
Computer Networks 10/21/2002

CSC 257/457 - Fall 2002 1

Connection-oriented
Transport: TCPTCP

Outline:
– segment structure
– reliable data transfer
– flow control
– connection management

10/21/2002 CSC 257/457 - Fall 2002 2

TCP: Overview
• point-to-point:

– one sender, one receiver
• reliable data transfer:

– guaranteed arrival, no error, in order
• pipelined:

– multiple in-flight segments
• full duplex data:

– bi-directional data flow in same connection
• connection-oriented:

– handshaking (exchange of control msgs) to initialize sender,
receiver state before data exchange

• flow controlled:
– sender does not overwhelm receiver

• congestion controlled:
– sender does not overwhelm the network

•• nono delay or bandwidth guarantee.

10/21/2002 CSC 257/457 - Fall 2002 3

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP header size? UDP header size?
10/21/2002 CSC 257/457 - Fall 2002 4

Outline

• segment structure
• reliable data transfer
• flow control
• connection management

10/21/2002 CSC 257/457 - Fall 2002 5

TCP Reliable Data Transfer
• TCP provides reliable data transfer service on top

of IP’s unreliable service
• Pipelined transmissions & cumulative ACKs
• Looks like Go-back-N, however the receiver could

buffer out-of-order segments
• TCP uses single retransmission timer
• Retransmissions are triggered by:

– timeout events
– duplicate ACKs

10/21/2002 CSC 257/457 - Fall 2002 6

TCP Timeout

Q: how to set TCP timeout value?
• longer than RTT (round trip time)

– but RTT varies
• too short: premature timeout and unnecessary

retransmissions
• too long: slow reaction to segment loss

Computer Networks 10/21/2002

CSC 257/457 - Fall 2002 2

10/21/2002 CSC 257/457 - Fall 2002 7

Estimating TCP Round Trip Time

Q: how to estimate RTT?
• SampleRTT: measured time from segment

transmission until ACK receipt
• SampleRTT fluctuates, we want estimated RTT

“smoother” to avoid short-term spikes
– average several recent measurements, not just

current SampleRTT
• we also want to give more recent measurements

higher weight in case things do change

10/21/2002 CSC 257/457 - Fall 2002 8

EWMA – Exponentially Weighted
Moving Average

EstimatedRTT = α*SampleRTT1
+ α*(1-α)*SampleRTT2
+ α*(1-α)2*SampleRTT3
+ α*(1-α)3*SampleRTT4
+ … … …

SampleRTT1 is the most recent sample TTL,
SampleRTT2 is the next recent sample TTL, etc.

⇒⇒ EstimatedRTT = (1-α)*EstimatedRTTlast + α*SampleRTT1

• influence of past sample decreases exponentially fast
• typical value: α = 0.125

10/21/2002 CSC 257/457 - Fall 2002 9

Example RTT Estimation
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

10/21/2002 CSC 257/457 - Fall 2002 10

TCP Timeout
Setting the timeout:
• EstimtedRTT plus “safety margin”

– large variation in EstimatedRTT -> larger safety margin
• we need to estimate of how much SampleRTT deviates from

EstimatedRTT (EWMA):

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTTlast +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

10/21/2002 CSC 257/457 - Fall 2002 11

TCP Sender Events and Processing
data rcvd from app:
• Create segment with

seq #
• seq # is byte-stream

number of first data
byte in segment

• start timer if not
already running (think
of timer as for oldest
un-ACKed segment)

• timeout vale: we just
decided it!!

timeout:
• retransmit segment

that caused timeout
• restart timer
ACK rcvd:

• If acknowledges
previously unacked
segments
– slide sender window
– start timer if there are

outstanding segments

10/21/2002 CSC 257/457 - Fall 2002 12

TCP byte-oriented seq. #’s and ACKs

Seq. #’s:
– byte stream

“number” of first
byte in segment’s
data

ACKs:
– seq # of next byte

expected from
other side

– cumulative ACK

Host A Host B

Seq=42, ACK=79, data = ‘ ls’

Seq=79, ACK=44, data = ‘ a.c’

