CSC 252: Computer
Organization
Fall 2021: Lecture 6

Assembly Programming:
* Data movement
* Compute
* Control

Instructor: Alan Beadle

Department of Computer Science
University of Rochester



Announcements

Al is over unless you are using slip days (should
have told us already)

A2 is out (Due 9/30)
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Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call
« C constructs: if-else, do-while, function call, etc.



Today: Compute and Control Instructions

* Move operations (and addressing modes)
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Data Movement in Processors

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

e |nitially all data is in the memory

e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

e Register file is faster (but much smaller) memory: e.g., 0.5 ns

¢ [here are other kinds of faster memory that we will talk about later

e Key: register file is programmer visible, I.e., you could use
instructions to explicitly move data between memory and register file.



Data Movement Instruction Example

movq srdx, (%rdi)

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing
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movq $rdx, (%rdi)
address

e Semantics:
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Data Movement Instruction Example

data at the address

!

movq %rdx,l(%rdi)
address

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing



Data Movement Instruction Example

data at the address

!

| P = a;
: assuming:
movq %rdx,[ ($rdil) p isin $rdi
| T a isin $rdx

address

e Semantics:
e Move (really, copy) data in register $rdx to memory location

whose address is the value stored in $rdi
e Pointer dereferencing
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* An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants
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Memory Addressing Modes

* An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants

e Normal: (R)

« Memory address: content of Register R (Reg[R])
 Pointer dereferencing in C

movqg (%rcx),%rax; // address = %$rcx
e Displacement: D(R)
 Memory address: Reg[R]+D

» Register R specifies start of memory region
« Constant displacement D specifies offset

movq 8 (%rbp) ,%rdx; // address = %rbp + 8



Data Movement Instructions

movq Source, Dest

10
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 Memory:
o Simplest example: ($rax)

« How to obtain the address is called “addressing mode”

» Register:
« Example: $rax, %rl3
« But $rsp reserved for special use

10



Data Movement Instructions

movq Source, Dest

Operator Operands

 Memory:

o Simplest example: ($rax)

« How to obtain the address is called “addressing mode”
» Register:

« Example: $rax, %rl3

« But $rsp reserved for special use
« Immediate: Constant integer data

« Example: $0x400, $-533; like C constant, but prefixed with ‘$’

« Encoded with 1, 2, or 4 bytes; can only be source

10
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Cannot do memory-memory transfer
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movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
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movg Operand Combinations

movq <

Source Dest Example C Analog

Imm
Mem movqg $-147, ($rax) *p = -147;

Reg Reg
Mem
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.

4 Reg movq $0x4,%rax temp = 0x4;
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movqg
Source Dest Example C Analog
4 Reg movq $0x4,%rax temp = 0x4;
Imm

movq <

Operand Combinations

Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx
Reg Reg q
Mem

\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.
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Source Dest Example C Analog

4 Reg movg $0x4,%rax temp = 0x4;

Imm
Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movqg < Reg Reg q p p
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Cannot do memory-memory transfer
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movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq %rax,%rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;
\Mem  Reg

Cannot do memory-memory transfer
with a single instruction in x86.
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movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq %rax,%rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;

\Mem Reg movg (%rax),%rdx

Cannot do memory-memory transfer
with a single instruction in x86.
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movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq %rax,%rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;

\Mem Reg movq (%rax), %rdx temp = *p;

Cannot do memory-memory transfer
with a single instruction in x86.
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Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{

long t0 = *xp;
long tl1 = *yp;
*xp = tl;

*yp = t0;

12



Example of Simple Addressing Modes
Registers Memory Addr

void swap

(long *xp, long *yp) e rdi Xp *xXp Xp
{
long t0 = *xp; $rsi yp
long tl1 = *yp;
*xp = tl; srax
% — .
yp = t0; -
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Example of Simple Addressing Modes
Registers Memory Addr

void swap

(long *xp, long *yp) o rdi Xp *Xp Xp
{ long t0 = *xp; 3rsi YpP
long tl1 = *yp;
*xp = tl; srax
el i
y = srdx *yp yP
swap
movqg $rdi) , %$rax # t0 = *xp
movq $rsi), %rdx # t1 = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO
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Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax

