Index

$\begin{array}{cc} \wedge & 124 \\ \\|A\\| & 124 \end{array}$
$\triangle 124$
Ø 123
$\equiv_{k-t t}^{p} \quad 98,99$
$\geq{ }_{\text {lex }}^{\substack{\text {-tt }}} 82$
$\cap 124$
$\oplus 124$
\|a
$\leq_{f} \quad 21-29,88-91,95,99,101,124$
$\leq_{\gamma} 74,75,115$
$\leq_{k-T}^{p} 100$
$\leq_{k-t t}^{p} \quad 72,73,98,116$
$\leq_{\text {lex }} 82$
$\begin{aligned} & \leq_{m}^{p} \quad 2,4,5,8,29,30,46,61,66,73,74, \\ & 85,105-107,115,117 \end{aligned}$
$\leq_{\text {poly-T }}^{e} 115$
$\leq_{p t t}^{p} \quad 8,85,86,116$
$\leq_{r} \quad 8,61,85,94,117,118,122$
$\leq_{T}^{e} 1115$
$\mathrm{S}_{T}^{p} \quad 2,8,27,42,44,67,68,76,99,115$
$\leq_{T}^{s n} \quad 42,44,116$
$\leq_{t t}^{p} \quad 8,61,62,65-70,94,108,116$
${ }_{-} 124$
$\checkmark 124$
$\checkmark 124$
$\prec 124$
$\cup 124$

Abadi 40
advice $19,20,24,27,28,30-36,39,52$,
$\quad 56,109$
$-\sim$ for nondeterministically selective
\quad sets 32
\sim for P-selective sets 17,20
$-\underset{\sim}{\sim}$ interpreter see interpreter,
\quad advice
Abadi 40
dvice $19,20,24,27,28,30-36,39,52$,
56, 109
~ for nondeterministically selective
\sim for P-selective sets 17,20
advice

- class of \sim interpreters 31
- improvement below linear \sim for recognition of P-selective sets 31
- length-bounded ~ 19
- linear ~ 24, 26, 30, 31,39
- logarithmic ~ 39
- lying ~ 33
- polynomial $\sim 19,39$
- quadratic ~ 30
- recursive ~ 39
- small ~ 3
- strong ~ 35-37

Agrawal 77, 113
algorithm $16,17,24,26,30,47,52,64$, $70,72,86,90,92-94$
$-\sim$ finding the king of a tournament 63

- deterministic polynomial-time $\sim \mathrm{v}$, $1,2,5,29,30,64-66,69,72,89$
- intelligent \sim vi
- linear-exponential-time ~ 27
- nondeterministic polynomial-time ~ 14, 90, 93
- nondeterministic recursive ~ 92
- output of a polynomial-time $\sim \mathrm{v}$
- P-time decoding \sim for advice 23
- polynomial-time membership ~ 2
- recursive \sim v
- semi-membership $\sim \mathrm{s} \quad 2$
- smart ~ vi
- standard brute-force conversion of a nondeterministic \sim to a deterministic ~ 26
- theory of semi-feasible \sim s iii

Allender vii, viii, 58, 59
ambiguity

- polynomial ~ 119

Amir 59
analog

- complexity-theoretic $\sim \mathrm{v}, 1$

- ~ of functions computable via polynomial-time truth-table access to NP 68
- \sim of languages $120,121,123$
- ~ of oracles 121
- ~ of P-selective sets 81
$-\sim$ of sets having interactive proofs 59
- \sim of sets of simple organization 43
- ~ of sets reducible to P-sel 26
$-\sim$ of the form $\mathcal{C} /$ poly 34
- \sim es in the extended low hierarchy 45
- ~es of nondeterministically selective sets 49
- ~es that are not subsets of P/poly 76
- ~es that lack hard P-selective sets 61
- advice ~ 19, 34
- advice upper bounds for reductions to selectivity \sim es 22
- advice upper bounds for selectivity ~es 21
- arbitrary \sim of selector functions 9
- classic low ~es 41
- collapse of \sim es 12 , see collapse
- complement of a ~ 11
- complexity $\sim 3,8,16,19,41,61,62$, $79,116,117,119$
- complexity \sim es near polynomial time 2
- degree of organizational simplicity of selectivity ~es 43
- $\mathrm{EL}_{\Delta_{k}^{p}} \sim \mathrm{es} 58$
- $\mathrm{EL}_{\Sigma_{k}^{p}} \sim$ es 58
- $\mathrm{EL}_{\Theta_{k}^{p}} \sim \mathrm{es} 58$
- equalities and inequalities of reduction and equivalence $\sim \mathrm{es}$ of P-selective sets 103
- equivalence $\sim 8,97,100,124$
- exponential-time complexity $\sim \mathrm{es}$ 16
- first two levels of the high hierarchy are well-known \sim es 42
- function ~es 19, 119, see function, class of
- function analog of ~es 68
- hardness for complexity ~es 61
- high ~ 42
- inclusion properties of nondeterministic advice \sim es 39
- incomparable ~es: P-sel and weakly-P-rankable 110
- $\mathrm{L}_{\Delta_{k}^{p}} \sim$ es 58
- length-based advice ~ 117
- low ~es 43
- lowness ~es 43
- $\mathrm{L}_{\Sigma_{k}^{p}} \sim \mathrm{es} 43,58$
- $\mathrm{L}_{\Theta_{k}^{p}} \sim \mathrm{es} 58$
- membership in nondeterministic \sim es 80
- membership in the complexity $\sim \mathrm{P}$ 1
- nondeterministic function \sim es 9
- nondeterministic selectivity \sim es 9 , 81
- optimal lower bounds for most extended-lowness \sim es 59
- reduction ~ 97
- reduction and equivalence \sim es 94 , 95
- refined advice ~ 20
- refinement of multivalued nondeterministic function \sim es 40
- relationships between nondeterministic selectivity $\sim \mathrm{es} 12$, 13
- relativizable ~ 43
- relativized $\Sigma_{k}^{p} \sim 43$
- selectivity $\sim \mathrm{es} 10$
- semi-recursive sets as a \sim from recursive function theory v
- separation of reduction \sim es from equivalence \sim es 96
- set of equivalence \sim es 7,124
- set-wise complements of a complexity ~ 116
- structure of polynomial-time complexity \sim es 48
- $\Theta_{k}^{p} \sim \mathrm{es} 43$
- time-bounded ~ 20
- token-based advice ~ 117
classification
$-\sim$ of sets in NP using the low hierarchy 42
clique
- q-~ 63
closure
- ~ properties of P-sel 6
$-\sim$ under 2-ary connectives of P-sel, NPSV_{t}-sel, and NPMV_{t}-sel 84
$-\sim$ under bounded-truth-table reductions of a class 81