Seq=44, ACK=82

User
types

‘ls’

host ACKs
receipt

of echoed
‘vi a.c’

host ACKs
receipt of
‘ls’, echoes
back ‘a.c’

time
simple telnet scenario

Computer Networks 10/21/2002

CSC 257/457 - Fall 2002 3

10/21/2002 CSC 257/457 - Fall 2002 13

TCP in Action: Retransmissions
Host A

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

Seq=92, 8 bytes data

S
eq

=9
2

ti
m

eo
ut

ACK=100

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2

ti
m

eo
ut

Slide sendwind
base to 100

Slide sendwind
base to 100

10/21/2002 CSC 257/457 - Fall 2002 14

TCP in Action: Cumulative ACK
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

Slide sendwind
base to 120

10/21/2002 CSC 257/457 - Fall 2002 15

Fast Retransmission

• Time-out period often
relatively long:
– long delay before

resending lost packet
• Detect lost segments

via duplicate ACKs.
– Sender often sends many

segments back-to-back
– If segment is lost, there

will likely be many
duplicate ACKs.

• When receiver receives
out-of-order segments,
it re-ACK the last in-
order byte

• If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
– fast retransmission:

resend segment before
timer expires, restart
timer

10/21/2002 CSC 257/457 - Fall 2002 16

TCP in Action: Duplicate ACKs and Fast
Retransmission

Host A

Seq=92, 8 bytes data

ACK=92

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

XSeq=100, 8 bytes data

ACK=92

time

3 duplicate ACKs
resend 92

Seq=108, 8 bytes dataSeq=116, 8 bytes data

ACK=92

ACK=92 Seq=92, 8 bytes data

10/21/2002 CSC 257/457 - Fall 2002 17

Outline

• segment structure
• reliable data transfer
• flow control
• connection management

10/21/2002 CSC 257/457 - Fall 2002 18

TCP Flow Control

• receive side of TCP
connection has a receive
buffer:

• speed-matching
service: matching the
send rate to the
receiving app’s drain
rate• app process may be

slow at reading from
buffer

sender does not
overflow receiver’s

buffer by
transmitting too much,

too fast

flow control

Computer Networks 10/21/2002

CSC 257/457 - Fall 2002 4

10/21/2002 CSC 257/457 - Fall 2002 19

TCP Flow Control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

• spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

• Rcvr advertises spare
room by including value
of RcvWindow in
segments

• Sender limits unACKed
data to RcvWindow
– guarantees receive

buffer doesn’t overflow

10/21/2002 CSC 257/457 - Fall 2002 20

Where is RcvWindow in each segment?

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

bytes
rcvr willing
to accept

10/21/2002 CSC 257/457 - Fall 2002 21

Outline

• segment structure
• reliable data transfer
• flow control
• connection management

10/21/2002 CSC 257/457 - Fall 2002 22

TCP Connection Management

• Establishment:
– TCP sender, receiver establish “connection” before

exchanging data segments
– initialize TCP variables: starting seq. #s, MSS, buffers,

flow control info (e.g. RcvWindow)
• MSS is the maximum TCP segment size each side

is willing to accept
– typically the largest segment size fit into a link-layer

frame
– What is MSS for a IPv4 host connected with Ethernet?

• Teardown:
– freeing up resources after mutually close

10/21/2002 CSC 257/457 - Fall 2002 23

TCP Connection Establishment
Three way handshake:

Step 1: client (active open) host
sends TCP SYN segment to
server
– specifies initial seq #
– no data

Step 2: server (passive open) host
receives SYN, replies with
SYNACK segment
– server allocates buffers
– specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which
may contain data

client

SYN, seq=x, no data

server

SYN, seq=y, ACK=x+1, no data

seq=x, ACK=y+1, maybe data

connection
request

10/21/2002 CSC 257/457 - Fall 2002 24

TCP Connection Teardown
Closing a connection:

close socket: close(sockfd);

Step 1: A (active closing host)
sends TCP FIN control segment
to server

Step 2: B (passive closing host)
receives FIN, replies with ACK.
Closes connection, sends FIN.

Step 3: A receives FIN, replies
with ACK.

– Enters “timed wait” – resend
ACK in case it is lost

Step 4: B receives ACK.
Connection closed.

A

FIN

B

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

Computer Networks 10/21/2002

CSC 257/457 - Fall 2002 5

10/21/2002 CSC 257/457 - Fall 2002 25

TCP State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

10/21/2002 CSC 257/457 - Fall 2002 26

Disclaimer

• Parts of the lecture slides contain original
work of James Kurose, Larry Peterson, and
Keith Ross. The slides are intended for the
sole purpose of instruction of computer
networks at the University of Rochester. All
copyrighted materials belong to their original
owner(s).

