advice

Λ 124 $\begin{array}{c|c} \|A\| & 124 \\ \triangle & 124 \end{array}$ _ Ø 123 $\stackrel{\scriptstyle p}{\equiv}{}^{p}_{k\text{-}tt} \quad 98,99 \\ \geq_{\text{lex}} \quad 82$ $\geq lex \in \mathbb{R}$ $\cap 124$ 124 \oplus |a|12363 85, 105–107, 115, 117 $\begin{array}{c} 85,105{-}107\\ \leq_{poly-T}^{e} 115\\ \leq_{pos}^{poly-T} 8,81,8\\ \leq_{ptt}^{p} 8,85,86\\ \leq_{r} 8,61,85,\\ \leq_{T}^{e} 115\\ \leq_{T}^{p} 2,8,27,\\ \leq_{T}^{sn} 42,44,1\\ \leq_{T}^{sn} 42,44,1\\ \leq_{t}^{p} 8,61,62\\ - 124 \end{array}$ 8, 81, 85, 86, 88, 115 8, 85, 86, 116 8, 61, 85, 94, 117, 118, 122 2, 8, 27, 42, 44, 67, 68, 76, 99, 11542, 44, 116 8, 61, 62, 65-70, 94, 108, 116 124 $\neg 124$ \vee 124 \prec 124U 124 ~ 26 Abadi 40 advice 19, 20, 24, 27, 28, 30-36, 39, 52, 56, 109 $- \sim$ for nondeterministically selective sets 32 $- \sim \text{for P-selective sets} = 17, 20$ $- \sim$ interpreter see interpreter, analog

- class of \sim interpreters 31 improvement below linear \sim for recognition of P-selective sets 31– length-bounded \sim 19 - linear \sim 24, 26, 30, 31, 39 - logarithmic \sim 39 - lying \sim 33 – polynomial \sim 19, 39 - quadratic ~ 30 - recursive \sim 39 - small \sim 3 – strong \sim 35–37 Agrawal 77, 113 algorithm 16, 17, 24, 26, 30, 47, 52, 64, 70, 72, 86, 90, 92-94 $-\sim$ finding the king of a tournament - deterministic polynomial-time $\sim v$, 1, 2, 5, 29, 30, 64-66, 69, 72, 89- intelligent \sim vi – linear-exponential-time \sim 27 nondeterministic polynomial-time \sim 14,90,93 - nondeterministic recursive \sim 92 – output of a polynomial-time \sim – v - P-time decoding \sim for advice 23 – polynomial-time membership ~ 2 – recursive \sim v – semi-membership $\sim s - 2$ $- \text{ smart} \sim - \text{vi}$ - standard brute-force conversion of a nondeterministic \sim to a deterministic – theory of semi-feasible $\sim s$ iii Allender vii, viii, 58, 59 ambiguity – polynomial \sim 119 Amir 59 - complexity-theoretic $\sim v, 1$

- complexity-theoretic \sim of the low and high hierarchies from recursive function theory 58 – nondeterministic \sim of P – 9 – nondeterministic \sim to standard deterministic results on self-reducibility 75Appel 16 approximability 105 - bounded \sim 113 APT - almost polynomial time 2,16 argument 1, 4, 10, 17, 23, 32, 33, 63, 69, 76, 84, 93, 106, 108 - counting ~ 22 - divide and conquer $\sim 54, 57$ Arvind 77, 113 assignment - collection of $\sim s = 72, 73$ – nondeterministic selection of one \sim 38- satisfying \sim 72 associativity 105, 111-113 assumption 2, 29, 30, 32, 35, 37, 46, 67, 74, 94, 101 - complexity-theoretic $\sim s = 2$ Babai 59 Balcázar vii, 58, 59 bAPP 113 Barrington 16.39 Beigel 59, 76, 77, 103, 113 bit 17, 19, 23, 24, 27, 29, 31, 33, 66, 70-73, 82, 86, 87, 91, 97-99, 116 $- \sim s \text{ of advice} \quad 19, 20$ - input \sim s 18 nondeterministic guess $\sim 62, 69$ bitflip 99 bitstring 29, 71, 97, 98, 109, 116 Book 16, 58, 59 bound 24, 32, 46, 48, 51 - absolute lower \sim on lowness 46 - absolute upper $\sim s$ 46 - adjacent upper and lower $\sim s$ 46 - length \sim 24 - lower \sim 20, 30–32, 39, 46, 48, 58, 59 - nontrivial lower \sim on lowness 48 – polynomial \sim 47 - query \sim 43 - relativized lower \sim s on lowness 58 - time \sim 16, 26, 96 - upper \sim 17, 20, 21, 25, 28, 32, 34, 46, 49, 51, 53, 55, 57-59

upper \sim s on the amount of advice for P-selective sets 21– upper and lower $\sim s$ 49 - upper and lower \sim s on lowness 46 Bovet vii BPP 122 Brauer viii Buhrman vii, viii, 76, 77, 103 Burtschick 39,76 Cai viii, 39, 40, 59, 76, 77, 113 certificate 33 $-\sim$ certifying the guessed answer 12 – advice \sim 34 – membership \sim 33, 34 succinct ~ 12 Chakaravarthy 40 Chang 59 characterization - complete \sim of the P-selective sets 6 – complete \sim of the semi-recursive sets 6 Chari 59 circuit 18, 19 – \sim for a P-selective set 18 $- \sim$ for an arbitrary language 18 $- \sim \text{for } \Sigma^*$ 18 $-\sim$ recognizing a sparse set 17 - collection of $\sim s$ 18 encoding of a \sim 18 – exponential-size $\sim s = 18$ – families of $\sim s$ 17 polynomial-size $\sim s$ 19 polynomial-sized family of \sim s for P-selective sets 18 – size-bounded $\sim s$ 19 $- \text{ small } \sim s \quad v, 3, 18, 107$ claim 4, 13, 24, 25, 45, 48, 52, 63, 68, 74, 96, 103 relatively typical optimal lowness \sim 48- relativizable \sim 13 class 11, 12, 41, 43, 48, 105, 106, 113 – \sim closed under composition with logspace functions 20 $-\sim$ containing Turing self-reducible complete sets 75 $- \sim \text{known as MA}_{\text{EXP}}$ 76 $-\sim$ of advice interpreters 31 $-\sim$ of functions 121

 $- \sim$ of functions computable via $\mathcal{O}(\log n)$ Turing queries to NP 68

