CSC 252: Computer
Organization
Fall 2021: Lecture 6

Assembly Programming:
* Data movement
* Compute
* Control

Instructor: Alan Beadle

Department of Computer Science
University of Rochester



Announcements

Al is over unless you are using slip days (should
have told us already)

A2 is out (Due 9/30)



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction
(According to PC)



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction
(According to PC)

0x4801d8



Instruction Processing Sequence

Assembly CPU Register Addresses . Memory
Programmer’s PC ile code
P . < Data > Data
erspeciive ALU Condition Instructions ek
of a Computer Codes <

Fetch Instruction __J Decode
(According to PC) Instruction

addq %rax, (%rbx)



Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Instructions
<

Fetch
Operands

Memory

Code
Data
Stack




Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Fetch
Operands

Instructions
<

Memory

Code
Data
Stack

Execute
Instruction




Instruction Processing Sequence

Assembly  |SPEL [ Register Addresses Memory
Programmer’s || PC File otk
_ Data Data
Cerspective ALU Condition Instructions Stack
Of d CompUter Codes <
Fetch Instruction . Decode Fetch __ Execute
(According to PC) Instruction Operands Instruction
v
Update
Condition

Codes




Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store
(According to PC) Instruction Operands Instruction Results

\ 4
Update
Condition
Codes



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
v
Update
Condition
Codes y
Adjust

PC



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
4 ;
\ 4
Update
Condition
Codes y
Adjust

PC



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC Hile ode
. < Data > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap




Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx

* C constructs: +, -, >>, etc.



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call
« C constructs: if-else, do-while, function call, etc.



Today: Compute and Control Instructions

* Move operations (and addressing modes)



Data Movement in Processors

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

<

Data

>

Instructions
<

e |nitially all data is in the memory

Memory

Code
Data
Stack




Data Movement in Processors

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

Instructions
<

Memory

Code
Data
Stack




Data Movement in Processors

Assembly GRD Register Addresses > Memory
Programmer’s PC File Code
. < Data > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access
¢ |dea: move the frequently used data to a faster memory



Data Movement in Processors

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

Instructions
<

Memory

Code
Data
Stack

e Register file is faster (but much smaller) memory: e.g., 0.5 ns




Data Movement in Processors

Register
File

Addresses

Assembly oL

Programmer’s PC
Perspective

of a Computer || AV

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

Instructions
<

Memory

Code
Data
Stack

e Register file is faster (but much smaller) memory: e.g., 0.5 ns
¢ [here are other kinds of faster memory that we will talk about later




Data Movement in Processors

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

e |nitially all data is in the memory

e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

e Register file is faster (but much smaller) memory: e.g., 0.5 ns

¢ [here are other kinds of faster memory that we will talk about later

e Key: register file is programmer visible, I.e., you could use
instructions to explicitly move data between memory and register file.



Data Movement Instruction Example

movq srdx, (%rdi)

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing



Data Movement Instruction Example

movq $rdx, (%rdi)
address

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing



Data Movement Instruction Example

data at the address

!

movq %rdx,l(%rdi)
address

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing



Data Movement Instruction Example

data at the address

!

| P = a;
: assuming:
movq %rdx,[ ($rdil) p isin $rdi
| T a isin $rdx

address

e Semantics:
e Move (really, copy) data in register $rdx to memory location

whose address is the value stored in $rdi
e Pointer dereferencing



Memory Addressing Modes

* An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants



Memory Addressing Modes

* An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants

e Normal: (R)

« Memory address: content of Register R (Reg[R])
 Pointer dereferencing in C

movqg (%rcx),%rax; // address = %$rcx



Memory Addressing Modes

* An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants

e Normal: (R)

« Memory address: content of Register R (Reg[R])
 Pointer dereferencing in C

movqg (%rcx),%rax; // address = %$rcx
e Displacement: D(R)
 Memory address: Reg[R]+D