~ under combined self-reducibility and 1-truth-table reductions of P-sel 103	- ~ of the polynomial hierarchy being a consequence of unique solutions for SAT 38
~ under complement of NPMV-se $15,82$	- surprising \sim of complexity classe 61
$-\sim$ under complement of NPMV_{t}-sel $11,15,34$	- unexpected \sim of complexity classes
under complement of NPSV-sel	collection
d NPMV_{t}-sel	of strings $53,56,57$
- \sim under complement of P-sel 24,	commutativity 111,112
79, 81, 83	comparability
- \sim under conjunctive reductions of	- membership ~ 105, 113
NP 79	- $\mathcal{O}(\log n)$ membership ~ 108
- ~ under connectives of P-sel 102	compl
- ~ under connectives of selectivity	- ~ of a P-selective set $24,26,79$
classes	f a set 12
- \sim under disjunctive reductions of NP 79	- ~ of an NPSV-selective set 12 complementation
- ~ under intersection of P-sel 82	- ~ and connectives 84
\sim under k-ary connectives of P-sel,	- closure under \sim of NPMV-sel 82
NPSV_{t}-sel, and NPMV_{t}-sel 84 $-\sim$ under many-one reductions of NP	- closure under \sim of NPMV_{t}-sel 11, 15
79	- closure under \sim of NPSV_{t}-sel and NPMV_{t}-sel 81
$-\underset{\text { levels of the low hierarchy }}{ }$	$\begin{aligned} & \text { - closure under } \sim \text { of P-sel } \quad 5,24,79 \\ & 81,83 \end{aligned}$
P-sel 79	completeness 61,117
	- ~ for NP
nondeterministic selectivity classes 83	$-\sim$ for NP under many-one reductions 2
\sim under positive reductions of P-sel 103	$-\sim$ for NP under Turing reductions 2
~ under positive Turing reductions	$\begin{array}{ll} -\leq_{m}^{p}-\sim \text { for UP } & 66 \\ -\leq_{T}^{s n}-\sim \text { for NP } & 42 \end{array}$
of P-sel 79, 80	- $\mathcal{C -} \sim 61,117$
\sim under reductions of P-sel 80,85	- \leq_{m}^{p} ~ 117
$-\underset{79}{\sim}$ under Turing reductions of EXP	- $\mathcal{C}-\leq_{r}$ - ~ 10117
- boolean \sim of a complexity class 81	- high hierarchy as a hierarchy of generalized \sim notions 43 - NP-~ 42,43
- downward \sim of P-selective sets 79	complexity 8
- downward \sim under 1-truth-table reductions 88	- \sim in terms of deterministic time - advice ~ 111
- extension of \sim to NPSV_{t}-selectivity 103	- arbitrary ~ 8, 17, 39
- reduction	- capture of $\sim \mathrm{v}$ - computational \sim vii
- relativized world \sim, optimal for self-reducible P-selective sets 103	- computational \sim of a gappy left cut 31
collapse	- computational \sim of a P-selective set
\sim of the boolean hierarchy 76	18
- \sim of the low hierarchy 48	- computational \sim of a tally set 17
\sim of the polynomial hierarchy vi, 2 ,	- concept from computational \sim vii
10, 38, 40, 42-44, 54, 55, 57, 108, 121	deterministic time \sim

- left cuts capture the \sim of real numbers v - nonuniform ~ 17	- transition ~ 97, 98 Crescenzi vii cut
- semi-membership $\sim 1,3$ - types of $\sim \mathrm{v}$	```- computational complexity of a gappy left ~ 31```
computability	- gappy left ~ 31,96,99
- \sim in deterministic polynomial time 119	- left \sim s capture the complexity of reals v
$-\sim$ in $\mathrm{FP}_{t t}^{\mathrm{NP}} 70$	- nonempty parts of a gappy left \sim
$-\sim$ in polynomial time 120	31
- deterministic polynomial-time \sim	- standard left \sim of real numbers 3
119	- time-bounded left $\sim s \quad 16$
$- \text { easy } \sim 100$	decidability 8
$-$	degree
- polynomial-time - recursive ~ 31	$-\sim$ in NP 8
computation $19,20,33,97,116,121$	- \sim of organizational simplicity of selectivity classes 43
- \sim of the value of a circuit 18	$-\leq_{m}^{p}-\sim 8$
- accepting ~ 93	
- feasible ~ 2	$-\leq_{r^{-}} \sim 8$
- nondeterministic guess of $\mathrm{a} \sim 14$	$-\leq_{T-\sim}^{p}$ - 8
- polynomial-time ~ 2	$-\overline{\leq}_{t t}^{p} \sim \sim 8$
- semi-feasible \sim v-vii, $1,2,16$	- maximum out-~ 63
- world of \sim v	- node with maximum out-~ 76
computers	- NP ~ 8
- making \sim smarter vi	- recursively enumerable \sim s 15
computing	- reducibility ~ 8
- intuitive \sim vi	- sets in an NP ~ 8
coNE 8	$\Delta_{0}^{p, A} 117$
connection	$\Delta_{2}^{p} \quad 61,66,67,122$
- structural ~ v	$\Delta_{k}^{p} \quad 43,117,118$
connective	$\Delta_{k}^{p, A} \quad 45,117,118$
$-\sim$ s and complementation 84	diagonalization 96, 97, 99-102
- almost-completely degenerate \sim s	Díaz vii
$\text { - boolean } \sim \mathrm{s} \quad 79,8$	domain
	- ~ of an NPSV function 39
	DSPACE 118,121
- completely degenerate $\sim s \quad 80,83,8$ - degenerate \sim s 84	$\underset{121}{\text { DTIME }} 2,8,31,68,71,82,118,119,$
- identity ~ 84 - nondegenerate \sim s 83,84	Du vii
- under which \sim s are P-selective sets	E 8, 22, 26, 27, 109, 115, 118
closed 79	E_{1-T}^{p}
coNP $12-16,20-22,24-26,32-34,37$,	$-\sim($ P-sel $) 95$
$38,40,42,44,54-56,68,74-76,78,82$,	$\mathrm{E}_{1-t t}^{p}$
$88,90,116,117,120,122$	- ~ (P-sel) 95, 97
- are nondeterministically selective	EATCS i
sets hard for ~ 73	$\mathrm{E}_{b t t}^{p}$
coNP/poly $21,33,34$	$-\sim($ P-sel $)$ 97, 100
containment	E_{k-T}^{p}
- nonuniform ~s 67	$-\sim(\mathrm{P}-\mathrm{sel})$ 97, 100, 103
coR 123	E_{k-t}^{p}
count	$-\sim($ P-sel $) \quad 97,99,100,103$