59

117

81

 $-\sim$ of functions computable via – incomparable \sim es: P-sel and polynomial-time truth-table access weakly-P-rankable 110 to NP 68 $- L_{\Delta_k^p} \sim es \quad 58$ $- \sim \text{ of languages } 120, 121, 123$ – length-based advice \sim 117 $-\sim \text{of oracles}$ 121 - low \sim es 43 $- \sim \text{ of P-selective sets} \quad 81$ - lowness $\sim es$ 43 $- \sim$ of sets having interactive proofs $- \mathcal{L}_{\Sigma_k^p} \sim \text{es} \quad 43, 58$ 59 $-L_{\Theta_{L}^{p}} \sim es 58$ $- \sim$ of sets of simple organization 43 – membership in nondeterministic \sim es $- \sim \text{ of sets reducible to P-sel}$ 2680 $-\sim$ of the form C/poly 34 – membership in the complexity $\sim P$ $-\sim$ es in the extended low hierarchy 1 45– nondeterministic function $\sim es$ 9 $-\sim$ es of nondeterministically selective nondeterministic selectivity $\sim es - 9$, sets 49 81 \sim es that are not subsets of P/poly optimal lower bounds for most 76extended-lowness $\sim es$ \sim es that lack hard P-selective sets reduction \sim 97 61 reduction and equivalence $\sim es - 94$, - advice \sim 19, 34 95- advice upper bounds for reductions – refined advice \sim 20 to selectivity $\sim es = 22$ - refinement of multivalued nondeteradvice upper bounds for selectivity ministic function $\sim es$ 40 $\sim es = 21$ - relationships between nonde-- arbitrary \sim of selector functions 9 terministic selectivity $\sim es = 12$, - classic low $\sim es$ 41 13- collapse of $\sim es = 12$, see collapse – relativizable \sim 43 – complement of a \sim 11 - relativized $\Sigma_k^p \sim -43$ complexity $\sim 3, 8, 16, 19, 41, 61, 62$, - selectivity $\sim es = 10$ 79, 116, 117, 119 semi-recursive sets as a \sim from complexity \sim es near polynomial time recursive function theory v separation of reduction \sim es from - degree of organizational simplicity of equivalence $\sim es$ 96 selectivity $\sim es$ 43 - set of equivalence $\sim es -7, 124$ $-\operatorname{EL}_{\Delta_k^p} \sim \operatorname{es} -58$ set-wise complements of a complexity $- \operatorname{EL}_{\Sigma^p_{\iota}} \sim \operatorname{es} 58$ ~ 116 $- \operatorname{EL}_{\Theta_{h}^{p}} \sim \operatorname{es} 58$ structure of polynomial-time equalities and inequalities of recomplexity $\sim es$ 48 duction and equivalence $\sim es$ of $\Theta^p_{k} \sim \text{es} \quad 43$ P-selective sets – time-bounded \sim 20 103- equivalence $\sim 8, 97, 100, 124$ – token-based advice \sim exponential-time complexity $\sim es$ 7. classification 16– \sim of sets in NP using the low hierarchy 42 first two levels of the high hierarchy are well-known $\sim es$ 42 clique - function $\sim es$ 19, 119, see function, $-q-\sim$ 63 class of closure - function analog of $\sim es$ 68 $-\sim$ properties of P-sel 6 – hardness for complexity $\sim es$ 61 $-\sim$ under 2-ary connectives of P-sel, - high \sim 42 NPSV_t-sel, and NPMV_t-sel 84- inclusion properties of nondetermin-– \sim under bounded-truth-table istic advice $\sim es$ 39 reductions of a class

 $\mathbf{2}$

135

_	\sim under combined self-reducibility and 1-truth-table reductions of P-sel 103	$- \sim$ of the polynomial hierarchy being a consequence of unique solutions for SAT 38
-	~ under complement of NPMV-sel 15.82	- surprising \sim of complexity classes 61
_	~ under complement of NPMV _t -sel 11, 15, 34	– unexpected \sim of complexity classes 3
-	\sim under complement of NPSV-sel and NPMV _t -sel 81	collection $- \sim \text{ of strings} 53, 56, 57$
_	\sim under complement of P-sel 24, 79, 81, 83	commutativity 111, 112 comparability
_	\sim under conjunctive reductions of NP 79	- membership $\sim 105, 113$ - $\mathcal{O}(\log n)$ membership ~ 108
_	\sim under connectives of P-sel 102 \sim under connectives of selectivity	complement $- \sim \text{ of a P-selective set} 24, 26, 79$
_	classes $83, 84$ ~ under disjunctive reductions of NP	$- \sim \text{ of a set} 124$ $- \sim \text{ of an NPSV-selective set} 12$
_	79 \sim under intersection of P-sel 82	complementation $- \sim$ and connectives 84
_	~ under <i>k</i> -ary connectives of P-sel, NPSV ₄ -sel and NPMV ₄ -sel 84	$\begin{array}{ll} - \text{ closure under } \sim \text{ of NPMV-sel} & 82 \\ - \text{ closure under } \sim \text{ of NPMV}_t\text{-sel} & 11, \end{array}$
-	\sim under many-one reductions of NP 79	15 - closure under ~ of NPSV _t -sel and
_	\sim under many-one reductions of the levels of the low hierarchy 46	NPMV _t -sel 81 – closure under ~ of P-sel 5, 24, 79,
-	\sim under nonpositive reductions of P-sel 79	81, 83 completeness 61, 117
-	\sim under NXOR and XOR of nondeterministic selectivity classes	$-\sim$ for NP v $-\sim$ for NP under many-one reductions
_	83 \sim under positive reductions of P-sel	2 - \sim for NP under Turing reductions
_	103 \sim under positive Turing reductions	$- \leq_{m}^{p} \sim \text{for UP} 66$
_	of P-sel 79, 80 \sim under reductions of P-sel 80, 85	$- \leq_T \sim \text{ for NP} 42$ $- \mathcal{C} \sim 61,117$
-	\sim under Turing reductions of EXP 79	$\begin{array}{ccc} -\mathcal{C}-\underline{\leq_{m}}-\infty & 117\\ -\mathcal{C}-\underline{\leq_{r}}-\infty & 61,117\\ \text{high hierarchy of a hierarchy of} \end{array}$
-	boolean \sim of a complexity class 79, 81	$\begin{array}{c} $
_	downward \sim of P-selective sets 79 downward \sim under 1-truth-table	complexity 8
_	reductions 88 extension of \sim to NPSV _t -selectivity	- advice ~ 111
_	103 reduction ~ 85.88	- arbitrary $\sim -8, 17, 59$ - capture of $\sim - v$
-	relativized world \sim , optimal for self-reducible P-selective sets 103	- computational \sim of a gappy left cut 31
cc	ollapse	- computational \sim of a P-selective set
-	\sim of the boolean hierarchy 76	18
_	\sim of the polynomial hierarchy 48 \sim of the polynomial hierarchy vi, 2, 10, 38, 40, 42–44, 54, 55, 57, 108, 121	$\begin{array}{llllllllllllllllllllllllllllllllllll$

