
Midterm Exam

CSC 252

7 March 2019

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Jessica Ervin, Yu Feng, Max Kimmelman, Olivia Morton, Yawo Alphonse Siatitse,

 Yiyang Su, Amir Taherin, Samuel Triest, Minh Tran

 ​Name​: ____________________________________

Problem 0 (2 points):

Problem 1 (15 points):

Problem 2 (16 points):

Problem 3 (14 points):

Problem 4 (14 points):

Problem 5 (14 points):

Total (75 points):

Extra Credit (20 points)

Remember “​I don’t know​” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. The lengths of the boxes

should be more or less indicative of the lengths of your answers. Use spare space to show all

supporting work to earn partial credit.

You have 75 minutes to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

1

Problem 0: Warm-up (2 Points)

Who do you usually study CSC 252 with?

Hopefully you have a study group when studying 252. When you are able to clearly explain

something to others, that’s when you know you really understand it.

Problem 1: Fixed-Point Arithmetics (15 points + 3 points extra credit)

Part a) (4 points)​ Represent the decimal value 92 in hexadecimal.

0x5c

Part b) (4 points)​ Represent the binary value 1110110111 in hexadecimal.

0x3b7

Part c) (4 points)​ Octal is the base-8 number system, and uses the digits 0 to 7. Represent the

octal value 273 in binary.

10111011

Part d) (3 points)​ Suppose the registers ​%esi​, ​%ebx​, and ​%edx​ are initialized with the values

shown below.

%esi %ebx %edx​ (before)

0xA2E058 0x800 0x0

What would the value of ​%edx​ be after the instruction: ​lea (%esi, %ebx, 8), %edx​?

0xA32058

2

Part e) (3 points extra credit)​ Let A and B be two unknown 8-bit 2’s complement numbers.

We know the results of A ^ B and A & B as shown below:

A ^ B 00110100

A & B 11001001

(1 point)​ What is the sum A + B expressed in the 8-bit two’s complement notation?

11000110

On an x86 system, would the carry flag be set after A + B? What about the overflow flag?

Will carry flag be set? ​(1 point) Yes

Will overflow flag be set? ​(1 point) No

3

Problem 2: Floating-Point Arithmetics (16 points + 2 points extra credit)

Part a) (4 points)​ Put in binary normalized form.4 3
16

1.000011 x (2^+2)

Part b) (12 points + 2 points extra credits) ​In this problem, we assume that IEEE decided

to add a new 12-bit representation, with its main characteristics consistent with the other IEEE

standards.

In this 12-bit representation, the value 155/256 is represented exactly as 001000110110.

(4 points)​ How many bits are needed for exponent?

3

(4 points)​ How many bits are needed for fraction?

8

(4 points)​ In this 12-bit representation, what is the smallest positive number that can be

represented?

2^-10

(2 points extra credit)​ You want to calculate the sum of the following three numbers that are

represented using this 12-bit floating point format: (A) 110111100100, (B) 010101110000, and

(C) 011011000000. Give an order in which the addition will generate the expected sum.

Anything that isn’t BCA or CBA.

4

Problem 3: Logic Design (14 points)

The following is the schematic of a NAND gate, which takes in two 1-bit inputs ​A​ and ​B​, and

generates one 1-bit output ​Out​. The NAND gate functions in such a way that ​Out = !(A & B)​.

Part a) (3 points) ​Now we build the following piece of combinational logic using the NAND

gate, which takes in one 1-bit input ​A​, and generates one 1-bit output ​Out​. What’s the

relationship between ​Out​ and ​A​?

Out = !A

Part b) (11 points) ​We have the combinational circuit shown below with part of its logic

hidden. It takes in one 1-bit input: ​A​, and produces one 1-bit output: ​Out​. The relationship

between ​A​ and ​Out​ is shown in the accompanying truth table.

A Out

0 0

1 0

(3 points)​ What is the functionality of the hidden logic in the circuit? You can denote the two

inputs to the hidden logic as ​In1​ and ​In2​.

AND, NOR

5

(5 points) ​Implement the hidden logic using only NAND gates. Draw its schematic below.

(IN1, IN2) -> NAND -> IN3 then (IN3, IN3) -> NAND -> OUT

(3 points) ​Given your above implementation and assuming the delay of a NAND gate is 1ps,

what is the delay of the entire combinational circuit?

3ps.

6

Problem 4: Assembly Programming (14 points + 6 points extra credits)

Below is the assembly code for a mystery function in C. Assume this function takes in an

unsigned integer from 1 ~ 8 in ​%edi​ and returns a value to ​%eax​. The function prototype is the

following: ​unsigned int mystery(unsigned int);

Assembly code:

0x0000000000400556 <+0>: push %rbp

0x0000000000400557 <+1>: mov %rsp,%rbp

0x000000000040055a <+4>: sub $0x10,%rsp

0x000000000040055e <+8>: mov %edi,-0x4(%rbp)

0x0000000000400561 <+11>: cmpl $0x2,-0x4(%rbp)

0x0000000000400565 <+15>: jne 0x40056e <mystery+24>

0x0000000000400567 <+17>: mov $0x2,%eax

0x000000000040056c <+22>: jmp 0x4005a5 <mystery+79>

0x000000000040056e <+24>: cmpl $0x1,-0x4(%rbp)

0x0000000000400572 <+28>: jg 0x400583 <mystery+45>

0x0000000000400574 <+30>: mov -0x4(%rbp),%eax

0x0000000000400577 <+33>: sub $0x1,%eax

0x000000000040057a <+36>: mov %eax,%edi

0x000000000040057c <+38>: callq 0x400556 <mystery>

0x0000000000400581 <+43>: jmp 0x4005a5 <mystery+79>

0x0000000000400583 <+45>: cmpl $0x1,-0x4(%rbp)