Index

$\begin{array}{ll}\mathrm{EL}_{\Delta_{k}^{p}}^{p} & 45,46,48,58,118 \\ \mathrm{EL}_{\Delta_{k}^{p}}^{W} & 48,118 \\ \end{array}$	$-\sim$ computable by a deterministic polynomial-time Turing machine 119
$\mathrm{ELH}^{k} 45,54,55,118$	- (A, k)-sort ~ 113
$\mathrm{EL}_{\Sigma_{k}^{p}} \quad 45-50,54,55,58,59,107,118$	- advice $\sim 19,23$
$\begin{aligned} & \mathrm{EL}_{\Theta_{k}^{p}}^{p} \quad 45,46,49,55,58,107,118 \\ & \text { van Emde Boas vii, } 103 \end{aligned}$	- almost completely degenerate ~ 80 - associative ~ 111
enumerability see P-enumerability	- boolean $\sim 79,83$
$\epsilon 123$	- characteristic ~ 81, 84
equality 43,68	- class of \sim S $9,19,117,119$
- complete \sim versus weak ~ 16	- class of \sim s computable via $\mathcal{O}(\log n)$
- notion of \sim for partial functions 16	Turing queries to NP 68
equivalence 81,99	- class of \sim s computable via truth-table
- Turing \sim between tally sets and	access to NP 68
P-selective sets 17,30	- collection of \sim s 20,117
E_{T}^{p}	- completely degenerate ~ 80
- ~(P-sel) 97, 99, 100	- complexity-theoretic study of
$\mathrm{E}_{t t}^{p}$	one-way \sim s 16
- ~(P-sel) 97, 100	- computable $\sim 62,64,65$
example $2,3,5,6,8,9,13-15,17,18$,	- degenerate ~ 80
$21,41,43,46,48,58,61,71,74-76,79$,	- deterministic polynomial-time
81, 82, 85, 90, 97, 105, 108, 109	computable ~s 119
- classic \sim of P-selectivity 3	- FPP-selector ~ 109
- counter~ 50	- general classes of \sim s 16
EXP $27,37,38,66,67,76,79,119$	- logspace \sim s 20
	- multivalued ~ 122
\mathcal{F}-sel $\quad 9,119,120$	- multivalued nondeterministic
fair-S(k) 106	polynomial-time \sim s 120
fair-S(n) 106, 107	- multivalued symmetric ~ 10
feasibility	- nondegenerate boolean ~ 84
- semi-~ vii, 1	- nondeterministic selector ~ 32
Feigenbaum 40	- notion of equality for partial $\sim \mathrm{s} 16$
FewP 68, 69, 119	- NPMV ~ 10
FEXP 82, 109	- $\mathrm{NPMV}_{t} \sim 10$
FEXP-sel 82	- NPSV ~ 10
flier	- NPSV-selector ~ 32
- taking a \sim vi	- $\mathrm{NPSV}_{t} \sim 10$
formula	- P-selector ~ 1, 3-7, 21, 23, 25, 26,
- boolean ~s 35,36	$28,31,32,35,49,63-65,85,88,89,92$,
- satisfiable \sim s vi, $5,38,73$	94-96, 98, 99, 102, 111-113, 124
Fortnow viii, 59, 76	- partial ~ 16
$\begin{aligned} & \mathrm{FP} \quad 9,10,12-15,32,68,70,71,77,88, \\ & \quad 96,111,112,115,119,121 \end{aligned}$	- partial multivalued $\sim 9,10,122$ - polynomial-time computable ~ 7,
- relativized ~ 14	65, 107
$\mathrm{FP}^{\mathrm{NP}[\mathcal{O}(\log n)]} 68,70,71,77$	- probabilistic selector $\sim 105,109$
FPP 109, 113	- ranking ~ 110
$\mathrm{FP}_{t t}^{A} 70$	- selector \sim v, $7,10,32,53,57,81,90$,
$\mathrm{FP}_{t t}^{\mathrm{NP}} \quad 68,70,71,77$	92, 96, 98, 105-107, 109, 121
$\mathrm{FP}^{X} \quad 96$	- selector \sim for NPSV_{t}-sel sets 32
$\begin{aligned} & \text { - dyadic rational } \sim 3 \\ & \text { function } \end{aligned}$	$\begin{aligned} & \text { the arguments } 4 \\ &- \text { single-valued } \sim \end{aligned} \quad 10,56,120$

- single-valued deterministic
polynomial-time computable \sim
9
- single-valued nondeterministic
symmetric selector $\sim 4,22,28,34$,
96, 101
- total ~ 117, 119
 - total multivalued nondeterministic
polynomial-time ~ 120
- total recursive ~ 96
- total selector ~ 32
- total single-valued ~ 119
- total single-valued nondeterministic
polynomial-time ~ 120
- uncomputable ~ 18
Gabarró vii
Gasarch vii, 59, 113
gate 18
- and ~ 18
- exponentially many \sim s 18
- not ~ 18
- or ~ 18
- polynomial number of \sim s 18
Gavaldà 59
generalization 15, 105-110, 121
- ~s of P-selectivity 105
Gill 113
Goldsmith 15,113
de Graaf vii
guess
- nondeterministic ~ bits 62
path 53
Gundermann 76
hardness 61, 117
- $\leq_{t t^{-} \sim}^{p} \quad 66$
- coNP- \leq_{m}^{p}-~ 73
- NP-~ 61
- NP- $\leq_{1-t t}^{p}$ ~ 74
- NP- $\leq_{\gamma}-\sim 74$
- NP- $\leq_{t t^{-}}^{p} \sim 68$
- truth-table ~ for NP 67
~ for NP 67
Hartmanis 59, 76
- half ~ 40
Hemaspaandra

