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Announcements

* A5 is out
* No lecture Wednesday, break

* One week from today | will talk more about memory
management



Today

* Memory mapping
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Memory Mapping For Sharing

* Multiple processes often share data
e Different processes that run the same code (e.g., shell)
* Different processes linked to the same standard libraries
 Different processes share the same file
* |t is wasteful to create exact copies of the share object
* Memory mapping allow us to easily share objects
* Different VM pages point to the same physical page/object



Sharing Revisited: Shared Objects

* Process 1 maps the shared object. ® The kernel remembers
that the object (backed

Process 1 Physical Process 2 by a unique file) is
virtual memory memory virtual memory mapped by Proc. 1 to
some physical pages.
Shared

object



Sharing Revisited: Shared Objects

* Process 2 maps the shared object.

Process 1
virtual memory

Physical

memory

Shared
object

Process 2
virtual memory

e The kernel remembers

that the object (backed
by a unique file) is
mapped by Proc. 1 to
some physical pages.
Now when Proc. 2
wants to access the
same object, the kernel
can simply point the
PTEs of Proc. 2 to the
already-mapped
physical pages.



The Problem...

* What if Proc. 1 now wants to modify the shared object, but
doesn’t want the modification to be visible to Proc. 2
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The Problem...

* What if Proc. 1 now wants to modify the shared object, but
doesn’t want the modification to be visible to Proc. 2

e Simplest solution: always create duplicate copies of shared
objects at the cost of wasting space. Not ideal.
e |[dea: Copy-on-write (COW)

 First pretend that both processes will share the objects without
modifying them. If modification happens, create separate copies.



Private Copy-on-write (COW) Objects

* TWO processes
mapping a private

Process 1 Physical Process 2 copy-on-write
virtual memory memory virtual memory (COW) object.
e Area flagged as
. private copy-on-
kT Private write (COW)
s } :‘r’g@“""’"te e PTEs in private
areas are flagged
as read-only
Private

copy-on-write object



Private Copy-on-write (COW) Objects

e |Instruction writing to
private page triggers

Process 1 Physical Process 2 page (protection) fault.
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e Instruction writing to
private page triggers
page (protection) fault.

e Handler checks the area

protection, and sees
that it’s a COW object

e Handler then creates
new R/W page.

e |nstruction restarts upon
handler return.

10



Private Copy-on-write (COW) Objects
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private
COW page

e Instruction writing to
private page triggers
page (protection) fault.

e Handler checks the area

protection, and sees
that it’s a COW object

e Handler then creates
new R/W page.

e |nstruction restarts upon
handler return.

e Copying deferred as
long as possible!

10



User-Level Memory Mapping

void *mmap (void *start, int len,

int prot, int flags, int fd, int offset)

e Map len bytes starting at offset offset of the file specified by
file description £d, preferably at address start

e start: may be NULL for “pick an address”
« prot: PROT_READ, PROT_WRITE, ...

« flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

e Return a pointer to start of mapped area (may not be start)

11



User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)
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file descriptor £4
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Example: Using mmap to Copy Files

* Copying a file to stdout without transferring data to user space
* |.e., no file data is copied to user stack

#include "csapp.h"

void mmapcopy(int fd, int size)

{

/* Ptr to memory mapped area */
char xbufp;

bufp = mmap(NULL, size,

PROT_READ,
MAP_PRIVATE,
fd, 0);
Write(1l, bufp, size);
return;
}
mmapcopy.c

/* mmapcopy driver x/
int main(int argc, char xxargv)

{

struct stat stat;
int fd;

/* Check for required cmd line arg */
if (argc !'= 2) {
printf("usage: %s <filename>\n",
argv[o]);
exit(0);
}

/* Copy input file to stdout x/
fd = Open(argv[1l], O_RDONLY, 0);
Fstat(fd, &stat);

mmapcopy(fd, stat.st_size);
exit(0);

mmapcopy.c

13



Today

e Dynamic memory allocation
e Basic concepts

14



Dynamic Memory Allocation

* Programmers use dynamic
memory allocators (such
as malloc) to acquire VM

at run time.

e Dynamic memory
allocators manage an area
of process virtual memory
known as the heap.

