
CSC 252: Computer 
Organization

Fall 2021: Lecture 23

Memory Management

Instructor: Alan Beadle

Department of Computer Science
University of Rochester



Carnegie Mellon

Announcements

 
 A5 is out

 No lecture Wednesday, break

 One week from today I will talk more about memory 
management



Carnegie Mellon

Today  
•Memory mapping

• Dynamic memory allocation

!3



Carnegie Mellon

Virtual Address Space of a Linux Process

!4

Kernel code and data

Memory mapped region  
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process 
virtual 
memory

brk

Physical memoryIdentical  for 
each process

Process-specific 
data 

 structs  (ptables,
task and mm structs, 

kernel stack)
Kernel 
virtual  
memory

0x00400000

Different for 
each process



Carnegie Mellon

Memory Mapping For Sharing
•Multiple processes often share data


• Different processes that run the same code (e.g., shell) 
• Different processes linked to the same standard libraries 
• Different processes share the same file 

• It is wasteful to create exact copies of the share object

•Memory mapping allow us to easily share objects


• Different VM pages point to the same physical page/object

!5



Carnegie Mellon

Sharing Revisited: Shared Objects
• Process 1 maps the shared object. 

!6

Shared 
object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

• The kernel remembers 
that the object (backed 
by a unique file) is 
mapped by Proc. 1 to 
some physical pages.



Carnegie Mellon

Sharing Revisited: Shared Objects

!7

Shared 
object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

• Process 2 maps the shared object. • The kernel remembers 
that the object (backed 
by a unique file) is 
mapped by Proc. 1 to 
some physical pages.


• Now when Proc. 2 
wants to access the 
same object, the kernel 
can simply point the 
PTEs of Proc. 2 to the 
already-mapped 
physical pages.



Carnegie Mellon

The Problem…
•What if Proc. 1 now wants to modify the shared object, but 

doesn’t want the modification to be visible to Proc. 2

!8



Carnegie Mellon

The Problem…
•What if Proc. 1 now wants to modify the shared object, but 

doesn’t want the modification to be visible to Proc. 2
• Simplest solution: always create duplicate copies of shared 

objects at the cost of wasting space. Not ideal.

!8



Carnegie Mellon

The Problem…
•What if Proc. 1 now wants to modify the shared object, but 

doesn’t want the modification to be visible to Proc. 2
• Simplest solution: always create duplicate copies of shared 

objects at the cost of wasting space. Not ideal.
• Idea: Copy-on-write (COW)


• First pretend that both processes will share the objects without 
modifying them. If modification happens, create separate copies.

!8



Carnegie Mellon

Private Copy-on-write (COW) Objects
• Two processes 

mapping a private 
copy-on-write 
(COW)  object. 


• Area flagged as 
private copy-on-
write (COW)


• PTEs in private 
areas are flagged 
as read-only

!9

Private  
copy-on-write object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

 Private 
copy-on-write 
area



Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

!10

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object



Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

!10

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object



Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

!10

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object



Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

!10

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object



Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

• Instruction restarts upon 
handler return. 

!10

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object



Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

• Instruction restarts upon 
handler return. 

• Copying deferred as 
long as possible!

!10

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object



Carnegie Mellon

User-Level Memory Mapping
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)

•Map len bytes starting at offset offset of the file specified by 
file description fd, preferably at address start 

• start: may be NULL for “pick an address”
• prot: PROT_READ, PROT_WRITE, ...
• flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

• Return a pointer to start of mapped area (may not be start)

!11



Carnegie Mellon

User-Level Memory Mapping
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)

!12

len bytes

start
(or address  

chosen by kernel)

Process virtual memoryDisk file specified by  
file descriptor fd

len bytes

offset
(bytes)

0 0



Carnegie Mellon

Example: Using mmap to Copy Files

!13

/* mmapcopy driver */ 
int main(int argc, char **argv) 
{ 
    struct stat stat; 
    int fd; 

    /* Check for required cmd line arg */ 
    if (argc != 2) { 
        printf("usage: %s <filename>\n", 
               argv[0]); 
        exit(0); 
    } 

    /* Copy input file to stdout */ 
    fd = Open(argv[1], O_RDONLY, 0); 
    Fstat(fd, &stat); 
    mmapcopy(fd, stat.st_size); 
    exit(0); 
}

• Copying a file to stdout without transferring data to user space

• i.e., no file data is copied to user stack

#include "csapp.h" 

void mmapcopy(int fd, int size) 
{ 

    /* Ptr to memory mapped area */ 
    char *bufp; 

    bufp = mmap(NULL, size,  
                PROT_READ, 
                MAP_PRIVATE,  
                fd, 0); 
    Write(1, bufp, size); 
    return; 
}

mmapcopy.c mmapcopy.c



Carnegie Mellon

Today  
•Memory mapping

• Dynamic memory allocation


• Basic concepts 
• Implicit free lists

!14



Carnegie Mellon

Dynamic Memory Allocation 
• Programmers use dynamic 

memory allocators (such 
as malloc) to acquire VM 
at run time. 