Hemaspaandra iii, iv, vii, viii, 15, 16, $39,40,58,59,76-78,102,103,112$, 113, see Hemachandra
Hempel vii, 113
HH $42,44,119$
hierarchy

- arithmetical $\sim 8,122$
- close connection of the extended low \sim to the low ~ 45
- collapse of the boolean ~ 76
- collapse of the low ~ 48
- collapse of the polynomial \sim vi, 2 , $10,40,42-44,54,55,57,108,121$
- decomposition of NP via the low $\sim s$ and high \sim s 44
- extended low ~ 118
- high ~ 42
- Kleene ~ 122
- low ~ 41
- lowness ~ 43
- multiselectivity ~ 107
- polynomial \sim and small circuits 35
- relativized polynomial ~ 117,122 , 123
$-\mathrm{S}(k) \sim 106$
Hoene vii, 16, 39, 40, 76-78, 103, 113
Hofmann viii
Holzwarth viii
Homan vii
Homer vii
$\mathrm{H}_{\Sigma_{k}^{p}} \quad 42,44,119$
immunity
- \mathcal{C}-~ 110
- P-~ 110,111
- P-sr-~ 111
- weakly-P-rankable-~ 111
incomparability
$-\sim$ of $\mathrm{E}_{T}^{p}(\mathrm{P}-$ sel $)$ and $\mathrm{R}_{b t t}^{p}(\mathrm{P}-$ sel $) \quad 100$
$-\sim$ of $\mathrm{E}_{T}^{p}(\mathrm{P}-\mathrm{sel})$ and $\mathrm{R}_{t t}^{b t t}(\mathrm{P}-\mathrm{sel}) \quad 100$
$-\sim$ of $\mathrm{E}_{t t}^{p}(\mathrm{P}-\mathrm{sel})$ and $\mathrm{R}_{b t t}^{p}(\mathrm{P}-\mathrm{sel}) \quad 100$
inequality 29,42
interpreter
- advice $\sim 20,24,31,34,35$
- advice \sim for SAT 35-37
- class of advice \sim s 31
- nondeterministic advice $\sim 24,26$, 28
- NP advice ~ 25, 26, 30
- P advice ~ 30
- recursive advice ~ 39
intuition vi
- skating on \sim vi

in 103
Jenner 77
Jiang vii, 58, 102, 112
Jockusch 15, 16, 103
Joseph 15, 16, 113
k-walk $97-99$
- self-avoiding ~ 97
Kadin 76
Kämper 40
Karloff 59
Karp 20, 35, 39, 40
Karp-Lipton
- ~ Theorem 35
- relativized version of the \sim Theorem 38
Kilian 40
king
- ~ of a tournament 24
Kleene 16
- ~ hierarchy 122
Ko vii, 16, 39, 58, 59, 75, 112
Köbler 16, 40, 58, 59
Kummer 77, 103,113
Landau 39
language see set
- tally \sim see set, tally
$\mathrm{L}_{\Delta_{k}^{p}}$ 43-45, 48, 58
$\mathrm{L}_{\Delta_{k}^{p}}^{W^{p}} \quad 48$
Lemma
- Toda Ordering ~ 76
- Toda's ~ 76
length
- advice ~ 34
- bit-~ 23
$\begin{aligned} & -\quad \text { linear } \sim 19-22,26,28,30,39,105, \\ & \\ & \hline 112 \end{aligned}$
$\begin{aligned} & \text { polynomial } \sim 19-24,27,32-40,49, \\ & 54,55,67,68,76,78,105,107-109, \\ & 120,121 \end{aligned}$
- quadratic ~ 19, 20, 24, 39, 112
LH 41, 42, 44, 46, 48, 57, 58, 119
Lindner 39, 76
linear 19
Lipton $20,35,39,40$
list
- query ~ 116
$\mathrm{L}_{k}^{W} 119$
$\mathrm{L}_{\mathrm{NP}} 41$
logarithm
- implicit base of ~ 23
Long 16, 58, 59

loop

- self ~s 63

Low
$-\sim(\mathcal{C}) 119$
$-\sim\left(\Sigma_{0}^{p}\right) \quad 41$
$-\sim\left(\Sigma_{1}^{p}\right) \quad 41$
$-\sim\left(\Sigma_{2}^{p}\right) \quad 41$
$-\sim\left(\Sigma_{3}^{p}\right) \quad 41$
lowness $\quad 41-43,45,46,55,58,59$
$-\sim$ of all four types of nondeterministically selective sets 58

- ~ of nondeterministically selective sets 49,58
- ~ of NP \cap P-sel 48
- ~ of P-selective sets 46,49
- analysis in terms of ~ 58
- best currently known upper bounds for \sim of selective sets 51
- best currently known upper bounds for extended \sim of selective sets 50
- definition of ~ 41
- extended ~ 43,46-49,59
- extended \sim of all four types of nondeterministically selective sets 58
- extended-~ bounds 50
- extended-~ structure of P-selective sets 48, 49
- extended-~ upper and lower bounds 46
- extended-~ upper bounds 55
- generalization of ~ 45
- more general \sim result 40
- nontrivial lower bound on $\sim 46,48$
- refined ~ 43
- upper and lower bounds on ~ 46, 49
- upper and lower bounds on extended ~ 49
$\mathrm{L}_{\mathrm{P}} 41$
$\mathrm{L}_{\Sigma_{k}^{p}} \quad 41-45,47-49,51,54,55,57-59$, 107, 119
$\mathrm{L}_{\Theta_{k}^{p}} \quad 43-45,50,55,58$
Lund 59
machine $\quad 9,24,27,28,32,47,52,56$, $65,67,69,81,92,95,99,100,102,103$, 116, 118
- bottleneck ~s 39
- deterministic $f(n)$-space Turing \sim 118
- deterministic $f(n)$-time Turing \sim 118
- deterministic polynomial-time Turing ~ $2,47,88,106,118,119,123$
- enumeration of partial recursive $\sim s$ 31
- exponential-time ~ 27
- FewP ~ 68
- FP ~ 12
- $\mathrm{FP}_{t t}^{A} \sim 71$
- function-computing Turing ~ 10, 120
- nondeterministic polynomial-time function-computing Turing ~ 10
- nondeterministic polynomial-time Turing $\sim 10,11,14,29,38,47,50$, $55,62,65,69,90,109,115,120,121$
- NP ~ 53, 56, 67
- oracle $\sim 47,86$
$-\mathrm{P}^{A \oplus \mathrm{SAT}} \sim 47$
- polynomial-time oracle ~ 29
- polynomial-time Turing ~ 27,69
- probabilistic polynomial-time Turing ~ 123
- query-clocked ~ 100
- simulating ~ 27
- Turing ~ 5, 116
- Turing reduction ~ 94
- unambiguous polynomial-time Turing $\sim 67,123$
- unambiguous Turing ~ 67