» Register R specifies start of memory region
« Constant displacement D specifies offset

movq 8 (%rbp) ,%rdx; // address = %rbp + 8



Data Movement Instructions

movq Source, Dest

10



Data Movement Instructions

movq Source, Dest

Operatorl Op”ér'ahds

10



Data Movement Instructions

movq Source, Dest

Operatorl Op*ér'ahds
 Memory:

o Simplest example: ($rax)
« How to obtain the address is called “addressing mode”

10



Data Movement Instructions

movq Source, Dest

Operator Operands

 Memory:
o Simplest example: ($rax)

« How to obtain the address is called “addressing mode”

» Register:
« Example: $rax, %rl3
« But $rsp reserved for special use

10



Data Movement Instructions

movq Source, Dest

Operator Operands

 Memory:

o Simplest example: ($rax)

« How to obtain the address is called “addressing mode”
» Register:

« Example: $rax, %rl3

« But $rsp reserved for special use
« Immediate: Constant integer data

« Example: $0x400, $-533; like C constant, but prefixed with ‘$’

« Encoded with 1, 2, or 4 bytes; can only be source

10



movg Operand Combinations

Source Dest Example C Analog
4 Re
Imm { J
Mem
movqg < Reg Zeg
em
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog
e {Reg movqg $0x4,%rax
Imm
Mem
movqg < Reg Zeg
em
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog
f {Reg movq $0x4,%rax temp = Ox4;
Imm
Mem
movqg < Reg Zeg
em
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax)
movqg < Reg Zeg
em
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

movq <

Source Dest Example C Analog

Imm
Mem movqg $-147, ($rax) *p = -147;

Reg Reg
Mem
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

4 Reg movq $0x4,%rax temp = 0x4;

11



movqg
Source Dest Example C Analog
4 Reg movq $0x4,%rax temp = 0x4;
Imm

movq <

Operand Combinations

Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx
Reg Reg q
Mem

\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog

4 Reg movg $0x4,%rax temp = 0x4;

Imm
Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movqg < Reg Reg q p p

Mem

\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog

4 Reg movg $0x4,%rax temp = 0x4;

Imm
Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movqg < Reg Reg q p p

Mem movg %rax, ($rdx)

\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq %rax,%rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq %rax,%rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;

\Mem Reg movg (%rax),%rdx

Cannot do memory-memory transfer
with a single instruction in x86.

11



movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq %rax,%rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;

\Mem Reg movq (%rax), %rdx temp = *p;

Cannot do memory-memory transfer
with a single instruction in x86.

11



Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{

long t0 = *xp;
long tl1 = *yp;
*xp = tl;

*yp = t0;

12



Example of Simple Addressing Modes
Registers Memory Addr

void swap

(long *xp, long *yp) e rdi Xp *xXp Xp
{
long t0 = *xp; $rsi yp
long tl1 = *yp;
*xp = tl; srax
% — .
yp = t0; -

12



Example of Simple Addressing Modes
Registers Memory Addr

void swap

(long *xp, long *yp) o rdi Xp *Xp Xp
{ long t0 = *xp; 3rsi YpP
long tl1 = *yp;
*xp = tl; srax
el i
y = srdx *yp yP
swap
movqg $rdi) , %$rax # t0 = *xp
movq $rsi), %rdx # t1 = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

12



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax

$rdx

swap:
movq
movq
movq
movq
ret

$rdi), %Srax

grsi), %rdx

srdx,
srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
# t0 = *xp
# tl = *yp
($rdi) # *xp = tl
$rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax

$rdx

swap:
movq
movq
movq
movq
ret

grdi) , %Srax

grsi), %rdx

srdx,

srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
# t0 = *xp
# tl = *yp
($rdi) # *xp = tl
$rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

$rdx

swap:
movq
movq
movq
movq
ret

grdi) , %Srax

grsi), %rdx

srdx,

srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
# t0 = *xp
# tl = *yp
($rdi) # *xp = tl
$rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

$rdx

swap:
movq
movq
movq
movq
ret

rdi) ,
srsi),
srdx,

srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rdi) , %$rax # t0 = *xp
$rsi), %rdx # t1 = *yp
$rdx, (%rdi) # *xp = tl
$rax, (%rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

$rdi), %Srax

grsi), %rdx

srdx,
srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
# t0 = *xp
# tl = *yp
($rdi) # *xp = tl
$rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