– left cuts capture the \sim of real numbers v - nonuniform \sim 17 cut – semi-membership \sim 1, 3 - types of $\sim v$ computability $- \sim$ in deterministic polynomial time reals v 119 $-\sim \text{in FP}_{tt}^{\text{NP}}$ 70 $-\sim$ in polynomial time 120 31– deterministic polynomial-time \sim 119- easy \sim 100 – partial polynomial-time \sim 7 degree - polynomial-time $\sim v, 6, 62, 88$ - recursive \sim 31 computation 19, 20, 33, 97, 116, 121 $-\sim$ of the value of a circuit 18 $-\leq^p_m -\sim 8$ - accepting \sim 93 \leq^p_{pos} -~ – feasible \sim 2 $-\leq_{r}\sim 8$ – nondeterministic guess of a \sim –14 $\begin{array}{c} \underline{\leq}_{T}^{p} \\ \underline{\leq}_{T}^{p} \\ \underline{\leq}_{tt}^{p} \\ \end{array} \\ \sim$ 8 – polynomial-time ~ 2 8 – semi-feasible \sim v–vii, 1, 2, 16 – world of $\sim -v$ computers - NP \sim -8– making \sim smarter vi computing – intuitive \sim vi coNE 8 connection - structural \sim v connective $-\sim$ s and complementation 84 – almost-completely degenerate \sim s Díaz vii 80,83 domain - boolean $\sim s$ 79,80 - complementation as a \sim 84 - completely degenerate $\sim s = 80, 83, 84$ – degenerate $\sim s = 84$ 121– identity \sim 84 Du vii - nondegenerate $\sim s = 83, 84$ – under which \sim s are P-selective sets $\mathbf{E}_{1\text{-}T}^{p}$ - ~(P-sel) closed 79 coNP 12-16, 20-22, 24-26, 32-34, 37, 38, 40, 42, 44, 54–56, 68, 74–76, 78, 82, \mathbf{E}_{1-tt}^{p} 88, 90, 116, 117, 120, 122 $-\sim$ (P-sel) - are nondeterministically selective EATCS i \mathbf{E}_{btt}^{p} - ~(P-sel) sets hard for \sim 73 coNP/poly 21, 33, 34 \mathbf{E}_{k-T}^{p} - ~(P-sel) containment – nonuniform $\sim s$ 67 coR 123 \mathbf{E}_{k-tt}^{p} \sim (P-sel) count

– transition \sim 97, 98Crescenzi vii - computational complexity of a gappy left ~ 31 - gappy left $\sim 31, 96, 99$ – left \sim s capture the complexity of nonempty parts of a gappy left \sim standard left \sim of real numbers 3 - time-bounded left $\sim s$ 16 decidability 8 $-\sim in NP = 8$ – \sim of organizational simplicity of selectivity classes 43 8 - maximum out- \sim 63 - node with maximum out- \sim 76 – recursively enumerable $\sim s = 15$ - reducibility ~ 8 – sets in an NP \sim 8 - sets in an NP ~ $\Delta_0^{p,A}$ 117 Δ_2^p 61, 66, 67, 122 Δ_k^p 43, 117, 118 $\Delta_{k}^{p,A}$ 45, 117, 118 diagonalization 96, 97, 99-102 \sim of an NPSV function 39 DSPACE 118, 121 DTIME 2, 8, 31, 68, 71, 82, 118, 119, ${\rm E} \quad 8, 22, 26, 27, 109, 115, 118 \\$ 9595, 9797,100 97, 100, 103 97, 99, 100, 103

 $\operatorname{EL}_{\Delta_k^p}$ 45, 46, 48, 58, 118 $\operatorname{EL}_{\Delta_{L}^{p}}^{W}$ 48, 118 ELH⁻ 45, 54, 55, 118 $EL_{\Sigma_{h}^{p}}$ 45–50, 54, 55, 58, 59, 107, 118 45, 46, 49, 55, 58, 107, 118 $EL_{\Theta_{i}^{p}}$ van Emde Boas vii, 103 enumerability see P-enumerability $\epsilon = 123$ equality 43,68 - complete \sim versus weak \sim 16 – notion of \sim for partial functions 16 equivalence 81,99 – Turing \sim between tally sets and P-selective sets 17, 30 E_T^p $-\sim$ (P-sel) 97, 99, 100 \mathbf{E}_{tt}^p $-\sim$ (P-sel) 97,100 example 2, 3, 5, 6, 8, 9, 13–15, 17, 18, 21, 41, 43, 46, 48, 58, 61, 71, 74--76, 79,81, 82, 85, 90, 97, 105, 108, 109 - classic \sim of P-selectivity 3 - counter \sim 50 EXP 27, 37, 38, 66, 67, 76, 79, 119 \mathcal{F} -sel 9, 119, 120 fair-S(k) 106 fair-S(n)106, 107feasibility – semi- \sim vii, 1 Feigenbaum 40 FewP 68, 69, 119 FEXP 82,109 FEXP-sel 82 flier - taking a \sim vi formula - boolean $\sim s$ 35, 36 - satisfiable \sim s vi, 5, 38, 73 Fortnow viii, 59, 76 FP 9, 10, 12–15, 32, 68, 70, 71, 77, 88, 96, 111, 112, 115, 119, 121 - relativized ~ 14 $\operatorname{FP}^{\operatorname{NP}[\mathcal{O}(\log n)]}$ 68, 70, 71, 77 FPP 109, 113 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{array}$ 68, 70, 71, 77 FP^X 96 fraction - dyadic rational ~ 3 function

 $-\sim$ computable by a deterministic polynomial-time Turing machine 119-(A,k)-sort \sim 113 - advice \sim 19,23 – almost completely degenerate \sim – 80 - associative \sim 111 - boolean \sim 79,83 - characteristic \sim 81,84 - class of \sim s 9, 19, 117, 119 – class of \sim s computable via $\mathcal{O}(\log n)$ Turing queries to NP 68 class of \sim s computable via truth-table access to NP 68 - collection of $\sim s = 20, 117$ - completely degenerate \sim 80 - complexity-theoretic study of one-way $\sim s = 16$ - computable \sim 62, 64, 65 - degenerate ~ 80 deterministic polynomial-time $\begin{array}{rl} \text{computable} \sim & 119 \\ - & \text{FPP-selector} \sim & 109 \end{array}$ – general classes of $\sim s$ 16- logspace \sim s 20 – multivalued \sim 122 - multivalued nondeterministic polynomial-time $\sim s = 120$ – multivalued symmetric \sim 10 – nondegenerate boolean \sim 84 - nondeterministic selector ~ 32 - notion of equality for partial $\sim s$ 16- NPMV \sim 10 - NPMV_t \sim 10 - NPSV \sim 10 – NPSV-selector \sim 32 - NPSV_t ~ -10 - P-selector $\sim 1, 3-7, 21, 23, 25, 26,$ 28, 31, 32, 35, 49, 63-65, 85, 88, 89, 92, 94-96, 98, 99, 102, 111-113, 124 - partial ~ 16 - partial multivalued $\sim 9, 10, 122$ polynomial-time computable \sim 7, 65, 107- probabilistic selector $\sim 105, 109$ - ranking \sim 110 selector \sim v, 7, 10, 32, 53, 57, 81, 90, 92, 96, 98, 105-107, 109, 121 - selector ~ for NPSV_t-sel sets 32– selector \sim s sensitive to the order of the arguments 4 - single-valued \sim 10, 56, 120