Magklis viii
Mayer viii
McLaughlin 16
measure

- ~ of resource 19
- complexity ~s 107
measurement
- fine-grained \sim of advice 20

Meyer 16
MinimumPath $62,65-67,69,70$
$\mathbb{N} \quad 124$
$\mathbb{N}^{+} \quad 124$
Naik vii, 16, 39, 40, 59, 76-78, 103
Nasipak vii, 39
nature

- nondeterministic \sim of gamma reductions 90
NE 8, 119
NEXP 119
Nickelsen vii, viii, 113
Nisan 59
NNT 15
- implicitly membership-testable sets 2, 119
nonclosure
$-\sim$ of $\mathrm{EL}_{\Sigma_{k}^{p}}$ under many-one reductions 46
- \sim of the extended low hierarchy 46
$-\sim$ under a function of P-sel 84
$-\sim$ under intersection for all selectivity classes 82
- ~ under k-ary connectives of NPSV-sel and NPMV-sel 84
$-\sim$ under nondegenerate connectives of NPSV-sel and NPMV-sel 84
- ~ under reductions of P-sel 85
$-\sim$ under union of selective sets 82
- simultaneous capture of \sim under intersection for all versions of selectivity 82
nondeterminism vi, 39
- linear amount of ~ 39
- understanding of ~ 9
notation 123
notion
- ~ of being "easily k-countable" 113
$-\sim$ of equality for partial functions 16
- ~s closely related to P-selectivity 109
- \sim s related to membership comparability 108
- advice ~ 35
- complexity-theoretic \sim vii
- refinements of the \sim of membership comparability 108
NP $\mathrm{v}, 2,3,5,8,9,11-16,20-22,25,26$, $29,30,32-59,61,66-72,74-79,81,82$, $88,90,91,94,103,105,107,108,111$, 112, 116, 117, 119-122
- complete for $\sim \mathrm{v}$
- completeness for \sim under many-one reductions 2
- completeness for \sim under Turing reductions 2
- relativized $\sim 42,43,47,48,119,120$

NP/poly 21, 33, 34
NPMV $10,11,15,16,34,39,54,74,91$, 92, 120
NPMV-sel $10,11,13,21,34,41,50,51$, $54,55,57,58,74,75,82-84,120$
$\mathrm{NPMV}_{t} 10-12,15,16,34,54,74,75$, 81, 90, 91, 120
NPMV $_{t}$-sel $11-13,21,34,41,50,51$, $54,55,57-59,74,75,81-84,90,120$
$\mathrm{NP}^{\mathrm{NP}} \quad 55,57,121$

$\begin{aligned} & \text { NPSV } \quad 9,10,12,15,16,32,34,38,39, \\ & \quad 49,50,52,55,56,74,120 \end{aligned}$	$\begin{array}{lc} -\mathrm{E}_{1-t t}^{p}(\sim) & 95,97 \\ -\mathrm{E}_{b t t}^{p}(\sim) & 97,100 \end{array}$
NPSV-sel 10-13, 21, 32-34, 41, 49-51,	- $\mathrm{E}_{k-T}^{\text {btt }}(\sim)$ 97, 100, 103
54, 55, 57-59, 68, 74, 83, 84, 120	- $\mathrm{E}_{k-t t}^{p}(\sim)$ 97, 99, 100,103
$\mathrm{NPSV}_{t} 10,12-16,74,81,88,90,103$,	- $\mathrm{E}_{T}^{\mathcal{p}}(\sim)$ 97, 99, 100
120	- $\mathrm{E}_{t t}^{p}(\sim) 97,100$
NPSV_{t}-sel $\quad 11-14,21,32,41,50,51,54$,	- $\mathrm{R}_{1-T}^{p}(\sim) 95$
57, 58, 68, 74, 81, 83, 84, 120	- $\mathrm{R}_{1-t t}^{p}(\sim)$ 95, 96
NT	- $\mathrm{R}_{2-t t}^{p-t}(\sim) 96$
- near-testable sets 2,121	- $\mathrm{R}_{b t t}^{p}(\sim) 97,100$
NTIME 119, 121	- relativized $\mathrm{R}_{k-t t}^{p}(\sim) 103$
	- $\mathrm{R}_{k-T}^{p}(\sim)$ 95, 97,99
Ogihara vii, viii, 16, 39, 40, 59, 77, 78,	$-\mathrm{R}_{k-t t}^{p}(\sim) 95,97,99,103$
103, 113, see Ogiwara	- $\mathrm{R}_{n \mathcal{O}(1)-T}^{e}(\sim) 28$
Ogiwara 76, 103, see Ogihara	- $\mathrm{R}_{\mathcal{O}(\log n)-T}^{p}(\sim) 95$
- relativized ~ 48	- $\mathrm{R}_{O\left(n^{k}\right)-T}^{e}(\sim) 27$
oracle $12,14,27-29,41,43,47,52-54$,	- $\mathrm{R}_{T}^{p}(\sim) 35,97,100,102$
$56,57,59,80,81,88,98-103,115,118$,	- $\mathrm{R}_{t t}^{p}(\sim) 95,97,99,100,102,108$
120,121,123	P-sr 110, 111, 113
- ~ query 5	- the polynomial-time semi-rankable
- low sets as \sim s 41	sets 110
NP ~ 71	P/poly 21-24, 35-37, 39, 78, 105, 107,
- open \sim questions 59	108
ordering	Papadimitriou vii
- lexicographical $\sim 71,108,110$	Parkins vii, 39
- linear ~ 7,124	Pasanen 16
- linear \sim of $\{1\}^{*} 6$	Paterson 16
- linear \sim of $\Sigma^{*} 6$	path 11, 12, 14, 53, 65, 81, 92, 93
- linear \sim of $\Sigma^{*} 6$	- accepting $\sim 11,29,56,62,66-70$,
- partial ~ 7	90, 94, 120, 121, 123
- partial ~ 7	- accepting \sim of a FewP machine 68
output	- accepting \sim of a function-computing
- ~ of a polynomial-time algorithm	machine 10, 120
- linearly bounded \sim of an advice function 19	$\begin{aligned} & \text { - computation } \sim 14,33,56,62,66, \\ & \quad 69,70,87,109,121 \end{aligned}$
- quadratically bounded \sim of an advice	- directed $\sim 63,64,76$
function 19	- directed \sim in a tournament 64
Owings 113	- guess bits of an accepting ~ 70
	- guessed ~ 14
P v, 1-9, 12-16, 19-24, 26, 28-30, 32,	- guessed computation ~ 11
33, 35-39, 41-49, 54, 55, 58, 61, 62,	- minimum accepting \sim of a nondeter-
$64-68,76-79,82,83,85,88,94,95$,	ministic Turing machine 62,65-67,
103, 105-112, 115, 117, 118, 120-123	69, 70
P-close 2, 49, 121	- nondeterministic $\sim 53,54,57$
P-enumerability 77	- nondeterministic guess of a
P-mc 108	computation $\sim 11,53$
- ~ (const) 108	- nondownward ~ 20
- $\mathrm{R}_{\text {btt }}^{p}(\sim($ const $)) 108$	- rejecting \sim of a function-computing
P-sel $1-5,8,9,11-13,18,20-27,30,31$,	machine 10, 120
$35,39,41,43,46-51,66-68,70,72,76$,	- rejecting \sim s 66
77, 79, 81-85, 88, 94-96, 102, 103, 105,	- short \sim s in a tournament 63
106, 110-112, 121	- simulated ~ 53
- $\mathrm{E}_{1-T}^{p}(\sim) 95$	PH