$rdx

swap:
movq
movq
movq
movq
ret

$rdi), %Srax

grsi), %rdx

srdx,
srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
# t0 = *xp
# tl = *yp
($rdi) # *xp = tl
$rsi) # *yp = tO
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Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
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movq
ret

Memory Addr
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Complete Memory Addressing Modes

* The General Form: D(Rb,Ri,S)
* Memory address: Reg[Rb] + S * Reg[Ri] + D
e £.g., 8(%eax, %ebx, 4);//address = %eax +4 * $ebx + 8
« D: Constant “displacement”
 Rb: Base register: Any of 16 integer registers

* Ri: Index register: Any, except for %rsp
e S: Scale:1,2,4,0r8
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Complete Memory Addressing Modes

* The General Form: D(Rb,Ri,S)
* Memory address: Reg[Rb] + S * Reg[Ri] + D
E.g., 8 (%eax, %ebx, 4);//address = %$eax + 4 * %$ebx + 8
« D: Constant “displacement”
 Rb: Base register: Any of 16 integer registers

* Ri: Index register: Any, except for %rsp
e S: Scale:1,2,4,0r8

e What is 8 (¥eax, %ebx, 4)used for?
e Special Cases

(Rb,Ri) address = Reg[Rb]+Reg|Ri]
D(Rb,Ri) address = Reg[Rb]+Reg|Ri]+D
(Rb,Ri,S) address = Reg[Rb]+S*Reg|RI]

14



Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression

Address Computation

Address

0x8 ($rdx)

$rdx, $rcx)

$rdx, $rcx,4)

0x80 (,%rdx, 2)




Address Computation Examples

srdx 0x£000

srcx 0x0100

Expression Address Computation | Address
0x£f000 + 0x8 0x£f008

0x8 (%rdx)

$rdx, $rcx)

$rdx, $rcx,4)

0x80 (,%rdx, 2)




Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression

Address Computation

Address

0x8 ($rdx)

Oxf000 + Ox8

0xf008

$rdx, $rcx)

Ox£f000 + 0x100

0xf100

($rdx, %rcx,4)

0x80 (,%rdx, 2)
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Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression Address Computation | Address
0x8 ($rdx) Oxf000 + 0OxS8 0x£008
$rdx, $rcx) O0x£f000 + 0x100 0x£100
(%rdx, %rcx,4) Ox£f000 + 4*0x100 0x£f400
0x80 (, %rdx, 2)




Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression

Address Computation

Address

0x8 ($rdx)

Oxf000 + Ox8

0xf008

$rdx, $rcx)

Ox£f000 + 0x100

0xf100

($rdx, %rcx,4)

Ox£f000 + 4*0x100

0x£f400

0x80 (,%rdx, 2)

2*0x£f000 + 0x80

0x1e080



Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax
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Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

|

%rax = %rsi + %rdi *2 + 4

16



Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

|

%rax = %rsi + %rdi *2 + 4

e leaq Src, Dst

« Src is address mode expression
« Set Dst to address denoted by expression
* No actual memory reference is made
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Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

|

%rax = %rsi + %rdi *2 + 4

e leaq Src, Dst

« Src is address mode expression
« Set Dst to address denoted by expression
* No actual memory reference is made

e Uses
o Computing addresses without a memory reference
e E.g., translation of p = &x]il;

16



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Data Movement Instruction: Transfer data between memory and register
e movq %eax, (%ebx)

17



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Data Movement Instruction: Transfer data between memory and register
e movq %eax, (%ebx)

* Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx

e C constructs: +, -, >>, etc.

17



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Data Movement Instruction: Transfer data between memory and register
e movq %eax, (%ebx)

* Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call
« C constructs: if-else, do-while, function call, etc.
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Today: Compute and Control Instructions

* Arithmetic & logical operations
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Some Arithmetic Operations (2 Operands)
Format  |Computaton _ |Notes

addg src, dest Dest = Dest + Src
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Some Arithmetic Operations (2 Operands)

Format _|Computation Notes
addg src, dest Dest = Dest + Src

addgq %rax, 3rbx
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Some Arithmetic Operations (2 Operands)