$rdi), %Srax

grsi), %rdx

srdx,
srax,

Memory Addr
456 0x120 xp
0x118
0x110
0x108
456 0x100 yp
# t0 = *xp
# tl = *yp
($rdi) # *xp = tl
$rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

srdi) ,
%rsi),
srdx,

srax,

Memory Addr
456 0x120 xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

13



Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

Memory Addr
456 0x120 xp
0x118
0x110
NMMMNMM“““wMWh 0x108
i 123 0x100 yp
$rdi) , %$rax # t0 = *xp
$rsi), %rdx # t1 = *yp
$rdx, (%rdi) # *xp = tl
$rax, (%rsi) # *yp = tO

13



Complete Memory Addressing Modes

* The General Form: D(Rb,Ri,S)
* Memory address: Reg[Rb] + S * Reg[Ri] + D
e £.g., 8(%eax, %ebx, 4);//address = %eax +4 * $ebx + 8
« D: Constant “displacement”
 Rb: Base register: Any of 16 integer registers

* Ri: Index register: Any, except for %rsp
e S: Scale:1,2,4,0r8



Complete Memory Addressing Modes

* The General Form: D(Rb,Ri,S)
* Memory address: Reg[Rb] + S * Reg[Ri] + D
e £.g., 8(%eax, %ebx, 4);//address = %eax +4 * $ebx + 8

« D: Constant “displacement”

 Rb: Base register: Any of 16 integer registers
* Ri: Index register: Any, except for %rsp

e S: Scale:1,2,4,0r8

e What is 8 (¥eax, %ebx, 4)used for?

14



Complete Memory Addressing Modes

* The General Form: D(Rb,Ri,S)
* Memory address: Reg[Rb] + S * Reg[Ri] + D
E.g., 8 (%eax, %ebx, 4);//address = %$eax + 4 * %$ebx + 8
« D: Constant “displacement”
 Rb: Base register: Any of 16 integer registers

* Ri: Index register: Any, except for %rsp
e S: Scale:1,2,4,0r8

e What is 8 (¥eax, %ebx, 4)used for?
e Special Cases

(Rb,Ri) address = Reg[Rb]+Reg|Ri]
D(Rb,Ri) address = Reg[Rb]+Reg|Ri]+D
(Rb,Ri,S) address = Reg[Rb]+S*Reg|RI]

14



Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression

Address Computation

Address

0x8 ($rdx)

$rdx, $rcx)

$rdx, $rcx,4)

0x80 (,%rdx, 2)




Address Computation Examples

srdx 0x£000

srcx 0x0100

Expression Address Computation | Address
0x£f000 + 0x8 0x£f008

0x8 (%rdx)

$rdx, $rcx)

$rdx, $rcx,4)

0x80 (,%rdx, 2)




Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression

Address Computation

Address

0x8 ($rdx)

Oxf000 + Ox8

0xf008

$rdx, $rcx)

Ox£f000 + 0x100

0xf100

($rdx, %rcx,4)

0x80 (,%rdx, 2)

15



Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression Address Computation | Address
0x8 ($rdx) Oxf000 + 0OxS8 0x£008
$rdx, $rcx) O0x£f000 + 0x100 0x£100
(%rdx, %rcx,4) Ox£f000 + 4*0x100 0x£f400
0x80 (, %rdx, 2)




Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression

Address Computation

Address

0x8 ($rdx)

Oxf000 + Ox8

0xf008

$rdx, $rcx)

Ox£f000 + 0x100

0xf100

($rdx, %rcx,4)

Ox£f000 + 4*0x100

0x£f400

0x80 (,%rdx, 2)

2*0x£f000 + 0x80

0x1e080



Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

16



Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

|

%rax = %rsi + %rdi *2 + 4

16



Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

|

%rax = %rsi + %rdi *2 + 4

e leaq Src, Dst

« Src is address mode expression
« Set Dst to address denoted by expression
* No actual memory reference is made

16



Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

|

%rax = %rsi + %rdi *2 + 4

e leaq Src, Dst

« Src is address mode expression
« Set Dst to address denoted by expression
* No actual memory reference is made

e Uses
o Computing addresses without a memory reference
e E.g., translation of p = &x]il;

16



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Data Movement Instruction: Transfer data between memory and register
e movq %eax, (%ebx)

17



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Data Movement Instruction: Transfer data between memory and register
e movq %eax, (%ebx)

* Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx

e C constructs: +, -, >>, etc.