- polynomial hierarchy $15,35,37-40$, query $12,14,26-28,47,52-54,56,57$, $42,48,58,67,68,74-76,78,108,113, \quad 65,66,68-71,73,81,86,89-102,107$, 121
$\Pi_{k}^{p} \quad 37,38$
poly 19
Popeye 41
- ~ the Sailor Man 41
- cotton candy is low for ~ 41
- spinach is not low for ~ 41
power 41, 49, 94
- ~s of two 20
- distinguishing the \sim of reductions v
- relative ~ 2
$108,115,116,118,121,123$
- answers to \sim s 69, 70
- answers to $\sim s$ on the MinimumPath 70
- linear limit to number of $\sim s \quad 27$
- linear number of $\sim s$ by a Turing reduction 26
- membership ~ 70
- nonadaptive ~ 102
- oracle ~ 5
- polynomial number of $\sim s$ to a P-selective set 76
- separating the \sim of reducibilities $2, \quad$ - possible answers to \sim s 69 15
PP $\quad 28-30,46-49,55,75,109,121$
$\mathrm{PP} /$ poly 109
predecessor
- lexicographical ~ 2
preorder 7
procedure
- nondeterministic polynomial-time \sim 91
program
- Selman's ~ 16
- Selman's structural ~ v
pronouncement 77
proof
- nonrelativizable ~ 59
- relativizable ~ 46
property
- closure ~ 84
- closure \sim s of P-sel 6,79
- closure \sim s of P-sel, NPSV ${ }_{t}$-sel, and NPMV $_{t}$-sel 84
PSPACE $37,58,59,66,67,75,88,105$, 109, 121
$\mathrm{P}^{W_{-s e l}} \quad 48$
$q \mathrm{P}$
- set of answers to ~ 71
- truth-table ~ 70

R 94

- random polynomial time 68,122 , 123
R_{1-T}^{p}
$-\sim($ P-sel $) \quad 95$
$\mathrm{R}_{1-t t}^{p}$
- ~(P-sel) 95, 96
$\mathrm{R}_{2-t t}^{p}$
- ~(P-sel) 96

Ramachandran 59
range 101

- ~ of natural senses v

Ranjan 59
rank 110
rankability

- P-semi-~ 110
rational
- dyadic ~ 3
$\mathrm{R}_{b t t}^{p}$
$-\sim(\mathrm{P}-\mathrm{mc}($ const $)) 108$
- ~(P-sel) 97, 100
realization
$-\sim$ of an $\mathrm{FP}_{t t}^{\mathrm{NP}}$ function 77
recursiveness
- the quasipolynomial time sets 2,16 , 121
quadratic 19
quantification
- universal ~33
quantifier
- alternating \sim s 43
- number of \sim s needed to remove a set's ability to provide useful information 43
- polynomially bounded ~ 9
- unbounded ~ 9
, $6,82,83,85$
reducibility 8,117
- 1-truth-table \sim to a P-selective set 88
- 2-disjunctive self-~ 5,118
- ~ degree 8
- disjunctive self-~ $5,38,118$
- disjunctive self- \sim of SAT 35
- self-~ vi, 16, 74, 75, 79, 80, 88, 90, 103
- Turing ~ 26
- Turing self-~ 5, 74, 75, 88-92, 123