Format ____ |Computation ___ Notes
addg src, dest Dest = Dest + Src
” v
+ v coe
U+v oo
TAdd (u ,v) coo

addgq %rax, 3rbx
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Some Arithmetic Operations (2 Operands)
Format  |Computaton _ |Notes

addg src, dest Dest = Dest + Src
” v
+ v coe
U+v
TAdd (u ,v) oo

%rbx = %rax + %rbx
addg 3rax, S3rbx Truncation if overflow,
set carry bit (more later...)
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Some Arithmetic Operations (2 Operands)
Format  |Computaton _ |Notes

addqgq src,
subg src,
imulqg src,
salq src,
sarq src,
shrq src,
Xorq src,

andg src,

dest
dest

dest

dest
dest
dest
dest
dest

orq src, dest

Dest = Dest + Src
Dest = Dest - Src
Dest = Dest * Src
Dest = Dest << Src
Dest = Dest >> Src
Dest = Dest >> Src
Dest = Dest N Src
Dest = Dest & Src
Dest = Dest | Src

Also called shlq
Arithmetic shift
Logical shift

20



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation
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Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax
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Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax

long unsigned add
(unsigned long x, unsigned long y)

{

unsigned long res = x + y;
return res;

}

#x in %$rdx, y in %rax
addqg srdx, S%rax

21



Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)

 Bit level behaviors for signed and unsigned arithmetic are
exactly the same — assuming truncation

Bit-level

010
+) 101

111

long signed add
(long x, long y)
{
long res = x + y;
return res;

}

#x in %rdx, y in %rax
addqg srdx, S%rax

long unsigned add
(unsigned long x, unsigned long y)

{

unsigned long res = x + y;
return res;

}

#x in %$rdx, y in %rax
addqg srdx, S%rax
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Some Arithmetic Operations (2 Operands)

* No distinction between signed and unsigned (why?)
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111
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{
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addqg srdx, S%rax

Signed
2

+) -3
-1

long unsigned add
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{
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(long x, long y)
{
long res = x + y;
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}

#x in %rdx, y in %rax
addqg srdx, S%rax

Signed Unsigned
2 2
+) -3 +) 5
-1 7

long unsigned add
(unsigned long x, unsigned long y)

{

unsigned long res = x + y;
return res;

}

#x in %$rdx, y in %rax
addqg srdx, S%rax
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Some Arithmetic Operations (1 Operand)

e Unary Instructions (one operand)

Format  [Computation
incqg dest Dest = Dest + 1

decq dest Dest = Dest - 1

negq dest Dest = -Dest

notqg dest Dest = ~Dest



Today: Compute and Control Instructions

e Control: Conditional branches (1£... else..)
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Three Basic Programming Constructs

Sequential

\ 4
Subtask 1

l

Subtask 2

l

X + vy,

v}
I

a - C;

P
I
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Three Basic Programming Constructs

Sequential Conditional
|
‘ v
y True Test False
Subtask 1 l_ Condition _l
l Subtask 1 Subtask 2
Subtask 2 | |
! l
a=x+y; if (x >y) r=x -y,
a - c; else r =y - x;

P
I

24



Three Basic Programming Constructs

Sequential Conditional Iterative
| |
‘ v v
v True Test False Test False
Subtask 1 l_ Condition —l >  Condition —
l Subtask 1 Subtask 2 True|
Subtask 2
l | | Subtask
l o
a=x+y; if (x >y) r=x -y, while (x > 0) {

a - c; else r =y - x; X—-;

<
I

24



Three Basic Programming Constructs

Conditional

\4

True Test False

l_ Condition _l

Subtask 1 Subtask 2

\4

if (x > y) r =x - y;

else r =y - x;
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Three Basic Programming Constructs

e Both conditional and iterative Conditional
programming requires altering l
the sequence of instructions . o
control flow U alse
( ) l_ Condition _l
Subtask 1 Subtask 2
I

if (x >y) r=x - y;
y - X,

else r
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Three Basic Programming Constructs

e Both conditional and iterative Conditional
programming requires altering l
the sequence of instructions
True Test False

(control flow)

Condition
e \We need a set of control l_ _l

instructions to do so
Subtask 1 Subtask 2

if (x >y) r=x - y;
y - X,

else r
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Three Basic Programming Constructs

e Both conditional and iterative Conditional
programming requires altering l
the sequence of instructions
True Test False

(control flow)