0x0000000000400587 <+49>: jle 0x4005a5 <mystery+79>

0x0000000000400589 <+51>: mov -0x4(%rbp),%eax

0x000000000040058c <+54>: sub $0x2,%eax

0x000000000040058f <+57>: mov %eax,%edi

0x0000000000400591 <+59>: callq 0x400556 <mystery>

0x0000000000400596 <+64>: imul -0x4(%rbp),%eax

0x000000000040059a <+68>: mov -0x4(%rbp),%edx

0x000000000040059d <+71>: sub $0x1,%edx

0x00000000004005a0 <+74>: imul %edx,%eax

0x00000000004005a3 <+77>: jmp 0x4005a5 <mystery+79>

0x00000000004005a5 <+79>: leaveq

0x00000000004005a6 <+80>: retq

7

Part a) (4 points) ​Assume 2 is stored in ​%edi​ at the beginning of the function execution.

Which lines of assembly will have been executed after the function finishes execution (denote as

function offset e.g. <+24>)?

0, 1, 4, 8, 11, 15, 17, 22, 79, 80

Part b) (5 points) ​This function produces integer over/underflow for some input values. What

are these values? Recall that the input is an unsigned integer from 1 ~ 8 stored in ​%edi​.

1, 3, 5, 7

Part c) (5 points) ​For the input values that do not cause integer over/underflow, what does

this function return? Please express it as a closed-form function of the input (you could denote

the input as x).

x!

8

Part d) (6 points extra credit)​ ​There are some ways to modify this assembly program to

make the function work for all input values 1 ~ 8. What is one set of 3 or fewer lines of changes

you can make? Note that deletion and replacement are valid changes, insertion is not.

Line# (denote as function offset):

36 OR 15

Change to:

mov 0x01, %eax OR jg 0x400583

 Line# (denote as function offset):

38 OR 17

Change to:

delete/ret OR mov-0x4(%rbp), %eax

Line# (denote as function offset):

N/A (hopefully)

Change to:

9

Problem 5: ISA and Microarchitecture (14 points + 9 points extra credits)

Suppose you are working for a microprocessor company RoCChip. You take on the job of

designing the ISA and microarchitecture for a new computer. You want the ISA to have two

types of instructions detailed below.

The first type of instructions (Type A) has the following general format:

Opcode Ra,Rb,Imm

Instructions of this type operate as follows. We perform an operation between the values in

registers ​Ra​ and ​Rb​, and store the result to the memory address specified by the immediate

value ​Imm​. The immediate value is treated as an absolute (as opposed to relative) memory

address. The exact operation to be performed between ​Ra​ and ​Rb​ depends on the specific

Opcode ​.

The binary encoding for this type of instructions is the following. The most significant bit is

always 0, indicating that that this is a Type A instruction.

0 Opcode Ra Rb Imm

The second type of instructions (Type B) has the following general format:

Opcode Ra,Rb,Rc

Instructions of this type operate as follows. We perform an operation between the values in

registers ​Ra​ and ​Rb​, and store the result to the memory address specified by value in register ​Rc​.
Similarly, the exact operation to be performed between ​Ra​ and ​Rb​ depends on the specific

Opcode ​.

The binary encoding for this type of instructions is the following. The most significant bit is

always 1, indicating that that this is a Type B instruction.

1 Opcode Ra Rb Rc

You want your machine to be byte addressable (i.e., each addressable memory location is one

byte, just like x86). The total memory capacity is 2​20 ​
Bytes. Each register in this machine hold 4

bytes of data.

For each instruction type, you plan to support 8 different arithmetic and logic operations (same

8 for each type). You also have the limitation that the length of Type A instructions must be 4

bytes.

10

Part a) (3 points) ​What is the minimum number of bits to represent the ​Opcode​ field in both

types of instructions?

3

Part b) (3 points) ​What is the minimum number of bits to represent the ​Imm​ field in Type A?

20

Part c) (4 points) ​Using the number of bits for ​Opcode​ and ​Imm​ that you came up with in (a)

and (b), what is the maximum number registers that your ISA can support?

16

Part d) (4 points) ​Assume that we have a program with 1000 instructions. 20% of them are of

Type A, and 80% of Type B. How much space in the memory is occupied by this program?

200*32 + 800*16 = 19,200 bits =

2,400 bytes

Part e) (9 points extra credit)​ ​Now that you finish designing the ISA, you start working on

the microarchitecture, which only has to support the two types of instructions. Below is the

partially complete schematic of the microarchitecture.

The “Address” port of the memory takes the memory address to be written to, and the “Data”

port of the memory takes the data to be written to the memory.

The register file has three read ports and can read three registers, ​Ra​, ​Rb​, and ​Rc​,
simultaneously. How the three Read Reg. IDs are generated is irrelevant to this problem.

There are three hidden logics in this partially complete microarchitecture. You job: determine

the functionalities of the three hidden logics. Note that not all the input signals to the logics are

shown. You need to figure out what signals each logic needs.

11

(3 points)​ ​Logic 1 generates the select signal to the MUX that produces the memory address.

Briefly explain how Logic 1 generates the select signal.

Select bet. rC and imm. Look @ first bit of instruction. 0->imm, 1->register

(3 points)​ ​Logic 2 takes the value of ​Rc​ and generates one of the two pieces of data that go into

the MUX. Briefly explain how Logic 2 generates its output.

Truncate rC to get 20 lsb from the 32 bits in rC

12

(3 points)​ ​Logic 3 generates the next PC (nPC), which contains the address of the next

instruction to be fetched and executed. Briefly explain how Logic 3 generates nPC.

Length of each instr. Depends on first bit. Add offset equal to instruction length, which is

determined w/ the bit in PC.

13