- single-valued deterministic polynomial-time computable \sim 9 - single-valued nondeterministic polynomial-time ~ 120 - symmetric selector $\sim 4, 22, 28, 34,$ hierarchy 96,101 - total \sim 117, 119 - total multivalued nondeterministic polynomial-time ~ 120 - total recursive \sim 96 – total selector \sim 32 - total single-valued \sim 119 - total single-valued nondeterministic polynomial-time ~ 120 – uncomputable \sim 18 Furst 39 - high \sim 42 - low \sim 41 Gabarró vii – lowness \sim Gasarch vii, 59, 113 gate 18 – and \sim 18 - exponentially many $\sim s = 18$ 123- not \sim 18 - or \sim 18 – polynomial number of $\sim s = 18$ Hofmann viii Gavaldà 59 generalization 15, 105-110, 121 Homan vii $-\sim$ s of P-selectivity 105Homer vii Gill 113 Glaßer 76 Goldsmith 15,113 de Graaf vii immunity guess $-C-\sim 110$ - nondeterministic \sim bits 62 - nondeterministic \sim of a computation - P-sr-∼ 111 path 53 Gundermann 76 hardness 61, 117 $-\leq_{tt}^{p}\sim -66$ $-\operatorname{coNP-}{\leq_m^p}{\sim}$ 73inequality - NP- \sim 61 interpreter - NP- \leq_{1-tt}^{p} -~ 74 $- \operatorname{NP-}_{\gamma}^{-1} \sim 74$ $- \operatorname{NP-}_{tt}^{p} \sim 68$ – truth-table \sim for NP 67- Turing \sim for NP 67 28Hartmanis 59,76 hashing – half \sim 40Hemachandra 15, 58, 59, 76, 103, see intuition vi Hemaspaandra

Hemaspaandra iii, iv, vii, viii, 15, 16, 39, 40, 58, 59, 76–78, 102, 103, 112, 113, see Hemachandra Hempel vii, 113 HH 42, 44, 119 - arithmetical $\sim 8,122$ - close connection of the extended low \sim to the low \sim 45 collapse of the boolean \sim 76collapse of the low ~ 48 collapse of the polynomial \sim vi, 2, 10, 40, 42-44, 54, 55, 57, 108, 121decomposition of NP via the low ${\sim}{\rm s}$ and high $\sim s$ 44 extended low \sim 118– Kleene \sim 122 43 - multiselectivity ~ 107 polynomial \sim and small circuits 35 relativized polynomial $\sim 117, 122,$ $- S(k) \sim 106$ Hoene vii, 16, 39, 40, 76-78, 103, 113 Holzwarth viii $H_{\Sigma_{k}^{p}}$ 42, 44, 119 - P-∼ 110, 111 – weakly-P-rankable- \sim 111 incomparability $\begin{array}{l} & -\sim \text{ of } \mathbf{E}_{T}^{p}(\text{P-sel}) \text{ and } \mathbf{R}_{btt}^{p}(\text{P-sel}) \\ & -\sim \text{ of } \mathbf{E}_{T}^{p}(\text{P-sel}) \text{ and } \mathbf{R}_{tt}^{p}(\text{P-sel}) \\ & -\sim \text{ of } \mathbf{E}_{tt}^{p}(\text{P-sel}) \text{ and } \mathbf{R}_{btt}^{p}(\text{P-sel}) \end{array}$ 10010010029, 42- advice \sim 20, 24, 31, 34, 35 - advice \sim for SAT 35-37 – class of advice $\sim s$ 31 nondeterministic advice \sim 24, 26,NP advice $\sim 25, 26, 30$ – P advice \sim 30 – recursive advice \sim - 39 – skating on \sim vi

Jain 103 Jenner 77 Jiang vii, 58, 102, 112 Jockusch 15, 16, 103 Joseph 15, 16, 113 k-walk 97-99 - self-avoiding \sim 97 Kadin 76 Kämper 40 Karloff 59 Karp 20, 35, 39, 40 Karp-Lipton $-\sim$ Theorem 35 – relativized version of the \sim Theorem 38Kilian 40 king $-\sim$ of a tournament 24 Kleene 16 $-\sim$ hierarchy 122 Ko vii, 16, 39, 58, 59, 75, 112 Köbler 16, 40, 58, 59 Kummer 77, 103, 113 Landau 39 language *see* set - tally \sim see set, tally $L_{\Delta_k^p}$ 43–45, 48, 58 $L^{\overline{W}}_{\Delta^p_k}$ 48Lemma - Toda Ordering \sim 76 – Toda's \sim – 76 length - advice \sim 34 - bit- \sim 23 - linear \sim 19–22, 26, 28, 30, 39, 105, 112 polynomial ~ 19-24, 27, 32-40, 49,54, 55, 67, 68, 76, 78, 105, 107–109, 120, 121 quadratic ~ 19, 20, 24, 39, 112LH 41, 42, 44, 46, 48, 57, 58, 119 Lindner 39,76 linear 19 Lipton 20, 35, 39, 40 list- query \sim 116 \mathbf{L}_{k}^{W} 119 L_{NP} 41 logarithm – implicit base of \sim 23Long 16, 58, 59

loop - self \sim s 63 Low $-\sim(\mathcal{C})$ 119 $-\sim \stackrel{\sim}{(\Sigma_0^p)} \\ -\sim \stackrel{\sim}{(\Sigma_1^p)}$ 41 41 $-\sim (\Sigma_2^{\dagger})$ 41 $-\sim (\Sigma_3^{\tilde{p}})$ 41lowness 41-43, 45, 46, 55, 58, 59 – \sim of all four types of nondeterministically selective sets 58 \sim of nondeterministically selective sets 49,58 $-\sim of NP \cap P-sel 48$ $-\sim$ of P-selective sets 46,49 - analysis in terms of \sim 58 - best currently known upper bounds for \sim of selective sets 51 - best currently known upper bounds for extended \sim of selective sets 50 - definition of \sim 41 - extended \sim 43, 46–49, 59 - extended \sim of all four types of nondeterministically selective sets 58- extended- \sim bounds 50 – extended- \sim structure of P-selective 48, 49sets extended- \sim upper and lower bounds 46 extended- \sim upper bounds 55 generalization of ~ 45 - more general \sim result 40 - nontrivial lower bound on \sim 46,48 - refined \sim 43 - upper and lower bounds on \sim 46, 49- upper and lower bounds on extended ~ 49 L_P 41 $L_{\Sigma_{t}^{p}}$ 41–45, 47–49, 51, 54, 55, 57–59, 107, 119 $L_{\Theta_{k}^{p}}$ 43-45, 50, 55, 58 Lund 59 machine 9, 24, 27, 28, 32, 47, 52, 56, 65, 67, 69, 81, 92, 95, 99, 100, 102, 103, 116, 118- bottleneck $\sim s$ 39 deterministic f(n)-space Turing ~ 118– deterministic f(n)-time Turing ~ 118