Condition
e \We need a set of control l_ _l
instructions to do so

, Subtask 1 Subtask 2
* Two fundamental questions:
* How to test condition and how to | |
represent test results? ‘
* How to alter control flow according M
to the test results? if (x>y) r=x-y;
else r =y - x;
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Conditional Branch Example

long absdiff

{

(long x, long y)

long result;
if (x > y)
result = x-y;
else
result = y-x;
return result;

26



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

long absdiff absdiff:
long x, lon
{ ( g gy cmpgq
long result; Jle
if (x > y) movqg
result = x-y; subqg
else ret
result = y-x; 1.4 :
return result; ) )
} movq
subqg

ret

$rsi,%rdi # x:y
.L4

$rdi,srax
¥rsi,%rax

# x <=y
3rsi,srax
$rdi, srax

26



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

long absdiff absdiff:
(long x, long y) cmpq $rsi,$rdi
{ jle L4
long result; J ) ]
if (x > y) movq srdi, Srax
result = x-y; subg ¥rsi,%rax
eli:sult = y-Xx; ret
return result; .L4: # x-<= \'
} movq %rsi,srax
subqg srdi, srax
. ret
srdi X
srsi )

Frax Return value



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

long absdiff absdiff:

{ (long x, long y) cmpg _%¥si,%rdi # x:y

long result; Jle |
if (x > y) movq ,srax
result = x-y; subg ¥rsi,%rax
else ———rat
result = y-x; 4 ‘
return result; # x-<- Y
} -~ movqg %rsi,srax
subq rdi, srax
. ret
srdi X

Labels are symbolic names used
to refer to instruction addresses.

srsi Y

Frax Return value
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Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

unsigned long absdiff absdiff:
“_mﬂgmlad 1°n‘)3 Xy cmpgq $rsi,%rdi # x:y
unsigne on .
{ J Y Jle .L4
unsigned long result; movq $rdi, $rax
if (x > y) subg $rsi,%rax
result = x-y; ret
else
result = y-x; .L4: i x_<- b4
return result; movq 3rsi,srax
} subqg srdi, srax
: r
et
srdi X .
Labels are symbolic names used
Frsi Y

to refer to instruction addresses.
$rax Return value



Conditional Branch Example

gcc -0g -S —fno-if-conversion control.c

unsigned long absdiff absdiff:

(Enstgneds SengR; cm $rsi,%rdi # x:
movq !rgl,!rax

unsigned long y)

{

unsigned long result;

if (x > vy) subqg $rsi, %$rax
result = x-y; ret

else
result = y-x; .L4: i x_<- b4

return result; movq 3rsi,srax

} subq $rdi, $rax

. ret

srdi X

Labels are symbolic names used
to refer to instruction addresses.

Frsi Y

Frax Return value
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Conditional Jump Instruction

cmpq srsi, srdi
Jle .L4
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Conditional Jump Instruction

cmpq srsi, Ssrdi
Jle .L4

Jump to label if less
than or equal to
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Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to

* Semantics:

o [f $rdi is less than or
equal to $rsi (both
interpreted as signed
value), jump to the part
of the code with a
label . L4
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Conditional Jump Instruction

cmpq srsi, 3srdi
Jle .L4

Jump to label if less
than or equal to

e Semantics: e Under the hood:

o [f $rdi is less than or
equal to $rsi (both
interpreted as signed
value), jump to the part
of the code with a
label . L4
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Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to
e Semantics: * Under the hood:
o If $rdi is less than or e cmpgq instruction sets the
equal to $rsi (both condition codes

interpreted as signed
value), jump to the part
of the code with a
label . L4
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Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to
* Semantics: * Under the hood:
o If $rdi is less than or e cmpgq instruction sets the

equal to $rsi (both condition codes

interpreted as signed * jle reads and checks the

value), jump to the part condition codes

of the code with a
label . L4
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Conditional Jump Instruction

cmpq srsi, Ssrdi |
e L4 Jump to label if less
J ) than or equal to
* Semantics: * Under the hood:
o If $rdi is less than or e cmpgq instruction sets the

equal to $rsi (both condition codes

interpreted as signed * jle reads and checks the

value), jump to the part condition codes

of the code with a

e |f condition met, modify the
Program Counter to point to
the address of the
iInstruction with a label . L4

label .14
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How Should empg Set Condition Codes?

