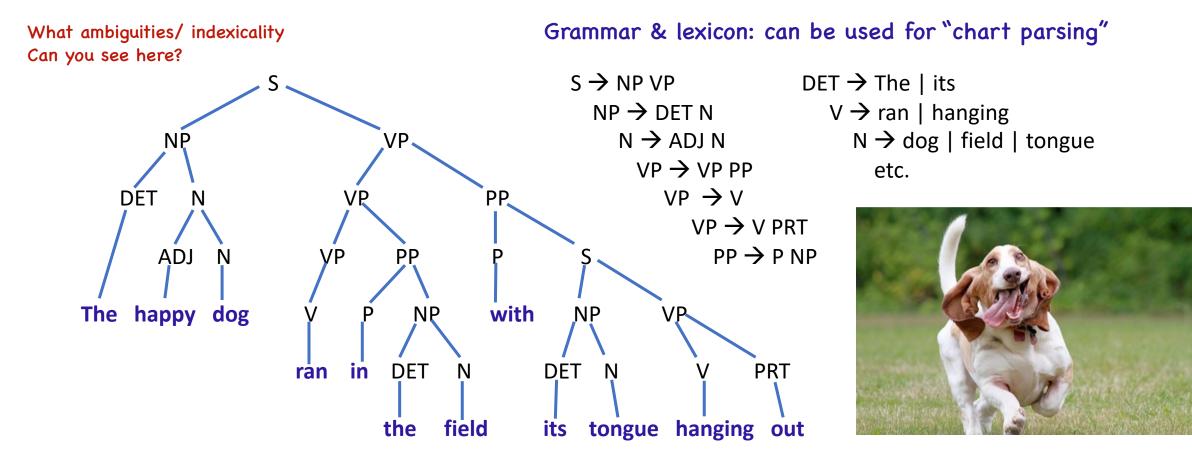
Natural Language Understanding (NLU) by Machines

See also the lecture notes on NLP


Relevance to consciousness of an intelligent agent:

- NL allows us to pass on knowledge, to coordinate activities, to explain our beliefs, desires, intentions, plans, perceptions, and thinking; as such NL understanding and communication are a key part of human intelligence.
- We have "inner speech", and are at times conscious of it, and can externalize it.
- While we presume that monkeys, dogs, etc., are conscious, they clearly don't have the same degree of self-awareness as humans, in the sense of being able to access and make use of a self-model, including episodic (autobiographical) memory, plans for the future, and world knowledge, let alone express such awareness in language.
- So, human-like consciousness in machines seems to require language (as we'll see, this is a rather common view in the philosophy and cognitive science of consciousness)

See my comments (in the lecture notes online) on McDermott's discussion of language. In his Ch. 2 about several subfields of AI.

- good discussion of speech signal processing (though out of date now)
- good discussion of some of the difficulties in processing language (e.g., ambiguity)
- fails to recognize the remarkable *semantic* uniformity of human languages
 (<=> FOL, plus general quantification, modification, reification, temporal reference)

Language structure: Context-free grammar

The semantic categories we find here (as in FOL, + some more)

- entities (the happy dog, the field, its tongue);
- predicates (dog, field, tongue, in, with, ran, hang-out;
- predicate modifiers (happy, in the field, with its tongue hanging out)

We could add more, e.g., General quantifiers ("very few dogs"), reification ("happiness", "dog breeding", "beauty")

Semantic interpretation (very simple example)

S	<u>Phrasal rules:</u>	<u>Semantic (logical form) rules:</u>
	VP> V NP	VP' = (V' NP') The rules "compose" the parts,
NP ₁ VP	S> NP VP	S' = (VP' NP') with lambda-conversion where
	Lexicon:	possible
Romeo V NP2	Romeo: NP	NP' = Romeo1
	Juliet: NP	NP' = Juliet1
loves Juliet	loves: V	V′ = (lambda y (lambda x (love x y)))

Perform "bottom-up" semantic interpretation

- $NP_1' = Romeo1$
- V' = (lambda y (lambda x (love x y)))
- NP₂' = Juliet1
- VP' = (V' NP₂') = (lambda y (lambda x (love x y)))(Juliet1) = (lambda x (love x Juliet1))
- S' = (VP' NP₁') = (lambda x (love x Juliet1))(Romeo1) = (love Romeo1 Juliet1)

These glimpses of syntax, parsing, and semantic interpretation neglect

- Resolving word sense ambiguity
- Resolving phrase structure ambiguity
- Determining referents of pronouns, names, and definite noun phrases
- Adding event or situation variables that are tacitly introduced
- Determining the temporal locations of those events or situations, and their relation to previously introduced events
- Determining the rhetorical role of the sentence in relation to the surrounding text
- Determining the speaker's (or writer's) intention in producing this sentence

Some of these problems can be handled with statistical or deep learning techniques; but for deep understanding we require large amounts of knowledge about

- the world (physical, behavioral, mental, abstract, ...), and
- how we use language in various communicative genres (story telling, problem solving, teaching, humor, ...).

We won't have any sort of interesting, human-like self-awareness in machines till they, too, acquire all these sorts of knowledge. For a general discussion of <u>the meaning</u>, <u>significance and methods of NLP</u>, see the lecture notes with that heading on the course pages.