- deterministic polynomial-time Turing nonclosure $\sim 2, 47, 88, 106, 118, 119, 123$ $- \sim \text{ of } \operatorname{EL}_{\Sigma_{r}^{p}}$ under many-one – enumeration of partial recursive $\sim s$ reductions 46 31 $-\sim$ of the extended low hierarchy - exponential-time \sim 27 $- \sim$ under a function of P-sel 84 - FewP \sim 68 – \sim under intersection for all selectivity - FP \sim 12 classes 82 $- \mathrm{FP}_{tt}^A \sim -71$ $-\sim$ under k-ary connectives of - function-computing Turing ~ 10 , NPSV-sel and NPMV-sel 84 120 $- \sim$ under nondegenerate connectives nondeterministic polynomial-time of NPSV-sel and NPMV-sel 84 function-computing Turing ~ 10 – \sim under reductions of P-sel $\,$ 85 $\,$ nondeterministic polynomial-time $- \sim$ under union of selective sets 82 Turing $\sim 10, 11, 14, 29, 38, 47, 50,$ – simultaneous capture of \sim under 55, 62, 65, 69, 90, 109, 115, 120, 121 intersection for all versions of - NP \sim 53, 56, 67 selectivity 82 - oracle \sim 47,86 - P^{A \oplus SAT} \sim 47 nondeterminism vi, 39 - linear amount of \sim 39 – polynomial-time oracle \sim 29 – understanding of \sim 9 – polynomial-time Turing \sim -27, 69notation 123 probabilistic polynomial-time Turing notion ~ 123 - query-clocked \sim 100 $- \sim$ of being "easily k-countable" 113 - simulating \sim 27 $- \sim$ of equality for partial functions - Turing $\sim 5,116$ 16 – Turing reduction \sim 94 - ~s closely related to P-selectivity unambiguous polynomial-time Turing 109- ~s related to membership compara- $\sim 67,123$ – unambiguous Turing \sim 67 bility 108 Magklis viii - advice \sim 35 Mayer viii – complexity-theoretic \sim vii McLaughlin 16refinements of the \sim of membership measure comparability 108 $-\sim$ of resource 19 NP v, 2, 3, 5, 8, 9, 11-16, 20-22, 25, 26, - complexity $\sim s = 107$ 29, 30, 32-59, 61, 66-72, 74-79, 81, 82, measurement 88, 90, 91, 94, 103, 105, 107, 108, 111, - fine-grained \sim of advice 20112, 116, 117, 119-122 Meyer 16 complete for $\sim v$ MinimumPath 62, 65-67, 69, 70 – completeness for \sim under many-one reductions 2 $\begin{array}{cc} \mathbb{N} & 124 \\ \mathbb{N}^+ & 124 \end{array}$ – completeness for \sim under Turing reductions 2 Naik vii, 16, 39, 40, 59, 76-78, 103 - relativized \sim 42, 43, 47, 48, 119, 120 Nasipak vii, 39 NP/poly 21, 33, 34 nature NPMV 10, 11, 15, 16, 34, 39, 54, 74, 91, – nondeterministic \sim of gamma 92, 120 reductions 90 NPMV-sel 10, 11, 13, 21, 34, 41, 50, 51, NE 8,119 54, 55, 57, 58, 74, 75, 82-84, 120 NEXP 119 Nickelsen vii, viii, 113 NPMV_t 10-12, 15, 16, 34, 54, 74, 75,81, 90, 91, 120 Nisan 59 NNT 15 NPMV_t-sel 11-13, 21, 34, 41, 50, 51,54, 55, 57–59, 74, 75, 81–84, 90, 120 - implicitly membership-testable sets NP^{NP} 55, 57, 121 2,119

141

46

 $\begin{array}{l} - & \mathbf{E}_{1-tt}^{p}(\sim) & 95,97 \\ - & \mathbf{E}_{btt}^{p}(\sim) & 97,100 \\ - & \mathbf{E}_{k-T}^{p}(\sim) & 97,100,103 \\ - & \mathbf{E}_{k-tt}^{p}(\sim) & 97,99,100,1 \end{array}$ NPSV 9, 10, 12, 15, 16, 32, 34, 38, 39, 49, 50, 52, 55, 56, 74, 120 NPSV-sel 10-13, 21, 32-34, 41, 49-51, 54, 55, 57 - 59, 68, 74, 83, 84, 120 $\begin{array}{l} - \mathbf{E}_{k-tt}^{p}(\sim) & 97, 99, 100, 103 \\ - \mathbf{E}_{T}^{p}(\sim) & 97, 99, 100 \end{array}$ NPSV_t 10, 12–16, 74, 81, 88, 90, 103, $\begin{array}{l} - \mathrm{E}_{T}^{*}(\sim) & 97, 99, 10\\ - \mathrm{E}_{tt}^{*}(\sim) & 97, 100\\ - \mathrm{R}_{1-T}^{*}(\sim) & 95\\ - \mathrm{R}_{1-tt}^{*}(\sim) & 95, 96\\ - \mathrm{R}_{2-tt}^{*}(\sim) & 96\\ - \mathrm{R}_{btt}^{*}(\sim) & 97, 100\\ \end{array}$ 120NPSV_t-sel 11-14, 21, 32, 41, 50, 51, 54,57, 58, 68, 74, 81, 83, 84, 120 NT near-testable sets 2, 121 NTIME 119, 121 - relativized $\mathbf{R}_{k-tt}^{p}(\sim)$ 103 $\begin{array}{l} - \mathbf{R}_{k-T}^{p}(\sim) & 95, 97, 99 \\ - \mathbf{R}_{k-tt}^{p}(\sim) & 95, 97, 99, 103 \\ - \mathbf{R}_{n\mathcal{O}(1)-T}^{e}(\sim) & 28 \\ - \mathbf{R}_{\mathcal{O}(\log n)-T}^{p}(\sim) & 95 \end{array}$ Ogihara vii, viii, 16, 39, 40, 59, 77, 78, 103, 113, see Ogiwara Ogiwara 76, 103, see Ogihara optimality $- \operatorname{R}^{e}_{O(n^k)-T}(\sim) \quad 27$ - relativized \sim 48 $- R_T^p(\sim) 35,97,100,102$ oracle 12, 14, 27-29, 41, 43, 47, 52-54, $- R_{tt}^{p}(\sim) = 95, 97, 99, 100, 102, 108$ 56, 57, 59, 80, 81, 88, 98–103, 115, 118, P-sr 110, 111, 113 120, 121, 123 - the polynomial-time semi-rankable $-\sim$ query 5 sets 110 - low sets as $\sim s$ 41 P/poly 21–24, 35–37, 39, 78, 105, 107, - NP \sim 71 108 - open \sim questions 59 Papadimitriou vii ordering Parkins vii, 39 - lexicographical \sim 71, 108, 110 Pasanen 16 - linear \sim 7,124 - linear \sim of $\{1\}^*$ Paterson 16 6 path 11, 12, 14, 53, 65, 81, 92, 93 – linear ~ of Σ^* 6 accepting $\sim 11, 29, 56, 62, 66-70,$ – linear ~ of Σ^* 6 90, 94, 120, 121, 123 - partial \sim 7 accepting \sim of a FewP machine 68 – partial \sim 7 accepting \sim of a function-computing output machine 10, 120 $-\sim$ of a polynomial-time algorithm v - computation \sim 14, 33, 56, 62, 66, – linearly bounded \sim of an advice 69, 70, 87, 109, 121 function 19 directed $\sim 63, 64, 76$ - quadratically bounded \sim of an advice - directed \sim in a tournament 64 function 19 – guess bits of an accepting \sim Owings 113 70– guessed \sim 14 v, 1-9, 12-16, 19-24, 26, 28-30, 32, guessed computation ~ 11 Ρ 33, 35-39, 41-49, 54, 55, 58, 61, 62, minimum accepting \sim of a nondeter-64-68, 76-79, 82, 83, 85, 88, 94, 95, ministic Turing machine 62, 65–67, 103, 105-112, 115, 117, 118, 120-123 69,70 P-close 2, 49, 121 - nondeterministic \sim 53, 54, 57 P-enumerability - nondeterministic guess of a P-mc 108 computation $\sim 11, 53$ $- \sim (\text{const})$ 108– nondownward \sim 20 $\mathbf{R}_{btt}^{p}(\sim(\text{const}))$ 108 rejecting \sim of a function-computing P-sel 1-5, 8, 9, 11-13, 18, 20-27, 30, 31, machine 10, 120 35, 39, 41, 43, 46-51, 66-68, 70, 72, 76, - rejecting $\sim s$ 66 - short \sim s in a tournament 63 77, 79, 81-85, 88, 94-96, 102, 103, 105, 106, 110--112, 121– simulated \sim 53 $- E_{1-T}^{p}(\sim) - 95$ \mathbf{PH}

