Computer Networks

10/15/2014

TCP

Kai Shen

CSC 257/457 - Fall 2014

10/15/2014

TCP: Overview

Connection-oriented:

= handshaking (exchange of control msgs) to initialize sender,
receiver state before data exchange

Reliable data transfer:
= guaranteed arrival, no error, in order

Flow controlled:
= sender does not overwhelm receiver

Congestion controlled:
= sender does not overwhelm the network

No delay or bandwidth guarantee.

10/15/2014 CSC 257/457 - Fall 2014

TCP Segment Structure

32 bits

URG: urgent data
(generally not used)

source

port # | dest port #

ACK: ACK #

S

equence number

valid

—ackn

owledgement number

PSH: push data now
(generally not used)—"|

head] not
Sed

PR|S|F| Receive window

C

sum Urg data pnter

RST, SYN, FIN:— |
connection estab

Opf}'ﬂé (variable length)

(setup, teardown
commands)

Internet
checksum

application
data

(variable length)

10/15/2014

CSC 257/457 - Fall 2014

counting

by bytes

of data

(not segments!)

bytes
willing to
receive

Maximum Segment Size (MSS)

MSS is the maximum TCP segment that’d fit into the link layer
frame

Local MSS

Path MSS
= Tryand error probing

10/15/2014 CSC 257/457 - Fall 2014

Computer Networks

10/15/2014

TCP Reliable Data Transfer

= TCP provides reliable data transfer service on top of IP’s unreliable
service
= Pipelined transmissions
= Cumulative ACKs

= When the receiver receives out-of-order segments, it buffers them
and re-ACKs the last in-order data

= Retransmit a single segment at each timeout
= The sender retransmits at timeout or when receiving duplicate ACKs

= Somewhere between Go-back-N and Selective Repeat, closer to
which?

10/15/2014 CSC 257/457 - Fall 2014

TCP Timeout

Q: principles for setting transmission timeout value?
= too short: premature timeout and unnecessary retransmissions
= too long: slow reaction to segment loss
= longer than normal RTT (round trip time)
= but RTT varies

RTT distribution

Timeout

10/15/2014 CSC 257/457 - Fall 2014

Expected Round Trip Time

Derive expected RTT from past RTT measurement.

= Basic measurement: measured time from segment transmission until
ACK receipt

= Stability: RTT fluctuates, we want to avoid instability (pre-mature
reaction to short-term spikes)
= average several recent measurements, not just current RTT

= Agility: in case things do change, we want to adjust accordingly

= give more recent measurements higher weight

10/15/2014 CSC 257/457 - Fall 2014

EWMA - Exponentially Weighted
Moving Average

= influence of past samples decreases exponentially fast

SampleRTT, + a*SampleRTT, + a?*SampleRTT; +

ExpectedRTT = 1+oa+ o2+ .. .

SampleRTT, is RTT for the most recent data segment,
SampleRTT, is RTT for the next recent data segment, etc.

= ExpectedRTT = a*ExpectedRTT,,s; + (1-a)*SampleRTT,

= typical value in TCP: & = 0.875

10/15/2014 CSC 257/457 - Fall 2014

Computer Networks

10/15/2014

Example RTT Estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

»
g

RTT (milliseconds)

8
8

150

100

time (seconnds)

—+— SampleRTT —=— Estimated RTT

TCP Timeout

Setting the timeout:

ExpectedRTT plus “safety margin”
= larger variation in RTT - larger safety margin
= TimeoutInterval = ExpectedRTT + 4*DevRTT

DevRTT also estimated using EWMA of past measurements

10/15/2014 CSC 257/457 - Fall 2014

10

10/15/2014 CSC 257/457 - Fall 2014 9
TCP Sender Events and Processing
Data ready to send:
= create segment with seq #
= seq # is byte-stream number of first data byte in segment
= start timer
= timeout value: we just decided it!!
Timeout:
= retransmit segment that caused timeout
= restart timer
ACK revd:
= slide sender window if acknowledges previously unacked segments
= retransmit if 3 duplicate ACKs
10/15/2014 CSC 257/457 - Fall 2014 11

