
Lisp -- Quick Intro

- Based on the λ-calculus;
- All data are lists (essentially)

e.g., are eax, sqrt(ax2+by2) functions??
NO, not until you’ve specified what values are fixed,
and which ones are variable!!

A traditional solution is to invent a function name, e.g.,

f(x) = eax, for all real x [so, e and a are fixed constants]
g(e,a) = eax, for all real e > 0, and all real a [x fixed!]
h(x,y) = ax2+by2 for all real x, y [so a, b are fixed]
k(a,b,x,y) = ax2+by2 for all real a, b, x, y [nothing fixed]

The λ-calculus identifies variables without function-naming:

(λ (x) eax), (λ (e,a) eax), (λ (a,b,x,y) (ax2+by2)). (“λ-abstraction”)

This makes it easy to “mix together” ordinary expressions
(denoting numbers or lists) with expressions denoting
functions, as arguments of other functions – very general!

Lisp versions:
(lambda (x) (exp (* a x))), (lambda (e a) (exp (* a x))),
(lambda (x y) (+ (* a x x) (*b y y))), …

John McCarthy

We can still give functions names in both the λ-calculus
and in Lisp. E.g., in the λ-calculus we can define
f =df (λ (x) eax), h =df (λ (x,y) (ax2+by2)), etc.

Then note the equivalences (for fixed e, a, & any c)
f(c) = (λ (x) eax)(c) = eac (“λ-conversion”)

And in Lisp (where ‘exp’ is built-in, = (λ (x) ex)),
(defun f (x) (exp (* a x))),
(defun h (x y) (+ (* a x x) (* b y y))), etc.

Here we likewise have the equivalence
(f c) = (exp (* a x))) = (exp (* a c)) (given a, c).

But it’s good to remember that you can also use lambda
-defined functions directly in code, and apply them to
arguments there.

Moving on to a simple example (“hello”, simply or cleverly):
sbcl
* 'hello
HELLO
* “hello”
“hello”
* (defparameter *name* nil)
* (defun hello ()

(format t "Hello, what’s your first name?~%")
(setq *name* (read))
(format t "Nice to meet you, ~a~%" *name*))

HELLO
* (hello)
Hello, what’s your first name?
Len
Nice to meet you, LEN
NIL ; use (exit) to escape

• Loading a file: e.g.,
(load "myfile.lisp")

• Data types:
- atoms (e.g., 3, -2, 2/3, 3.14, T, NIL, (), :A, :B3,

A, CSC191, \;, JOE, |Joe|, @U.ROCHESTER.EDU,
#\a, #\A, #\Space, #\;, …), “a four-word string”

- lists: NIL, (), (THIS & (THAT (MAKES 6 “words”) ?))
- arrays: (setq A (make-array ’(3 4))
- hash tables: (setq *KB* (make-hash-table :test ’equal))
- structures:
(defstruct coursename time credits room instructor)

• Functions – use
(defun <name> (let (x y z) <body>)) for local variables;
more examples to come

• Basic built-in functions
(setq x ‘(A B C))) ; ‘setf’ is more general
(car x) è A
(cdr x) è (B C) ; the rest of the list, w/o 1st element
(cadr x) è B ; also called (second x)
(setq x (cons ‘(D E) x) è ((D E) A B C); “insert 1st item”

- local & global variables
- loops: e.g., (dolist (x mylist) …),

(dotimes (i 15) …)

Function examples

(defun hypotenuse (base height)
(sqrt (+ (expt base 2) (expt height 2))))

(hypotenuse 3 4) ==> 5.0

(defun atoms-of (lst)
(cond ((null lst) nil)

((atom lst) (list lst))
(t (append (atoms-of (car lst)) (atoms-of (cdr lst))))))

(atoms-of 'a) ==> (A)
(atoms-of '(a b)) ==> (A B)
(atoms-of '((a b) (c (d)))) ==> (A B C D)
(atoms-of '((a "this thing") (#\; (|That Thing|))))

==> (A "this thing" #\; |That Thing|)

Debugging

- I like the following when there's a crash:

backtrace (:dn in acl) ... unwinds the recent function calls

list-locals (:loc in acl) ... prints out the local variables

- use the 'trace' function (give names of functions, without quotes,

as arguments of 'trace')

- locally rename functions, to be able to trace those occurrences;

e.g., suppose you want to see the argument of 'null', and of the

first recursive occurrence of 'atoms-of' above; you could write

(defun atoms-of (lst)

(cond ((null1 lst) nil)

((atom lst) (list lst))

(t (append (atoms-of1 (car lst)) (atoms-of (cdr lst))))))

(defun null1 (x) (null x))

(defun atoms-of1 (x) (atoms-of x))

(trace null1 atoms-of1)

(atoms-of '((a b) (c (d)))) ==>

0[2]: (NULL1 ((A B) (C (D))))

0[2]: returned NIL

0[2]: (ATOMS-OF1 (A B))

1[2]: (NULL1 (A B))

1[2]: returned NIL

1[2]: (ATOMS-OF1 A)

2[2]: (NULL1 A)

etc.

One more example – simple 1-level pattern matching

The following will match a list containing constants and variable

to a list of constants, returning the latter if the match succeeds;

e.g., (match1 ‘(Owns ?x ?y) ‘(Owns Alice Snoopy)) è (OWNS ALICE SNOOPY)

(defun match1 (patt wff)

; patt: a list of atoms

; wff: a list of atoms

; RESULT: If patt matches wff, return wff, o/w return NIL.

(let ((w wff) x y)

(when (or (atom patt) (atom wff))

(format t "~%**ERROR: 'match' wants 2 lists of atoms as ~

arguments,~% got ~a and ~a" patt wff)

(return-from match nil))

(loop (setq x (pop patt) y (pop w))

(if (and (not (var x)) (not (eq x y))); mismatch?

(return-from match nil))

(if (and (null patt) (null w)); for a match, return wff

(return-from match wff)))

)); end of match1