17



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Data Movement Instruction: Transfer data between memory and register
e movq %eax, (%ebx)

* Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call
« C constructs: if-else, do-while, function call, etc.

17



Today: Compute and Control Instructions

* Arithmetic & logical operations

18



Some Arithmetic Operations (2 Operands)
Format  |Computaton _ |Notes

addg src, dest Dest = Dest + Src

19



Some Arithmetic Operations (2 Operands)

Format _|Computation Notes
addg src, dest Dest = Dest + Src

addgq %rax, 3rbx

19



Some Arithmetic Operations (2 Operands)

Format ____ |Computation ___ Notes
addg src, dest Dest = Dest + Src
” v
+ v coe
U+v oo
TAdd (u ,v) coo

addgq %rax, 3rbx

19



Some Arithmetic Operations (2 Operands)
Format  |Computaton _ |Notes

addg src, dest Dest = Dest + Src
” v
+ v coe
U+v
TAdd (u ,v) oo

%rbx = %rax + %rbx
addg 3rax, S3rbx Truncation if overflow,
set carry bit (more later...)

19



Some Arithmetic Operations (2 Operands)
Format  |Computaton _ |Notes

addqgq src,
subg src,
imulqg src,
salq src,
sarq src,
shrq src,
Xorq src,

andg src,

dest
dest

dest

dest
dest
dest
dest
dest

orq src, dest

Dest = Dest + Src
Dest = Dest - Src
Dest = Dest * Src
Dest = Dest << Src
Dest = Dest >> Src
Dest = Dest >> Src
Dest = Dest N Src
Dest = Dest & Src
Dest = Dest | Src

Also called shlq
Arithmetic shift
Logical shift

20



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

21



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax

21



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax

long unsigned add
(unsigned long x, unsigned long y)

{

unsigned long res = x + y;
return res;

}

#x in %$rdx, y in %rax
addqg srdx, S%rax

21



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

Bit-level

010
+) 101

111

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax

long unsigned add
(unsigned long x, unsigned long y)

{

unsigned long res = x + y;
return res;

}

#x in %$rdx, y in %rax
addqg srdx, S%rax

21



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

Bit-level

010
+) 101

111

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax

Signed
2

+) -3
-1

long unsigned add
(unsigned long x, unsigned long y)

{

unsigned long res = x + y;
return res;

}

#x in %$rdx, y in %rax
addqg srdx, S%rax

21



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

Bit-level

010
+) 101

111

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax

Signed Unsigned
2 2
+) -3 +) 5
-1 7

long unsigned add
(unsigned long x, unsigned long y)

{

unsigned long res = x + y;
return res;

}

#x in %$rdx, y in %rax
addqg srdx, S%rax

21



Some Arithmetic Operations (1 Operand)

e Unary Instructions (one operand)

Format  [Computation
incqg dest Dest = Dest + 1

decq dest Dest = Dest - 1

negq dest Dest = -Dest

notqg dest Dest = ~Dest



Today: Compute and Control Instructions

e Control: Conditional branches (1£... else..)

23



Three Basic Programming Constructs



Three Basic Programming Constructs

Sequential

\ 4
Subtask 1

l

Subtask 2

l

X + vy,

v}
I

a - C;

P
I

24



Three Basic Programming Constructs

Sequential Conditional
|
‘ v
y True Test False
Subtask 1 l_ Condition _l
l Subtask 1 Subtask 2
Subtask 2 | |
! l
a=x+y; if (x >y) r=x -y,
a - c; else r =y - x;

P
I

24



Three Basic Programming Constructs

Sequential Conditional Iterative
| |
‘ v v
v True Test False Test False
Subtask 1 l_ Condition —l >  Condition —
l Subtask 1 Subtask 2 True|
Subtask 2
l | | Subtask
l o
a=x+y; if (x >y) r=x -y, while (x > 0) {

a - c; else r =y - x; X—-;