• Dynamic memory 
allocators manage an area 
of process virtual memory 
known as the heap. 

!15

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

User stack

Top of heap 
 (brk ptr)



Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size) 
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

!16



Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size) 
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

void free(void *p) 
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

!16



Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size) 
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

void free(void *p) 
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero. 
• realloc: Changes the size of a previously allocated block.
• sbrk: Used internally by allocators to grow or shrink the heap

!16



Carnegie Mellon

malloc Example

!17

#include <stdio.h> 
#include <stdlib.h> 

void foo(int n) { 
    int i, *p; 

    /* Allocate a block of n ints */ 
    p = (int *) malloc(n * sizeof(int)); 
    if (p == NULL) { 
        perror("malloc"); 
        exit(0); 
    } 

    /* Initialize allocated block */ 
    for (i=0; i<n; i++) 
 p[i] = i; 

    /* Return allocated block to the heap */ 
    free(p); 
}

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

Stack
ip n

N * 8 bytes



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!18



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!18

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!18

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!18

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip n

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!18

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

n

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!18

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

n

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!19

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!19

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!19

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!19

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

bar Stack
p



Carnegie Mellon

Dynamic Memory Allocation
• Allocator maintains heap as collection of variable sized blocks/

chunks, which are either allocated or free
• Blocks that are no longer used should be free-ed to save space

!20

Allocated block 
(4 words)

Free block 
(3 words) Free word

Allocated word

• Assumptions Made in This Lecture

• Memory is word addressed 
• Words are int-sized



Carnegie Mellon

Dynamic Memory Allocation
• Types of allocators


• Explicit allocator:  application (i.e., programmer) allocates and frees 
space 

• E.g.,  malloc and free in C
• Implicit allocator: application allocates, but does not free space

• E.g. garbage collection in Java, JavaScript, Python, etc…

•Will discuss simple explicit memory allocation today

!21



Carnegie Mellon

Allocation Example

!22

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



Carnegie Mellon

Allocation Example

!22

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



Carnegie Mellon

Allocation Example

!22

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



Carnegie Mellon

Allocation Example

!22

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



Carnegie Mellon

Allocation Example

!22

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



Carnegie Mellon

Constraints
• Applications

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

!23



Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed; more on this later

!23



Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

!24

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)



Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

!24

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)



Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

• Depends on the pattern of future requests

!24

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)



Carnegie Mellon

Key Issues in Dynamic Memory Allocation
• Free:


• How do we know how much memory to free given just a pointer? 
• How do we keep track of the free blocks? 
• How do we reinsert freed block? 

• Allocation:

• What do we do with the extra space when allocating a structure 

that is smaller than the free block it is placed in? 
• How do we pick a block to use for allocation -- many might fit?

!25



Carnegie Mellon

Knowing How Much to Free
• Standard method


• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra word for every allocated block

!26

p0 = malloc(4)

p0

free(p0)

block size payload

5



Carnegie Mellon

Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is 
smaller than block size

!27

Payload Internal  
fragmentation

Block

Internal  
fragmentation



Carnegie Mellon

Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is 
smaller than block size

• Caused by 

• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions (e.g., to return a big block to satisfy a small 

request)

!27

Payload Internal  
fragmentation

Block

Internal  
fragmentation



Carnegie Mellon

Keeping Track of Free Blocks

!28

5 4 26

•Method 1: Implicit list using length—links all blocks



Carnegie Mellon

Keeping Track of Free Blocks

!28

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers



Carnegie Mellon

Keeping Track of Free Blocks

!28

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

•Method 3: Segregated free list
• Different free lists for different size classes



Carnegie Mellon

Keeping Track of Free Blocks

!28

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

•Method 3: Segregated free list
• Different free lists for different size classes

•Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key



Carnegie Mellon

Today  
•Memory mapping

• Dynamic memory allocation


• Basic concepts 
• Implicit free lists

!29



Carnegie Mellon

Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!

!30

5 4 26



Carnegie Mellon

Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!