- polynomial hierarchy 15, 35, 37–40, 42, 48, 58, 67, 68, 74–76, 78, 108, 113, 121 Π_{k}^{p} 37, 38 poly 19 Popeye 41 70 $-\sim$ the Sailor Man 41 - cotton candy is low for \sim 41 - spinach is not low for \sim 41 power 41, 49, 94 $-\sim s \text{ of two} 20$ - distinguishing the \sim of reductions – relative ~ -2 - separating the \sim of reducibilities 2, 15 PP 28-30, 46-49, 55, 75, 109, 121 PP/poly 109 R 94 predecessor – lexicographical ~ 2 123preorder 7 $\mathbf{R}_{1-T_{i}}^{p}$ procedure – nondeterministic polynomial-time \sim \mathbf{R}_{1-tt}^{p} 91program – Selman's \sim – 16 – Selman's structural \sim – v pronouncement 77 proof - nonrelativizable \sim 59 - relativizable \sim 46 property - closure \sim 84 - closure \sim s of P-sel 6,79 rational - closure \sim s of P-sel, NPSV_t-sel, and $NPMV_t$ -sel 84 \mathbf{R}_{btt}^{p} PSPACE 37, 58, 59, 66, 67, 75, 88, 105, 109, 121 \mathbf{P}^W -sel 48 qP - the quasipolynomial time sets 2, 16, 121quadratic 19 quantification 88 - universal \sim 33 quantifier - alternating $\sim s$ 43 – number of \sim s needed to remove a set's ability to provide useful information 43 103– polynomially bounded \sim 9 - unbounded \sim 9

query 12, 14, 26-28, 47, 52-54, 56, 57, 65, 66, 68-71, 73, 81, 86, 89-102, 107, 108, 115, 116, 118, 121, 123 - answers to \sim s 69,70 – answers to \sim s on the MinimumPath – linear limit to number of \sim s 27 linear number of \sim s by a Turing reduction 26 membership \sim 70– nonadaptive \sim 102- oracle \sim 5 – polynomial number of \sim s to a P-selective set 76 - possible answers to $\sim s$ 69 - set of answers to \sim 71 - truth-table \sim 70 - random polynomial time 68, 122, \sim (P-sel) 95 \sim (P-sel) 95,96 $\begin{array}{c} \mathbf{R}_{2\text{-}tt}^{p} \\ - \sim (\text{P-sel}) \begin{array}{c} 96 \\ \mathbf{J}_{\text{rop}} \end{array}$ Ramachandran 59range 101 $-\sim$ of natural senses v Ranjan 59 rank 110 rankability - P-semi- \sim 110 – dyadic \sim 3 $-\sim$ (P-mc(const)) 108 $- \sim$ (P-sel) 97,100 realization $-\sim$ of an FP^{NP}_{tt} function 77 recursiveness - semi- \sim 2, 6, 82, 83, 85 reducibility 8,117 – 1-truth-table \sim to a P-selective set - 2-disjunctive self- \sim 5,118 $- \sim \text{degree} \quad 8$ - disjunctive self- \sim 5, 38, 118 - disjunctive self- \sim of SAT 35 - self- \sim vi, 16, 74, 75, 79, 80, 88, 90, Turing ~ 26 - Turing self- \sim 5, 74, 75, 88–92, 123

- Turing self- \sim , classes containing - standard set \sim s 123 complete sets with that property 75– structural \sim – transitive \sim 7 reduction relativization 13, 41, 43, 49, 55, 88, 90, – advice upper bounds for \sim s to selectivity classes 22 119 $-\sim$ of a proof 32 - comparison of polynomial-time \sim s $\mathbf{2}$ $-\sim$ on a per set basis 38 $-\sim$ remains a useful approach 59 completeness for NP under many-one - positive \sim 59 $\sim s = 2$ completeness for NP under Turing survey of open \sim questions 59 requirement 20 $\sim s$ 2 research v-vii, 2, 3, 5 - conjunctive $\sim s = 81$ – unification of semi-feasibility \sim vi - disjunctive $\sim s = 81$ result 5, 7, 12–16, 20, 23, 34, 37, 39, 40, – exponential-time Turing \sim 11545-49, 55, 61, 66-68, 73-80, 85, 88, 90, - gamma \sim 90, 115 – linear Turing \sim -2691, 100, 102, 105, 106, 108, 110–113 \sim s distinguishing reducibility notions - locally positive Turing \sim 103, 115 2- many-one $\sim s$ 81 – \sim s on topics beyond selectivity 3 - parity $\sim s = 81$ advice $\sim s = 54$ - polynomial-time Turing $\sim 95,99$ classic \sim of Hartmanis and Stearns - positive Turing $\sim 29, 79, 81, 85, 86,$ 76115- classic $\sim s = 3$ - positive-truth-table \sim 87 - complexity ~ 107 strong nondeterministic Turing \sim – extended-lowness \sim 47, 48, 54 116– hardness \sim 62 – truth-table $\sim s$ 116 immediate corollaries of lowness ${\sim}{\rm s}$ - Turing $\sim 26, 29, 94, 100, 115$ 46- variants of positive $\sim s = 80$ links between oracle \sim s and \sim s in refinement 16, 39, 40, 110 the real world 59 $- \sim \text{ of P-selectivity} \quad 110, 111$ - lowness \sim s 43, 46, 48, 55 $-\sim$ of the amount of advice 20 - meaning and weight of relativization $-\sim$ of the P-selective sets 105 $\sim s$ -59 $-\sim$ of the semi-feasible sets vnonrelativized $\sim s$ 76 - NPSV \sim 39- relativizable \sim s 58 Regan vii - relativized $\sim s$ 76 relation 7,29 - relativizing $\sim s$ 90 $-\sim$ between nondeterministic value of relativized $\sim s$ 49 selectivity classes 12 \mathbf{R}_{k-T}^{p} \sim between the multiselectivity -~(P-sel) 95, 97, 99hierarchy and the extended low $\begin{array}{c} \mathbf{R}_{k-tt}^{p} \\ - \sim (\text{P-sel}) \end{array}$ hierarchy 107 95, 97, 99, 103 \sim between truth-table equivalence $\begin{array}{c} \mathbf{R}_{k-tt}^{p,X} \\ - \sim (\text{P-sel}) \end{array}$ classes and Turing equivalence classes 103100 \mathbf{R}_m^p – close \sim between P-selective sets and \sim (S(k)) 106standard left cuts 39 $\mathbf{R}^{e}_{n^{\mathcal{O}(1)}\text{-}T}$ $\begin{array}{ll} - \mbox{ equivalence } \sim & 7,105,124 \\ - \mbox{ equivalence } \sim & 7 \end{array}$ \sim (P-sel) 28 $\mathbf{R}^{p}_{\mathcal{O}(\log n) - T}$ – equivalence ~ on Σ^* 7 $-\sim$ (P-sel) – preorder \sim 7 95– reflexive \sim 7 $\mathbf{R}^{e}_{O(n^k)-T}$ – reflexive and transitive \sim 7 $-\sim$ (P-sel) 27- standard arithmetic $\sim s$ 123 Rogers 40