<
I

24



Three Basic Programming Constructs

Conditional

\4

True Test False

l_ Condition _l

Subtask 1 Subtask 2

\4

if (x > y) r =x - y;

else r =y - x;

25



Three Basic Programming Constructs

e Both conditional and iterative Conditional
programming requires altering l
the sequence of instructions . o
control flow U alse
( ) l_ Condition _l
Subtask 1 Subtask 2
I

if (x >y) r=x - y;
y - X,

else r

25



Three Basic Programming Constructs

e Both conditional and iterative Conditional
programming requires altering l
the sequence of instructions
True Test False

(control flow)

Condition
e \We need a set of control l_ _l

instructions to do so
Subtask 1 Subtask 2

if (x >y) r=x - y;
y - X,

else r

25



Three Basic Programming Constructs

e Both conditional and iterative Conditional
programming requires altering l
the sequence of instructions
True Test False

(control flow)

Condition
e \We need a set of control l_ _l
instructions to do so

, Subtask 1 Subtask 2
* Two fundamental questions:
* How to test condition and how to | |
represent test results? ‘
* How to alter control flow according M
to the test results? if (x>y) r=x-y;
else r =y - x;

25



Conditional Branch Example



Conditional Branch Example

long absdiff

{

(long x, long y)

long result;
if (x > y)
result = x-y;
else
result = y-x;
return result;

26



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

long absdiff absdiff:
long x, lon
{ ( g gy cmpgq
long result; Jle
if (x > y) movqg
result = x-y; subqg
else ret
result = y-x; 1.4 :
return result; ) )
} movq
subqg

ret

$rsi,%rdi # x:y
.L4

$rdi,srax
¥rsi,%rax

# x <=y
3rsi,srax
$rdi, srax

26



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

long absdiff absdiff:
(long x, long y) cmpq $rsi,$rdi
{ jle L4
long result; J ) ]
if (x > y) movq srdi, Srax
result = x-y; subg ¥rsi,%rax
eli:sult = y-Xx; ret
return result; .L4: # x-<= \'
} movq %rsi,srax
subqg srdi, srax
. ret
srdi X
srsi )

Frax Return value



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

long absdiff absdiff:

{ (long x, long y) cmpg _%¥si,%rdi # x:y

long result; Jle |
if (x > y) movq ,srax
result = x-y; subg ¥rsi,%rax
else ———rat
result = y-x; 4 ‘
return result; # x-<- Y
} -~ movqg %rsi,srax
subq rdi, srax
. ret
srdi X

Labels are symbolic names used
to refer to instruction addresses.

srsi Y

Frax Return value

26



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

unsigned long absdiff absdiff:
“_mﬂgmlad 1°n‘)3 Xy cmpgq $rsi,%rdi # x:y
unsigne on .
{ J Y Jle .L4
unsigned long result; movq $rdi, $rax
if (x > y) subg $rsi,%rax
result = x-y; ret
else
result = y-x; .L4: i x_<- b4
return result; movq 3rsi,srax
} subqg srdi, srax
: r
et
srdi X .
Labels are symbolic names used
Frsi Y

to refer to instruction addresses.
$rax Return value



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

unsigned long absdiff absdiff:

(Enstgneds SengR; cm $rsi,%rdi # x:
movq !rgl,!rax

unsigned long y)

{

unsigned long result;

if (x > vy) subqg $rsi, %$rax
result = x-y; ret

else
result = y-x; .L4: i x_<- b4

return result; movq 3rsi,srax

} subq $rdi, $rax

. ret

srdi X

Labels are symbolic names used
to refer to instruction addresses.