cmpq srsi, 3srdi
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How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi

e Srdi == %rsi ifandonlyif $rdi - %rsi ==
e Srdi < Srsiifandonly if: e

e 3rdi - %$rsi < 0 and the result doesn’t overflow, or
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Overflow
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How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi
e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==
e $rdi < S%Srsiifand only if; Haeedmmmess
e 3rdi - %$rsi < 0 and the result doesn’t overflow, or
e 3rdi - $rsi > 0 and the result does overflow

001 1 ZF Zero Flag (result is zero)
No ~) 010 -y 2
Overflow

SF Sign Flag (result is negative)
111 -1 OF Overflow Flag (result overflow)
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How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi
e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==
e $rdi < S%Srsiifand only if: Sttt oo
e 3rdi - %$rsi < 0 and the result doesn’t overflow, or
e 3rdi - $rsi > 0 and the result does overflow

11111111 10000000 ZF Z.ero Flag (result lIS Z€ero) |
SF Sign Flag (result is negative)

cmpq OxFF, Ox80 OF Overflow Flag (result overflow)

SF
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How Should empg Set Condition Codes?

cmpq 3rsi,

$rdi

e Essentially, how do we know $rdi <= $rsi?

e Calculate $rdi - %rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

e $rdi < S%Srsiifand only if: St
e 3rdi - $rsi < 0 and the result doesn’t overflow, or

e 3rdi - $rsi > 0 and the result does overflow

11111111 10000000
cmpqg OxFF, Ox80

10000000 -128
-) 11111111 -) -1

10000001 -127

ZF Zero Flag (result is zero)
SF Sign Flag (result is negative)
OF Overflow Flag (result overflow)

SF
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How Should empg Set Condition Codes?

cmpq 3rsi,

$rdi

e Essentially, how do we know $rdi <= $rsi?

e Calculate $rdi - %rsi

e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

e $rdi < S%Srsiifand only if: St
e 3rdi - $rsi < 0 and the result doesn’t overflow, or

e 3rdi - $rsi > 0 and the result does overflow

11111111 10000000
cmpqg OxFF, Ox80

10000000 -128
-) 11111111 -) -1

10000001 -127
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How Should empg Set Condition Codes?

cmpq srsi, 3srdi
e Essentially, how do we know $rdi <= $rsi?
e Calculate %rdi - %rsi
e 3rdi == %rsi ifandonlyif $rdi - %$rsi ==

e 5rdi < Srsiifand only if: et
e 3rdi - $rsi < 0 and the result doesn’t overflow, or
e 3rdi - 3rsi > 0 and the result does overflow

e 5rdi <= srsiifandonlyif 7 “®0Flagresultis zero)
e ZF is set, or SF Sign Flag (result is negative)

e SFis set but OF is not set, or OF Overflow Flag (result overflow)
« SF is not set, but OF is set n n n
* or simply: ZF | (SF ~ OF)
SF
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Conditional Branch Example

long absdiff absdiff:
{ (long x, long y) cmpqg $rsi,%rdi # x:y
long result; Jle 'L4_
if (x > y) movq srdi, srax
result = x-y; subg grsi,%rax
else ret
result = y-x; —
return result; .L4: # x_<— \'
} movq 3rsi,srax
subqg srdi, srax
: ret
Srdi X
$rsi A%
$rax Return value

ZF SF OF
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Conditional Branch Example

long absdiff absdiff:
{ (long x, long y) cmpqg $rsi,%rdi # x:y
long result; Jle .Ld ]
if (x > y) movq srdi, srax
result = x-y; subg grsi,%rax
return result; .L4: # x_<= \'
} movq 3rsi,srax
subqg srdi, srax
: r
=

% rdi x cmpqg sets ZF, SF, OF
srsi v jle checks ZF | (SF N OF)

Frax Return value n n n
SF

31



How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits
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How Does the Hardware Check Overflow?

 /ZF and SF are easily set by just examining the bits

e How about OF? How do we know A-B leads to
overflow (A and B are treated as signed)
* fA<O&B >0, but the result > 0O, or
* IfA>0&B <0, but the result < O
e S0 again, just have to check the bits

001 1
No -) 010 )y 2
verflow
Overtlo 111 -1

101 -3 011 3
Overflow -) o011 -) 3 -) 100 -) -4

010 2 111 -1
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