Rohatgi 59	- NPSV-~ $12,15,32,38$
Rothe vii, 16, 58, 112	- NPSV_{t} - $\sim 12,14-16,88,90,103$
Royer 40	- other types of \sim than P-~ 102
Rozenberg viii	- P-~ 1, 3-7, 9, 12, 14-16, 31, 49, 62,
$\mathrm{R}_{r}(\mathcal{C}) \quad 122$	$64,68,74,82,88,102,103,105,109$,
R_{T}^{p}	110
- ~(P-sel) 35, 97, 100, 102	- P-~ 1
- ~(SPARSE) 35	- probabilistic ~ 105, 109
$\mathrm{R}_{t t}^{p}$	- relationships between nondeterminis-
$-\sim(\mathrm{P}-\mathrm{sel}) \quad 95,97,99,100,102,108$	tic \sim classes 12
- ~(TALLY) 35	- study of nondeterministic ~ 15
$\mathrm{S}(\sqrt{n}) 106$	- understanding of ~ 9 - weak $\sim 105,112$
S(2) 107	$\text { selector } 52,64,81,97,99$
$\mathrm{S}(k) 106$	- ~ function see function, selector
$-\mathrm{R}_{m}^{p}(\sim) 106$	- associative ~ 111-112
$\mathrm{S}(\log n) 106$	- commutative ~ ${ }^{\text {- }}$ - $111-112$
${ }_{S}(n) 106$	$-\mathcal{F}-\sim \quad 9,119$
$\underset{\mathrm{SNP} \text { cooNP }}{\mathrm{S}_{2}} 40,76,78,113,122$	- more powerful ~s 109
$\mathrm{S}_{2}^{\text {NP^coNP }} \quad 40,76,78,122$	$\text { - NPMV-~ } 11,15,74,92$
Salomaa viii	- - $^{\text {NPMV }}$ - ${ }^{\text {- }}$ ($11,12,81,90$
$\begin{aligned} & \text { SAT } \quad 5,9,14,15,35-39,45,47,54,68 \text {, } \\ & \quad 71-73,75,76,82,108,118 \end{aligned}$	$\text { - NPSV-~ } 32,34,38,50,52,55,56$
Schnorr 16	- $\mathrm{NPSV}_{t^{-} \sim}^{\sim} 14,15$
Schöning 15, 16, 58, 59	- symmetric $\sim 4,86$
- initial \sim of a linear ordering 6	- symmetric P-~ 100
- initial \sim of a polynomial-time computable linear ordering 6	Selman v, vii, 1, 2, 4, 5, 15, 16, 39, 40, 59, 76-78, 103
$-\quad \underset{6}{\text { initial }} \sim$ of a recursive linear ordering	sequence - characteristic ~ 102
selectivity $9,16,79,106$	set
- \sim and self-reducible sets 88	$-\sim \mathrm{S} \leq_{r}$-equivalent to some set in \mathcal{C}
- ~ via general functions 119	118
- (A, k)-~ 113	- $(a, b)_{p}$-recursive \sim S 109
- (i,j)-~ 106	- advice complexity of the P-selective ~s 111
- associative ~ 111-112	$\sim \mathrm{S} 111$
- broadening of ~ 9	- advice for P-selective \sim s 20
- commutative ~ 111-112	- best currently known upper bound
- deterministic ~ 90	for extended lowness of selective \sim s
- \mathcal{F}-~ 9,119	50
- FEXP-~ 109	- best currently known upper bounds
- forms of ~ 105	for lowness of selective \sim s 51
- four types of nondeterministic ~ 15	- cheatable \sim s 109,113
- FPP-~ 109, 113	- class containing Turing self-reducible
- FP_{t}^{L} - 88	complete \sim s 75
- generalizations of ~ 105	- closure properties of the P-selective
- multi~ 105, 106, 112, 113	$\sim \mathrm{s} 6$
- nondeterministic $\sim 9,80$	- closure under complement of
- NP-~ 38	NPMV-selective ~s 15
- NP2V-~ 39	- closure under complement of NPMV_{t}
- NPMV-~ $11,15,16,34,74,91$	selective \sim s 15
- $\mathrm{NPMV}_{t-} \sim 11,12,15,16,74,75,90$,	- collection of $\sim \mathrm{s}$ 19, 20, 79, 81,117
91	- complement of a ~ 11

- complement of an NPSV-selective ~ 12
- complete \sim s 13,38
- complete characterization of P-selective \sim s 6
- complete characterization of semi-recursive $\sim s \quad 6$
- computationally simple \sim in a natural sense v
- Δ_{k}^{p} extended low $\sim \mathrm{s} 118$
- disjunctively self-reducible \sim s 103 , 105, 118
- easily-countable \sim s 108,109
- FPP-selective ~ 109
- implicitly membership-testable $\sim s$ $2,15,119$
- left cut ~28, see cut
- lowness for nondeterministically selective $\sim s \quad 49$
- lowness of P-selective \sim s 46
- membership comparable $\sim s$ 107, 108
- membership complexity of $\sim \mathrm{s} \quad 1$
- near-testable \sim s $2,15,108,109,121$
- nearly near-testable $\sim \mathrm{s} \quad 2,119$
- nondeterministic version of semifeasible \sim vi
- nondeterministically selective $\sim s$ $10,61,67,73,90$
- nonempty finite sub~ of a P-selective set $21,24,25$
- nonempty finite sub~ of an NPMV-selective set 34
- nonrecursive $\sim \mathrm{v}$
- NP ~s 2
- NP- $\leq_{t t}^{p}$-hard ~ 68
- NP- \leq_{T}^{p}-complete ~ 68
- NP-complete $\sim 5,8,14,15,42,61$
- NPMV-selective ~s 34,54
- NPMV $_{t}$-selective $\sim \mathrm{s} 16,34,54$
- NPSV-selective ~s 16, 49
- NPSV $_{t}$-selective $\sim \mathrm{s} 14,16,88$
- oracle ~ 5
- P-close ~s 2, 15, 121
- P-enumerable ~ 77
- P-selective ~ v, 1-9, 17, 18, 20, 21, 23-32, 39, 46-49, 61-68, 70, 73, 76, 79-83, 85, 86, 88, 94-96, 98-103, 105-111, 113, 121
- P-selective $\sim \mathrm{S}$ whose intersection is not semi-recursive 82
- P-selective nonrecursive $\sim s \quad$ v
- P-semi-rankable ~s 105, 110
- P-superterse ~s 109
- P-verbose ~s 109
- polynomial-time semi-rankable $\sim s$ 110
- polynomial-time Turing equivalent
~s 8
- query ~s 69
- refinement of the semi-feasible $\sim \mathrm{s} \quad \mathrm{v}$
- self-reducible ~s 79, 88
- self-reducible P-selective ~ 88
- semi-feasible $\sim \mathrm{s} \quad \mathrm{v}, \mathrm{vi}, 1,121$
- semi-recursive $\sim \mathrm{s} \quad \mathrm{v}, 6,15,83,96$, 109, 122
- Σ_{k}^{p} extended low $\sim s 118$
- sparse \sim s 2,122
- standard left cut \sim see cut
- superterse ~s 113
- tally $\sim 8,17$
- Θ_{k}^{p} extended low $\sim s 118$
- Turing self-reducible ~s 123
- verbose ~s 108
- weakly P-rankable ~s 110
- weakly P-selective ~s 105
- weakly-P-rankable ~s 110
- weakly-P-selective \sim s 105
set-f $\quad 9-12,14,32-34,38,39,50,52$, $55,56,74,90,92,93,119,120,122$
setting
- satisfiability ~s 73