TCP byte-oriented seq. #’s and ACKs

Host B @

Seq. #'s:
= byte stream “number” of User Seq=q

X R =42 Ack=

first byte in segment’s Types CK<79, data < ,

Is\n Is\n’

data
ACKs: eionte”
= seq# of next byte sedT®

expected from other side

host ACKs

cumulative ACK

receipt Sege.
piggybacked in data of echoed 9545, ACK=g3
segments in the reverse via.c\n
direction
simple telnet scenario
10/15/2014 CSC 257/457 - Fall 2014

200 ‘Is\n’, echoes

time

12

Computer Networks

10/15/2014

TCP in Action: Cumulative ACK

@ Host A Host B @
Seq=gy
, 8 bytes data
200
2| Seq=1gg 2 RS
E * <0 bytes datg
F
loss
Slide sendwind P\o\@ﬂo
base to 120
time
Cumulative ACK scenario
10/15/2014 CSC 257/457 - Fall 2014 13

Fast Retransmission

= Time-out period often relatively long:
= long delay before resending lost packet

= When receiver receives out-of-order segments, it re-ACKs
the last in-order byte
= If sender receives 3 ACKs for the same data, it supposes that
segment after ACKed data was lost:
= fast retransmission: resend segment before timer expires,
restart timer

10/15/2014 CSC 257/457 - Fall 2014 14

TCP in Action: Duplicate ACKs and
Fast Retransmission

@ Host A Host B @

KO =92

Seq=92, 8 byteg datg
Sseq=1 00, g bytes dgg *

€q=1, 08, g byteg datg
116, 8 byteg datg ‘
=92

timeout

Seg=

[\e)

3 duplicate ACKs ACK=92

resend 92 AGK:QZ Seq

=9,
28 byteg data

time
Cumulative ACK scenario

10/15/2014 CSC 257/457 - Fall 2014 15

Outline

= Segment structure

= Reliable data transfer

= Flow control

= Connection management

10/15/2014 CSC 257/457 - Fall 2014 16

Computer Networks

TCP Flow Control

— BovWindow —d

= Receive side of TCP
connection has a receive

Flow Control:

segments

receive buffer doesn’t overflow

10/15/2014 CSC 257/457 - Fall 2014

data from TCP

= Receiver advertises spare room by including value of RcvWindow in

= Sender limits unACKed data to RcvWindow, therefore guarantees

1 application
buffer: ® data — process
in huffer
= App process may be slow at
reading from buffer. P BeyBitier i

17

10/15/2014

TCP Connection Management

m Establishment:

= TCP sender, receiver establish “connection” before exchanging
data segments

= Initialize TCP variables: starting seq. #s, MSS, buffers, flow
control info (e.g. RcvWindow)

s Teardown:

= Free up resources after mutually close

10/15/2014 CSC 257/457 - Fall 2014

18

TCP Connection Establishment

Three-way handshake:

@clien’r

connection
request

Step 1: client (active open) sends TCP
SYN segment to server
= specifies initial seq #
= no data

Step 2: server (passive open) host SN, €
receives SYN, replies with SYNACK
segment

= server allocates buffers
= specifies server initial seq. #

Step 3: client receives SYNACK, replies
with ACK segment, which may
contain data

10/15/2014 CSC 257/457 - Fall 2014

ser‘ver‘@

19

TCP Connection Teardown

@A

close

Closing a connection:
close socket: close(sockfd); FIN

Step 1: A (active closing host) sends TCP
FIN trol t.
control segmen Aok
Step 2: B (passive closing host) receives
FIN, replies with ACK. Closes
connection, sends FIN.

N

Step 3: A receives FIN, replies with ACK. Ack
Enters “timed wait” — resend ACK in

case it is lost.

Step 4: B receives ACK. Connection
closed. close

10/15/2014 CSC 257/457 - Fall 2014

5 &

close

closed

20

Computer Networks 10/15/2014

TCP State Transition Diagram

CLOSED

Disclaimer

Active operVSYN

Passive opel Close

= Parts of the lecture slides contain original work of James
Kurose, Larry Peterson, and Keith Ross. The slides are
intended for the sole purpose of instruction of computer

[smrovo — SYN_SENT networks at the University of Rochester. All copyrighted
materials belong to their original owner(s).

Close/FIN

LISTEN

Close/FIN

LAST_ACK
ACK

ACK Timeout after two
segment lifetimes

TIME_WAIT CLOSED
10/15/2014 CSC 257/457 - Fall 2014 21 10/15/2014

FIN/ACK

CSC 257/457 - Fall 2014 22

