
CSC 244/444 Lecture Notes Sept. 19, 2023

Validity and Entailment

Entailment (also called logical consequence or log-
ical implication) guarantees the truth of a conclu-
sion, relative to a set of true premises; as such
it provides a semantic basis for judging whether
proposed inference rules are sound

Examples of truth in a model

Consider a model M = {D, I} for a first-order language that contains individual con-
stants A, B, unary predicates P and Q, and variables x, y. Suppose that D = {a, b}
(where we’re using a, b are metalinguistic names for two distinct entities), and

AI = a
BI = b
PI = {a, b} (we could also write {⟨a⟩ , ⟨b⟩ })
QI = {a}

Example 1

Is M a model of (∀x P(x))? (I.e., |=M (∀x P(x)) ?)

To answer this we must check if |=M (∀x P(x)) [U ] for all variable assignments U (mapping
x and y to elements of {a, b}). We’ll write

Ux:δ

to denote the variable assignment that is just like U except that it assigns x the value
δ. (Here δ is a metalinguistic variable that ranges over the individuals we’re referring
to by a and b. We could have used Latin letter d, as we do elsewhere, but here this
might lead to confusion, suggesting that d stands for some individual other than a or b.)
Consider any particular U . (Note: there are only 4 possible choices here, since there are
two possible values for each of x, y.)

|=M (∀x P(x)) [U ] iff for all δ ∈ D (= {a, b}), |=M P(x) [Ux:δ].
Checking the first possibility, δ = a:
|=M P(x) [Ux:a] iff a ∈ {a, b}, which is true.
|=M P(x) [Ux:b is similarly true since b ∈ {a, b}.

Note that the choice of U didn’t matter, so this is true for all U , so that we have shown
|=M (∀x P(x)).
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Example 2

Now consider whether M is a model of (∃x Q(x)). In this case, we require that for all
variable assignments U , there must be some δ ∈ {a, b} such that

|=M Q(x) [Ux:δ].

But this is clearly so for the choice δ = a, given that QI = {a}.

N.B.: Obviously we also have (∃x P(x)) true in M. In fact, since we always assume
a nonempty domain D, the truth of (∀x P(x)) always assures the truth of (∃x P(x)),
regardless of the interpretation I.

Example 3

Finally, consider whether (∀x (Q(x) ⇒ P(x))) is true in M. We require that for all
variable assignments U ,

|=M (Q(x) ⇒ P(x)) [Ux:δ] for all δ ∈ {a, b}.
For the choice δ = a, we thus require
|=/M Q(x) [Ux:a] or |=M P(x) [Ux:a]
The latter condition is true, since a ∈ PI = {a, b}.
For the choice δ = b we similarly require
|=/M Q(x) [Ux:b] or |=M P(x) [Ux:b]
and the former condition is true since b /∈ {a}.

Thus (∀x (Q(x) ⇒ P(x))) is true in M.

Note that the formula would be true in M even if nothing had property Q, i.e., QI

= {}. For instance if we think of the formula as saying “All Martians are green”, then
this will be judged true in any model in which there are no Martians. In English, saying
“All Q are P” carries a strong implicature that there are some Q’s. Still, we can get
away with saying (without genuine contradiction),

All Martians are green, for the simple reason that there are no Martians.

Note also that while “All Q are P” allows for the possibility that there are no Q’s, the
situation is different for “Some Q is P” (e.g., “Some Martians are green”). In fact, the
logical form here is

(∃x (Q(x) ∧ P(x))),

i.e., we have a conjunction, not a conditional. So here some Q must exist, and in addition
it must have property P.

Validity (Logical Truth) and (Un)satisfiability

While truth in general is relative to a model, some formulas are true in all models.
Examples are
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P(C)∨¬P(C), (∀x (x = x)), P(C)⇔¬¬P(C).

In fact we can generalize to whole classes of such formulas, e.g., writing ϕ for an arbitrary
formula and ν for an arbitrary variable,

ϕ ∨ ¬ϕ, (∀ν(ν = ν)), ϕ ⇔ ¬¬ϕ

are examples of formulas (more accurately, formula schemas) that are true in all models.
Such formulas are called valid, or logically true, and we write

|= ϕ

to say that |=M ϕ for all models M.

Example

Consider (ϕ ∨ ¬ϕ). To show that |= (ϕ ∨ ¬ϕ), we need to show that for any model M,
|=M (ϕ∨¬ϕ). This in turn requires that we show that for any model M and any variable
assignment U ,

|=M (ϕ ∨ ¬ϕ) [U ].

But by the satisfaction conditions for “∨”, this is true iff

|=M ϕ [U ] or |=M ¬ϕ [U ].

By the satisfaction conditions for “¬”, this is true iff

|=M ϕ [U ] or |=/M ϕ [U ],

which is obviously true.

Logicians are very interested in valid formulas, since these are true in virtue of logic
alone, without regard for the domain of discourse and the interpretations of the constants
of a first-order language. In that sense the valid formulas characterize the logic. More-
over, we would like to have logical axioms (or axiom schemas) and rules of inference so
that every valid formula is either an axiom (instance of an axiom schema) or is deducible
as a theorem of the logic.

At the other extreme we have logically false, or unsatisfiable formulas, i.e., ones with
no models. Note that we cannot simply write |=/ϕ to say that ϕ is unsatisfiable, if
the “slash” just means negation. After all, a formula can perfectly well not be true in
all models, yet be true in some models. Such formulas are called contingent formulas;
examples are

P(A), Loves(Bob,Alice), ¬Loves(Bob,Alice), (∀x (P(x) ⇒Q(x))),

etc. So, to express that a formula is unsatisfiable (logically false), we either use no special
notation (just the word “unsatisfiable”), or we say that the negation of the formula is
valid:

|= ¬ϕ.
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Formulas that have some models – this covers the valid as well as the contingent formulas
– are called satisfiable. Admittedly the terminology of “satisfiable” and “unsatisfiable”
formulas is a little misleading, given that the notion of “satisfaction” as defined earlier
involved a variable assignment, as well as a model. However, it is easy to see that a
formula has a model (is satifiable) iff there is a model and a variable assignment such
that the model and variable assignment satisfy the formula (in the previously defined
sense).

Entailment (logical consequence)

From a KRR (knowledge representation and reasoning) perspective, we are more inter-
ested in what is true in those models that are compatible with the facts in the knowledge
base (the nonlogical axioms, or world knowledge), rather than all models, without regard
for the world.

For this, we define a notion closely related to validity, namely entailment (or logical
consequence). First, we generalize the notion of M being a model of a formula ϕ (ϕ
being true in M) to apply to a set of formulas ∆:

|=M∆ (M is a model of ∆) iff for all ϕ ∈ ∆, |=M ϕ.

What we are interested in, given some true statements ∆ about a world, is what
additional true statements we can make about that world. In such a case, we say that
the latter statements are logical consequences of (or entailed by) the given statements ∆.
Formally we write

∆ |= ϕ (∆ entails ϕ, ϕ is a logical consequence of ∆)

iff

for all models M such that |=M∆, |=M ϕ.

In other words, whenever all formulas in ∆ are true in M, so is ϕ.

We can extend the notion satisfiability or unsatisfiability to a set of sentences ∆ in
an obvious way:

∆ is satisfiable iff there is a model M such that |=M∆;

otherwise ∆ is unsatisfiable. Note that for unsatisfiable ∆, we have

∆ |= ϕ

for any formula ϕ, since it is certainly true that all models of ∆ – of which there are
none – are models of ϕ! So from unsatisfiable premises, “everything follows”.
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