Rohatgi 59 Rothe vii, 16, 58, 112 Royer 40 Rozenberg viii $R_r(\mathcal{C}) = 122$ \mathbf{R}_T^p $-\sim$ (P-sel) 35, 97, 100, 102 $-\sim$ (SPARSE) 35 \mathbf{R}_{tt}^p $- \sim$ (P-sel) 95, 97, 99, 100, 102, 108 $- \sim$ (TALLY) 35 $S(\sqrt{n}) = 106$ S(2) = 107 $\begin{array}{c} \mathbf{S}(k) & 106 \\ - \mathbf{R}_m^p(\sim) & 106 \end{array}$ $S(\log n)$ 106 S(n) 106 $\begin{array}{c} S_2 \\ S_2^{\rm NP\cap coNP} \\ S_2^{\rm NP\cap coNP} \\ \end{array} \begin{array}{c} 40, 76, 78, 113, 122 \\ 40, 76, 78, 122 \end{array}$ SAT 5, 9, 14, 15, 35–39, 45, 47, 54, 68, 71-73, 75, 76, 82, 108, 118- initial \sim of a linear ordering 6 - initial \sim of a polynomial-time computable linear ordering 6 - initial \sim of a recursive linear ordering 6 $- \sim$ and self-reducible sets 88 $-\sim$ via general functions 119 - associative \sim 111–112 – commutative \sim 111–112 - four types of nondeterministic \sim 15 – generalizations of \sim 105 - multi \sim 105, 106, 112, 113 - nondeterministic $\sim 9,80$ - NP-∼ 38 - NP2V-∼ 39 - NPMV- \sim 11, 15, 16, 34, 74, 91 - NPMV_t- \sim 11, 12, 15, 16, 74, 75, 90,

- NPSV- \sim 12, 15, 32, 38 - NPSV_t-~ 12, 14–16, 88, 90, 103 - other types of \sim than P- \sim 102 $- P-\sim 1, 3-7, 9, 12, 14-16, 31, 49, 62,$ 64, 68, 74, 82, 88, 102, 103, 105, 109, 110– P-∼ 1 – probabilistic \sim 105, 109 - relationships between nondeterministic \sim classes 12 - study of nondeterministic \sim 15 – understanding of \sim 9 weak ~ 105, 112selector 52, 64, 81, 97, 99 $-\sim$ function see function, selector – associative \sim 111–112 – commutative \sim 111–112 $- \mathcal{F} - \sim -9,119$ - more powerful $\sim s$ 109 - NPMV- \sim 11, 15, 74, 92 - NPMV_t- \sim 11, 12, 81, 90 - NPSV- \sim 32, 34, 38, 50, 52, 55, 56 - NPSV_t-~ 14, 15 - P-∼ 7,92 - symmetric $\sim 4,86$ symmetric P- \sim 100 Selman v, vii, 1, 2, 4, 5, 15, 16, 39, 40, 59, 76-78, 103sequence – characteristic \sim 102 set $-\sim s \leq_r$ -equivalent to some set in \mathcal{C} 118 $(a, b)_p$ -recursive $\sim s$ 109 - advice complexity of the P-selective $\sim s$ 111 advice for P-selective $\sim s = 20$ best currently known upper bounds for extended lowness of selective $\sim s$ 50- best currently known upper bounds for lowness of selective $\sim s = 51$ - cheatable $\sim s$ 109, 113 - class containing Turing self-reducible complete $\sim s = 75$ - closure properties of the P-selective $\sim s = 6$ closure under complement of NPMV-selective $\sim s = 15$ closure under complement of $NPMV_t$ selective $\sim s = 15$
 - collection of \sim s 19, 20, 79, 81, 117
 - complement of a \sim 11
- Salomaa viii Schnorr 16 Schöning 15, 16, 58, 59 segment selectivity 9, 16, 79, 106 $-(A,k)-\sim 113$ $-(i, j) \sim 106$ - broadening of \sim 9 – deterministic ~ -90 $-\mathcal{F}-\sim 9,119$ - FEXP-∼ 109 – forms of \sim 105 - FPP-∼ 109, 113 $-\mathrm{FP}_t^L \sim 88$
- 91