Frsi Y

Frax Return value

27



Conditional Jump Instruction

cmpq srsi, srdi
Jle .L4

28



Conditional Jump Instruction

cmpq srsi, Ssrdi
Jle .L4

Jump to label if less
than or equal to

28



Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to

* Semantics:

o [f $rdi is less than or
equal to $rsi (both
interpreted as signed
value), jump to the part
of the code with a
label . L4

28



Conditional Jump Instruction

cmpq srsi, 3srdi
Jle .L4

Jump to label if less
than or equal to

e Semantics: e Under the hood:

o [f $rdi is less than or
equal to $rsi (both
interpreted as signed
value), jump to the part
of the code with a
label . L4

28



Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to
e Semantics: * Under the hood:
o If $rdi is less than or e cmpgq instruction sets the
equal to $rsi (both condition codes

interpreted as signed
value), jump to the part
of the code with a
label . L4

28



Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to
* Semantics: * Under the hood:
o If $rdi is less than or e cmpgq instruction sets the

equal to $rsi (both condition codes

interpreted as signed * jle reads and checks the

value), jump to the part condition codes

of the code with a
label . L4

28



Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to
* Semantics: * Under the hood:
o If $rdi is less than or e cmpgq instruction sets the

equal to $rsi (both condition codes

interpreted as signed * jle reads and checks the

value), jump to the part condition codes

of the code with a

e |f condition met, modify the
Program Counter to point to
the address of the
iInstruction with a label . L4

label .14

28



How Should empg Set Condition Codes?

cmpq srsi, 3srdi



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?

29



How Should empg Set Condition Codes?

cmpq srsi, Ssrdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %$rsi

29



How Should empg Set Condition Codes?

cmpq srsi, Ssrdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %$rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

29



How Should empg Set Condition Codes?

cmpq srsi, Ssrdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

ZF Zero Flag (result is zero)

ZF

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?

e Calculate %rdi - %rsi
e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==
e 3rdi < S%rsiifandonlyif: $rdi - %$rsi < O (is it correct??)

ZF Zero Flag (result is zero)

ZF

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==
e Srdi < Srsiifand only If; et

e 3rdi - %$rsi < 0 and the result doesn’t overflow, or

ZF Zero Flag (result is zero)

ZF

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==
e Srdi < Srsiifand only If; et

e 3rdi - %$rsi < 0 and the result doesn’t overflow, or

001 1 ZF Zero Flag (result is zero)
No -) 010 -) 2
Overflow 111 )

ZF

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi

e Srdi == %rsi ifandonlyif $rdi - %rsi ==
e srdi < %rsiifand only if: ey

e 3rdi - %$rsi < 0 and the result doesn’t overflow, or

001 1 ZF Zero Flag (result is zero)
No -) 010 -) 2
Overflow 111 )

101 -3
Overflow -) o011 -) 3 .

010 -6 7F

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi

e Srdi == %rsi ifandonlyif $rdi - %rsi ==
e srdi < %rsiifand only if: ey

e 3rdi - %$rsi < 0 and the result doesn’t overflow, or
e 3rdi - $rsi > 0 and the result does overflow

001 1 ZF Zero Flag (result is zero)
No -) 010 -) 2
Overflow 111 )

101 -3
Overflow -) o011 -) 3 .

010 -6 7F

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi

e Srdi == %rsi ifandonlyif $rdi - %rsi ==
e Srdi < Srsiifandonly if: e

e 3rdi - %$rsi < 0 and the result doesn’t overflow, or
e 3rdi - $rsi > 0 and the result does overflow

001 1 ZF Zero Flag (result is zero)
No ~) 010 -y 2
Overflow

SF Sign Flag (result is negative)
111 -1

101 -3
Overflow -) o011 -) 3 ..
ZF SF

010 -6

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi
e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==
e $rdi < S%Srsiifand only if; Haeedmmmess
e 3rdi - %$rsi < 0 and the result doesn’t overflow, or
e 3rdi - $rsi > 0 and the result does overflow

001 1 ZF Zero Flag (result is zero)
No ~) 010 -y 2
Overflow

SF Sign Flag (result is negative)
111 -1 OF Overflow Flag (result overflow)

101 -3
overtow ) 851 11
SF

010 -6

29



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi
e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==
e $rdi < S%Srsiifand only if: Sttt oo
e 3rdi - %$rsi < 0 and the result doesn’t overflow, or
e 3rdi - $rsi > 0 and the result does overflow