Sewelson 76
SH 106,107
Shamir 59
Sheu 58, 59
$\Sigma^{*} \quad 1,4-7,12,17-20,23,28,29,39,53$, $56,77,80,85,89,91,95,108,109,111$, 117, 124
$\Sigma_{0}^{p} \quad 41,122$
$\Sigma_{\Sigma_{1}^{p}}^{\Sigma^{p}} 41$
$\Sigma_{2}^{p} \quad 35-38,40,41,47,67,75,111$
$\Sigma_{3}^{2} 36,41$
$\Sigma_{k}^{p} 37,38,42,43,45,54,58,118,119$,
121, 122
$\Sigma_{k}^{p, A} 42,45,118,119,122,123$
simplicity 8

- lowness is a notion of organizational ~ 43
- organizational \sim of selectivity classes 43
- structural ~8,9
simulation $12,27,53$
Sipser vii
Sivakumar vii, 76, 77
sorting

\sim of queries according to a selector	- \sim of semi-feasible algorithms iii
$\begin{aligned} & 64,65,92,94-96,98,99,101,102 \\ &-(A, k)-\sim \\ & 113 \end{aligned}$	$-\underset{\text { vii }}{\sim}$ of semi-feasible computation v ,
space 19	- advice ~ 43
- deterministic $f(n) \sim 118$	- basic lowness ~ 41
- physical \sim taken by a circuit 19	- coding ~ 97
- polynomial ~ 121	- complexity $\sim 1,3,16,41,46,103$
SPARSE 46, 48, 50, 107, 121, 122	- computational complexity \sim vii
- $\mathrm{R}_{T}^{p}(\sim) 35$	- extended-lowness ~ 46
spinach 41	- lowness ~ 41, 43, 46
- \sim is not low for Popeye 41	- P-selectivity ~ 68
Stearns 76	- recursive function $\sim \mathrm{v}, 2,58,103$
step $26,31,32,51,53,56,57,62,64$,	- selectivity $\sim 3,105$
86, 87, 89, 91, 93, 98, 99, 116	- tournament ~ 63
- computation \sim s 62	$\Theta_{0}^{p, A} \quad 123$
Stephan 77, 103, 113	$\Theta_{k}^{p} \quad 43,118,123$
Stol vii	$\Theta_{k}^{p, A} \quad 45,118,123$
Stricker viii	Thierauf 16, 39, 40, 76-78, 103
string	thresholds 106
- advice \sim 20, 25, 33	time
- collection of \sim s $21,57,116$	- almost polynomial $\sim(A P T) ~ 2,16$
- concatenation of \sim s 17	- co-nondeterministic polynomial \sim
- easily decodable advice ~ 23	17
$\begin{aligned} & - \text { evil } \sim 52 \\ & \text { study } 9 \end{aligned}$	- deterministic "polynomial exponential" ~ 119
- \sim of associative selectivity 112	- deterministic exponential ~ 118
$-\sim \sim$ of nondeterministic selectivity	- deterministic $f(n) \sim 118$
15	- deterministic polynomial ~ 121
- ~ of P-selectivity 1,7	- deterministic polynomial \sim relative
- complexity-theoretic \sim of one-way	an oracle 121
nctions 16	eterministic polynomial \sim relative
- complexity-theoretic \sim of semimembership complexity 1	to an oracle with a bounded number of queries 121
	- exponential \sim vi, 26
TALLY 6, 30, 47, 122	- linear ~ 98,100
- $\mathrm{R}_{t t}^{p}(\sim) 35$	- linear exponential ~ 27
Tantau vii, 102, 103	- nondeterministic "polynomial
tape 116	exponential" ~ 119
- oracle ~ 116	- nondeterministic exponential ~ 119
technique	- nondeterministic $f(n) \sim 121$
- minimum path $\sim 61,62,68,75$ - parallel census ~ 68	- nondeterministic polynomial ~ 24 $\quad 119,120$
test 1,49	- nondeterministic running ~ 121
- classic simplicity ~ 3	- probabilistic polynomial ~ 121
testability	- quasipolynomial $\sim(q P)$ 2, 16, 121
- near-~ 109, 113	- random polynomial ~ 122
Thakur vii	- unambiguous nondeterministic
Theorem	polynomial ~ 123
- Karp-Lipton ~ 35	Toda 75, 76
- relativized version of the Karp-	- ~ Ordering Lemma 76
Lipton ~ 38	- ~'s Lemma 76
theory	token
- ~ of positive relativization 59	- advice $\sim 24-27,31,32,34,39,117$

Torán 77
Torenvliet iii, iv, viii, 39, 77, 103
tournament 63, 64, 76

- king of a ~ 24
tree 26
- ~ of possible queries 100
- self-reduction $\sim 90,91,93$
union $7,65,96,98,99,102,105,123$
UP $66,67,123$
variable $5,9,72,79,84$
- logical and of ~s 124
- logical or of $\sim \mathrm{s} 124$

Veltman viii
Verbeek vii
verboseness 113
Vereshchagin 58
verification

- polynomial-time \sim of a certificate 33
Vyskoč 59

Wagner 76
Wang vii, 16, 39, 40, 76-78, 103, 113
Watanabe vii, 40, 58, 112
weakly- $\mathrm{FP}^{\Sigma_{2}^{p}}$-rankable 111
weakly-P-rankable 110

- the weakly P-rankable sets 110

Wechsung 40, 76, 77
West 76
worktape 10,120

- semi-infinite ~ 10,120
world
- real ~ 49
- relativized $\sim 46,48,49,76,103$, 108, 118, 119
Wössner viii
Young 15, 16, 113
Zaki vii, 16, 113
Zimand vii, 16, 59, 113
ZPP $37-40,67,68,74,78,108,122$, 123
ZPP ${ }^{\text {NP }} \quad 40,67,68,78,122$