!30

Size

1 word

Payload

a = 1: Allocated block   
a = 0: Free block 

Size: block size 

Payload: application data 
(allocated blocks only) 

a

Optional
padding

5 4 26



Carnegie Mellon

Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!31



Carnegie Mellon

Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!31

Size

1 word

Format of 
allocated and 
free blocks

Payload

a = 1: Allocated block   
a = 0: Free block 

Size: block size 

Payload: application data 
(allocated blocks only) 

a

Optional
padding



Carnegie Mellon

Detailed Implicit Free List Example

!32

Start  
of  

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded 
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit



Carnegie Mellon

Finding a Free Block
• First fit:


• Search list from beginning, choose first free block that fits 
• Can take linear time in total number of blocks (allocated and free) 
• In practice it can cause “splinters” at beginning of list

!33



Carnegie Mellon

Finding a Free Block
• First fit:


• Search list from beginning, choose first free block that fits 
• Can take linear time in total number of blocks (allocated and free) 
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished 
• Should often be faster than first fit: avoids re-scanning unhelpful blocks 
• Some research suggests that fragmentation is worse

!33



Carnegie Mellon

Finding a Free Block
• First fit:


• Search list from beginning, choose first free block that fits 
• Can take linear time in total number of blocks (allocated and free) 
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished 
• Should often be faster than first fit: avoids re-scanning unhelpful blocks 
• Some research suggests that fragmentation is worse

• Best fit:

• Search the list, choose the best free block: fits, with fewest bytes left over 
• Keeps fragments small—usually improves memory utilization 
• Will typically run slower than first fit

!33



Carnegie Mellon

Allocating in Free Block
• Allocated space might be smaller than free space

• We could simply leave the extra space there. Simple to implement but 

causes internal fragmentation

• Or we could split the block

!34

void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // round up to even 
  int oldsize = *p & -2;                // mask out low bit 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize) 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block

4 4 26

4 24

p

24



Carnegie Mellon

Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 

!35

4 24 24



Carnegie Mellon

Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 

!35

4 24 24

free(p) p

4 4 24 2



Carnegie Mellon

Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 

!35

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!



Carnegie Mellon

Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 

!35

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it 



Carnegie Mellon

Coalescing
• Join (coalesce) with next/previous blocks, if they are free


• Coalescing with next block

!36

void free_block(ptr p) {  
    *p = *p & -2;          // clear allocated flag  
    next = p + *p;         // find next block  
    if ((*next & 1) == 0)  
      *p = *p + *next;     // add to this block if  
}                          //    not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically 
gone



Carnegie Mellon

Coalescing
• How about now?

!37

4 24 2

free(p) p

4

4 24 28



Carnegie Mellon

Coalescing
• How about now?

• How do we coalesce with previous block?

!37

4 24 2

free(p) p

4

4 24 28



Carnegie Mellon

Coalescing
• How about now?

• How do we coalesce with previous block?
• Linear time solution: scans from beginning

!37

4 24 2

free(p) p

4

4 24 28



Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!38

4 4 4 4 6 46 4



Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!38

Size

Format of 
allocated and 
free blocks

Payload and 
padding

a = 1: Allocated block   
a = 0: Free block 

Size: Total block size 

Payload: Application data 
(allocated blocks only) 

a

SizeBoundary tag 
(footer)

4 4 4 4 6 46 4

Header



Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!38

Size

Format of 
allocated and 
free blocks

Payload and 
padding

a = 1: Allocated block   
a = 0: Free block 

Size: Total block size 

Payload: Application data 
(allocated blocks only) 

a

Size aBoundary tag 
(footer)

4 4 4 4 6 46 4

Header



Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

• Disadvantages? (Think of small blocks…)

!38

Size

Format of 
allocated and 
free blocks

Payload and 
padding

a = 1: Allocated block   
a = 0: Free block 

Size: Total block size 

Payload: Application data 
(allocated blocks only) 

a

Size aBoundary tag 
(footer)

4 4 4 4 6 46 4

Header



Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:


• First-fit, next-fit, best-fit, etc. 
• Trades off lower throughput for less fragmentation	

!39



Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:


• First-fit, next-fit, best-fit, etc. 
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks? 
• How much internal fragmentation are we willing to tolerate?

!39



Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:


• First-fit, next-fit, best-fit, etc. 
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks? 
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

• Immediate coalescing: coalesce each time free is called  
• Deferred coalescing: try to improve performance of free by deferring 

coalescing until needed. Examples: 
• Coalesce as you scan the free list for malloc 
• Coalesce when the amount of external fragmentation reaches 

some threshold

!39



Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple

!40



Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost: 


• linear time worst case 
• Identify free blocks requires scanning all the blocks!

!40



Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost: 


• linear time worst case 
• Identify free blocks requires scanning all the blocks!

• Free cost: 

• constant time worst case

!40



Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost: 


• linear time worst case 
• Identify free blocks requires scanning all the blocks!

• Free cost: 

• constant time worst case

•Memory usage: 

• Will depend on placement policy 
• First-fit, next-fit, or best-fit

!40



Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost: 


• linear time worst case 
• Identify free blocks requires scanning all the blocks!

• Free cost: 

• constant time worst case

•Memory usage: 

• Will depend on placement policy 
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

!40



Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost: 


• linear time worst case 
• Identify free blocks requires scanning all the blocks!

• Free cost: 

• constant time worst case

•Memory usage: 

• Will depend on placement policy 
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing 
are general to all allocators

!40