– complement of an NPSV-selective \sim – P-superterse $\sim s$ 109 12– P-verbose $\sim s$ 109 - complete $\sim s = 13, 38$ polynomial-time semi-rankable \sim s - complete characterization of 110 P-selective $\sim s = 6$ - polynomial-time Turing equivalent - complete characterization of $\sim s 8$ semi-recursive $\sim s = 6$ - query $\sim s$ 69 computationally simple \sim in a – refinement of the semi-feasible $\sim s - v$ natural sense v - self-reducible $\sim s$ 79,88 $-\Delta_k^p$ extended low $\sim s$ 118 – self-reducible P-selective \sim 88 – semi-feasible $\sim s v, vi, 1, 121$ - disjunctively self-reducible \sim s 103,105, 118 semi-recursive $\sim s = v, 6, 15, 83, 96,$ - easily-countable $\sim s = 108, 109$ 109, 122 Σ_k^p extended low ~s 118 - FPP-selective \sim 109 - sparse \sim s 2,122 – implicitly membership-testable $\sim s$ 2, 15, 119– standard left cut \sim see cut – left cut \sim 28. see cut- superterse $\sim s$ 113 - tally \sim 8, 17 lowness for nondeterministically selective $\sim s$ 49 $-\Theta_k^p$ extended low $\sim s = 118$ – lowness of P-selective $\sim s$ 46 – Turing self-reducible $\sim s$ 123 – membership comparable $\sim s = 107$, – verbose $\sim s = 108$ – weakly P-rankable $\sim s$ 110 108– membership complexity of $\sim s = 1$ – weakly P-selective $\sim s$ 105- near-testable $\sim s = 2, 15, 108, 109, 121$ – weakly-P-rankable \sim s 110- nearly near-testable $\sim s = 2,119$ weakly-P-selective $\sim s$ 105 nondeterministic version of semiset-f = 9-12, 14, 32-34, 38, 39, 50, 52,55, 56, 74, 90, 92, 93, 119, 120, 122 feasible \sim vi – nondeterministically selective $\sim s$ setting - satisfiability $\sim s$ 73 10, 61, 67, 73, 90 - nonempty finite sub~ of a P-selective Sewelson 76 set 21, 24, 25 SH 106, 107 nonempty finite sub~ of an Shamir 59 NPMV-selective set 34 Sheu 58, 59 – nonrecursive \sim Σ^* 1, 4-7, 12, 17-20, 23, 28, 29, 39, 53,v - NP $\sim s$ 2 56, 77, 80, 85, 89, 91, 95, 108, 109, 111, $- \text{NP-} \leq_{tt}^{p} \text{-hard} \sim 68$ $- \text{NP-} \leq_{T}^{p} \text{-complete} \sim 68$ 117, 124 $\begin{array}{c} \Sigma^p_0 \\ \Sigma^p_1 \\ \Sigma^p_2 \\ \Sigma^p_3 \\ \Sigma^p_k \end{array}$ 41,12241 - NP-complete $\sim 5, 8, 14, 15, 42, 61$ 35-38, 40, 41, 47, 67, 75, 111 - NPMV-selective $\sim s = 34, 54$ - NPMV_t-selective $\sim s = 16, 34, 54$ 36, 4137, 38, 42, 43, 45, 54, 58, 118, 119, - NPSV-selective $\sim s = 16, 49$ - NPSV_t-selective $\sim s = 14, 16, 88$ 121, 122 $\Sigma^{p,A}_{\iota}$ 42, 45, 118, 119, 122, 123 - oracle ~ 5 - P-close $\sim s = 2, 15, 121$ simplicity 8 – P-enumerable \sim 77 - lowness is a notion of organizational - P-selective \sim v, 1-9, 17, 18, 20, ~ 43 21, 23-32, 39, 46-49, 61-68, 70, 73,organizational \sim of selectivity classes 76, 79-83, 85, 86, 88, 94-96, 98-103, 43105-111, 113, 121 - structural \sim 8,9 – P-selective \sim s whose intersection is simulation 12, 27, 53 not semi-recursive 82 Sipser vii – P-selective nonrecursive $\sim s - v$ Sivakumar vii, 76, 77 – P-semi-rankable \sim s 105, 110 sorting

1*C* T

 $-\sim$ of queries according to a selector $- \sim$ of semi-feasible algorithms iii 64, 65, 92, 94-96, 98, 99, 101, 102 $-(A,k)-\sim 113$ vii space 19 – deterministic $f(n) \sim 118$ - physical \sim taken by a circuit 19 – polynomial \sim 121 SPARSE 46, 48, 50, 107, 121, 122 $- R_T^p(\sim) = 35$ spinach 41 \sim is not low for Popeve 41 Stearns 76 step 26, 31, 32, 51, 53, 56, 57, 62, 64, 86, 87, 89, 91, 93, 98, 99, 116 - computation $\sim s$ 62 Stephan 77, 103, 113 $\Theta_k^{\check{p}}$ Stol vii Stricker viii string - advice $\sim 20, 25, 33$ time - collection of $\sim s = 21, 57, 116$ - concatenation of $\sim s$ 17 – easily decodable advice \sim 23 117- evil \sim 52study 9 $-\sim$ of associative selectivity 112 $-\sim$ of nondeterministic selectivity 9, 15 $- \sim \text{ of P-selectivity} \quad 1,7$ - complexity-theoretic \sim of one-way functions 16 complexity-theoretic $\,\sim\,$ of semimembership complexity 1 TALLY 6, 30, 47, 122 $- \mathrm{R}_{tt}^p(\sim) = 35$ Tantau vii, 102, 103 tape 116 \sim oracle \sim 116technique - minimum path $\sim 61, 62, 68, 75$ - parallel census ~ 68 test 1,49 - classic simplicity ~ 3 testability 109, 113– near- \sim Thakur vii Theorem - Karp-Lipton ~ 35 relativized version of the Karp-– \sim 's Lemma 76 Lipton ~ 38 theory token $-\sim$ of positive relativization 59 - advice $\sim 24-27, 31, 32, 34, 39, 117$

 $- \sim$ of semi-feasible computation v, – advice \sim 43 – basic lowness \sim 41 $- \operatorname{coding} \sim 97$ - complexity \sim 1, 3, 16, 41, 46, 103 - computational complexity \sim vii – extended-lowness \sim 46- lowness \sim 41, 43, 46 - P-selectivity ~ 68 - recursive function $\sim v, 2, 58, 103$ selectivity $\sim 3,105$ - tournament \sim 63 $\Theta_0^{p,A}$ 123 43, 118, 123 $\Theta_{\iota}^{n,A}$ 45, 118, 123 Thierauf 16, 39, 40, 76–78, 103 thresholds 106 - almost polynomial \sim (APT) 2,16 co-nondeterministic polynomial \sim deterministic "polynomial exponential" \sim 119 – deterministic exponential \sim 118 - deterministic $f(n) \sim -118$ – deterministic polynomial \sim 121 deterministic polynomial \sim relative to an oracle 121 - deterministic polynomial \sim relative to an oracle with a bounded number of queries 121 – exponential \sim vi, 26 - linear \sim 98,100 – linear exponential \sim 27 nondeterministic "polynomial exponential" \sim 119 nondeterministic exponential \sim 119- nondeterministic $f(n) \sim 121$ nondeterministic polynomial \sim 24,119.120 - nondeterministic running \sim 121 – probabilistic polynomial \sim 121 - quasipolynomial \sim (qP) 2, 16, 121 - random polynomial \sim 122 unambiguous nondeterministic polynomial ~ 123 Toda 75,76 $-\sim$ Ordering Lemma 76

Torán 77 Torenvliet iii, iv, viii, 39, 77, 103 tournament 63, 64, 76 – king of a \sim 24 tree 26 $-\sim$ of possible queries 100 - self-reduction $\sim 90, 91, 93$ union 7, 65, 96, 98, 99, 102, 105, 123 UP 66, 67, 123 variable 5, 9, 72, 79, 84 - logical and of $\sim s$ 124 - logical or of $\sim s$ 124 Veltman viii Verbeek vii verboseness 113 Vereshchagin 58 verification – polynomial-time \sim of a certificate 33 Vyskoč 59

Wagner 76 Wang vii, 16, 39, 40, 76–78, 103, 113 Watanabe vii, 40, 58, 112weakly-FP^{Σ_2^p}-rankable 111 weakly-P-rankable 110 – the weakly P-rankable sets 110 Wechsung 40, 76, 77 West 76 worktape 10,120 - semi-infinite \sim 10, 120 world - real \sim 49 - relativized \sim 46, 48, 49, 76, 103, 108, 118, 119 Wössner viii Young 15, 16, 113 Zaki vii, 16, 113 Zimand vii, 16, 59, 113 ZPP 37-40, 67, 68, 74, 78, 108, 122, $\begin{array}{c} 123 \\ {\rm ZPP}^{\rm NP} & 40, 67, 68, 78, 122 \end{array}$