is infinite for every z ∈ X∞.

Theorem 13. p is a binary-computable distribution iff there is an endless process f
such that p = pf .

Proof. ⇒: A procedure for generating a process can be used, similar to that in the proof
of Th. 12. Corresponding to each y of length 0, 1, 2, ... (considered in that order), a set
of elements is added to the process such that the Solomonoff probability of y becomes
p(y). Because of the distribution property, i.e., p(y) = p(y0) + p(y1), the construction
of f and the proof that pf = p present no difficulty. Now clearly the minimal length
of sequences in the successive subdomains f−1(Λ), f−1(X), ... , f−1(Xn), ... is strictly
increasing as a function of n, and X∞ = f−1(Λ)X∞ = f−1(X)X∞ = ... . Hence f is
endless.

⇐: For a given endless process f , p(y) can be computed for any y ∈ X∗ by enumerating
elements of f until a finite subprocess f ′ ⊆ f is obtained such that∑

|x|=|y| pf ′(x) =
∑

|x|=|y| pf (x) = 1.

At that point pf (y) will be available as a finite sum of nonpositive powers of 2. To see
that the required f ′ always exists, note first that f−1(y) is finite for all y. For if it were
not for some y, then by König’s infinity lemma (see e.g., Knuth, 1968) there would be
an infinite sequence z all of whose prefixes have extensions in f−1(y). Hence by the
definition of an endless process there would be an infinite set of prefixes of z mapped by
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f onto an infinite set of output sequences. But prefixes of z can only be mapped into
the finite set of prefixes of y (by the process property); thus f−1({y}) cannot be infinite.
It follows that for any sufficiently large n, no element of XnX∗ ∩ dom f will be mapped
into sequences of length ≤ |y|. But since dom f contains arbitrarily long prefixes of every
infinite sequence, hence (XnX∗∩ dom f)X∞ = X∞ for all n ∈ N . Thus the Solomonoff
probability of the sequences generated by f on this subdomain is 1, and for n sufficiently
large these sequences are all of length ≥ |y|. Furthermore, the set XnX∗ ∩ dom f ,
made pf by removal of sequences which properly extend other sequences in the set, is
finite; otherwise there would be a z ∈ X∞ none of whose prefixes are in the set, again
by König’s lemma. Thus the subprocess f ′ ⊆ f with pf subdomain XnX∗ ∩ dom f and
with n sufficiently large possesses the required properties. 2

Corollary 1. p is a binary-computable distribution iff there exists an endless recursive
process f such that p = pf .

Proof. It need only be shown that for every endless process f there exists an endless
recursive process f ′ such that pf ′ = pf . Such an f ′ is easily obtained by a slight modifi-
cation of the process construction mentioned in the first part of the proof of Th. 13 (the
construction is applicable because pf is a binary-computable distribution). In addition
to the process elements generated in that construction, ⟨x, y⟩ is added to the process
whenever ⟨x0, yu⟩ and ⟨x1, yv⟩ have previously been added, where {u, v} ⊆ X. These
additions do not affect the Solomonoff probabilities, and are easily seen to extend the
domain of the process to X∗. 2

Willis also showed that if p is a binary computable distribution then there is a ma-
chine (of the type he considered) whose shortest encoding for any output sequence y
determines the highest-order digit of p(y). Relative to certain machines, therefore, se-
quence prediction on the basis of the shortest encoding is nearly as accurate as prediction
on the basis of all encodings.9

An analogous but somewhat stronger result can be proved to the effect that a process
exists corresponding to p in which each digit of p(y) is determined by exactly one encoding
of y. To do so, however, the notion of encoding used so far needs to be modified, as
Willis’ result would be patently false on the basis of that notion. For consider the
predictor p(1n) = 1 for all n ∈ N , all other values being zero. Although a process
f can be constructed such that min{x| f(x)−> 1n} grows arbitrarily slowly with n, this
minimum must nevertheless grow unboundedly and hence the fractional contribution of
any minimal encoding of 1n to pf (1

n) must approach 0 as n → ∞.

This difficulty in reformulating Willis’ result disappears if the following “liberalized”
notion of encoding is used. x is said to be a reduced encoding of y (symbolically, f(x)−≫y),
iff there is a finite pf S ⊂ X∗ such that σS = 1 and f(xS) ⊂ yX∗, and no such S exists

9Solomonoff, Willis, and Chaitin have all commented on the relationship between sequence prediction
and “scientific” prediction. Willis’ result about the efficacy of the shortest encoding seems related to the
efficacy of the simplest (shortest) theory in scientific prediction.
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for any proper prefix of x.10 This is still a reasonable notion of encoding, since it is
possible to generate y given |y| and a reduced encoding of y. Furthermore, encodings
could be replaced by reduced encodings in the definition of Solomonoff probabilities, i.e.,

σ{x| f(x)−≫ y} = σ{x| f(x)−>y} = pf (y).

In the following corollary “∃1” denotes “there exists exactly one”.

Corollary 2. p is a binary computable distribution iff there exists an endless recursive
process f such that for all y ∈ X∗

p(y) = pf (y) =
∑∞

n=0[∃1x : |x| = n & f(x)−≫y]2−n.

Proof. Again only a slight modification of the construction in the first part of Th. 13
is needed. The modification ensures that the “intervals” chosen for f−1({y0, y1}) (see
Fig. 1) finitely partition the “intervals” previously chosen for f−1({y}) in such a way that
to each digit of p(y0) or p(y1) contributing 2−i to the probability, there corresponds a set
of adjacent intervals whose union represents some i-sequence. That such a partitioning
always exists can be proved by induction on |y|. 2

6. Concluding Remarks

It has been shown that the notion of a predictor provides a common basis for the study of
randomness and the study of probabilistic sequence prediction. The random sequences
are those which are irredundant with respect to all effective predictors, and all effective
predictors are obtained by assigning high probabilities to sequences with short and/or
numerous encodings with respect to some effective process. It was also suggested that
a minimal constraint on any “rational” method of prediction is that all sequences obey
a law of large numbers relative to it, while the requirement that all sequences should
appear to behave randomly relative to it is too strong.

A new proof of the existence of an optimal incrementable predictor was given. The
fact that this predictor is not computable detracts from its “practical” interest. Perhaps
more interesting than the optimal predictor itself is its method of construction. Since
this is based on the recursive enumerability of the class of predictors under considera-
tion, a similar construction is possible for more restricted classes of predictors, e.g., the
predictors derived from the primitive recursive functions. Thus there will be predictors
which are optimal within “practical” classes of functions, whenever the weighted sum of
predictors stays within the class under consideration. It should not be hard to prove (or
ensure) that such predictors are also “rational”.

An open question is whether a process can be found corresponding to any incre-
mentable predictor p such that the highest-order digit of p(x), x ∈ X∗, is determined
by the shortest reduced encoding of x relative to the process. An affirmative answer

10A correspondence can be established between processes and Willis’ concrete model of computation
(Willis, 1970) such that “f(x)−≫ y” becomes equivalent to “x is an |x|-program for y”.
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would give the analogue of Th. 13, Cor. 2 for incrementable predictors. Another set
of questions concerns the classification of randomness tests according to the growth in
redundancy of sequences rejected by such tests. Such a classification should be easily
obtainable from Schnorr’s classification of randomness tests according to the growth of
martingales (Schnorr, 1971b). An entirely different set of questions arises if the difficulty
of predicting sequences which are predictable to some degree is investigated. Some of
Schnorr’s (1971b) work on complexity-based degrees of randomness pertains to these
questions.
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