11111111 10000000 ZF Z.ero Flag (result lIS Z€ero) |
SF Sign Flag (result is negative)

cmpq OxFF, Ox80 OF Overflow Flag (result overflow)

SF

30



How Should empg Set Condition Codes?

cmpq 3rsi,

$rdi

e Essentially, how do we know $rdi <= $rsi?

e Calculate $rdi - %rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

e $rdi < S%Srsiifand only if: St
e 3rdi - $rsi < 0 and the result doesn’t overflow, or

e 3rdi - $rsi > 0 and the result does overflow

11111111 10000000
cmpqg OxFF, Ox80

10000000 -128
-) 11111111 -) -1

10000001 -127

ZF Zero Flag (result is zero)
SF Sign Flag (result is negative)
OF Overflow Flag (result overflow)

SF

30



How Should empg Set Condition Codes?

cmpq 3rsi,

$rdi

e Essentially, how do we know $rdi <= $rsi?

e Calculate $rdi - %rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

e $rdi < S%Srsiifand only if: St
e 3rdi - $rsi < 0 and the result doesn’t overflow, or

e 3rdi - $rsi > 0 and the result does overflow

11111111 10000000
cmpqg OxFF, Ox80

10000000 -128
-) 11111111 -) -1

10000001 -127

ZF Zero Flag (result is zero)
SF Sign Flag (result is negative)
OF Overflow Flag (result overflow)

SF

30



How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi
e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

e 5rdi < Srsiifand only if: et
e 3rdi - $rsi < 0 and the result doesn’t overflow, or
e 3rdi - 3rsi > 0 and the result does overflow

e 5rdi <= srsiifandonlyif 7 “®0Flagresultis zero)
e ZF is set, or SF Sign Flag (result is negative)

e SFis set but OF is not set, or OF Overflow Flag (result overflow)
« SF is not set, but OF is set n n n
* or simply: ZF | (SF ~ OF)
SF

30



Conditional Branch Example

long absdiff absdiff:
{ (long x, long y) cmpqg $rsi,%rdi # x:y
long result; Jle 'L4_
if (x > y) movq srdi, srax
result = x-y; subg grsi,%rax
else ret
result = y-x; —
return result; .L4: # x_<— \'
} movq 3rsi,srax
subqg srdi, srax
: ret
Srdi X
$rsi A%
$rax Return value

ZF SF OF

31



Conditional Branch Example

long absdiff absdiff:
{ (long x, long y) cmpqg $rsi,%rdi # x:y
long result; Jle .Ld ]
if (x > y) movq srdi, srax
result = x-y; subg grsi,%rax
return result; .L4: # x_<= \'
} movq 3rsi,srax
subqg srdi, srax
: r
=

% rdi x cmpqg sets ZF, SF, OF
srsi v jle checks ZF | (SF N OF)

Frax Return value n n n
SF

31



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

32



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

* How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)

32



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

* How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)

e fA<O&B >0, but the result > 0O, or

32



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

* How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)
e fA<O&B >0, but the result >0, or
* fA>0&B <0, but the result <0

32



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

* How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)

e fA<O&B >0, but the result > 0O, or
e fA>0&B <0, buttheresult <O

001 1
No -) 010 -) 2
Overflow

111 -1

32



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

* How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)
e fA<O&B >0, but the result >0, or
* fA>0&B <0, but the result <0

001 1
No -) 010 -) 2
verflow
Overflo 111 -1
101 -3
Overflow -) o011 -) 3

010 2



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

* How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)
e fA<O&B >0, but the result >0, or
* fA>0&B <0, but the result <0

001 1
No -) 010 )y 2
verflow
Overtlo 111 -1

101 -3 011 3
Overflow -) o011 -) 3 -) 100 -) -4

010 2 111 -1

32



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

e How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)
* fA<O&B >0, but the result > 0O, or
* IfA>0&B <0, but the result < O
e S0 again, just have to check the bits

001 1
No -) 010 )y 2
verflow
Overtlo 111 -1

101 -3 011 3
Overflow -) o011 -) 3 -) 100 -) -4

010 2 111 -1

32