User stack

2 ¥

Top of heap

Heap (viamalloc)

“— (brk ptr)

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)
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The malloc/free Functions

#include <stdlib.h>

void *malloc(size t size)
» Successful:

« Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e If size == 0, returns NULL
« Unsuccessful: returns NULL (0) and sets errno
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The malloc/free Functions

#include <stdlib.h>

void *malloc(size t size)
» Successful:

« Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e If size == 0, returns NULL
« Unsuccessful: returns NULL (0) and sets errno

vold free(void *p)
« Returns the block pointed at by p to pool of available memory
« p must come from a previous calltomalloc or realloc

Other functions
e calloc: Version of malloc that initializes allocated block to zero.

e realloc: Changes the size of a previously allocated block.
« sbrk: Used internally by allocators to grow or shrink the heap
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malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int 1, *xp;

/* Allocate a block of n ints x/
p = (int *x) malloc(n x sizeof(int));
if (p == NULL) {
perror("malloc");
exit(0);
¥

/* Initialize allocated block x/
for (i=@; i<n; i++)
pli]l = 1i;

/* Return allocated block to the heap *x/
free(p);

Heap (via malloc)

N * 8 bytes

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)
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Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically
allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

18



Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically
allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo(int n) {
int 1, *xp;

p = (int %) malloc(n * sizeof(int));
if (p == NULL) exit(Q);

for (i=@; i<n; i++)
plil = 1i;
return p;

}

void bar() {
int *p = foo(5);

printf(“sd\n”, plo]);
¥




Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo(int n) {
int 1, *xp;

p = (int %) malloc(n * sizeof(int));
if (p == NULL) exit(Q);

for (i=@; i<n; i++)
plil = 1i;
return p;

}

void bar() {
int *p = foo(5);

printf(“sd\n”, plo]);
¥

bar Stack
P

Heap (via malloc)

18



Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo(int n) {
int 1, *xp;

p = (int %) malloc(n * sizeof(int));
if (p == NULL) exit(Q);

for (i=@; i<n; i++)
plil = 1i;
return p;

}

void bar() {
int *p = foo(5);

printf(“sd\n”, plo]);
¥

bar Stack
P

foo Stack
p 1 n

Heap (via malloc)

18



Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically
allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

in?r':tﬂj)_O(}ng n) { bar Stack
P
p = (int %) malloc(n * sizeof(int));
if (p == NULL) exit(0); foo Stack
for (i=0; i<n; i++) P - -
plil = i;
return p;
b Heap (via malloc)
void bar() {
int xp = foo(5);
e h N * 8 bytes
printf(“sd\n”, plo]);
¥




Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically
allocating the space would be a waste.

* More importantly: access data across function calls. Variables
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intx foo(int n) {
e A, = bar Stack
P
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if (p == NULL) exit(Q);
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Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo() {
int 1i;
int p[5];

for (i=@; i<5; i++)
pli]l = 1i;
return p;

¥

void bar() {
int *p = foo();

printf(“sd\n”, pl0]);
}

bar Stack
P

Heap (via malloc)

19



Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo() {
int 1i;
int p[5];

for (i=@; i<5; i++)
pli]l = 1i;
return p;

¥

void bar() {
int *p = foo();

printf(“sd\n”, pl0]);
}

bar Stack
P

foo Stack
p i

Heap (via malloc)

19



Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo() {
int 1i;
int p[5];

for (i=@; i<5; i++)
pli]l = 1i;
return p;

¥

void bar() {
int *p = foo();

printf(“sd\n”, pl0]);
}

bar Stack
P

foo Stack
p i

N * 8 bytes

Heap (via malloc)

19



Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo() {
int 1i;
int p[5];

for (i=@; i<5; i++)
pli]l = 1i;
return p;

¥

void bar() {
int *p = foo();

printf(“sd\n”, pl0]);
}

bar Stack
P

Heap (via malloc)

19



Dynamic Memory Allocation

* Allocator maintains heap as collection of variable sized blocks/
chunks, which are either allocated or free

* Blocks that are no longer used should be free-ed to save space

\ v J Q _}
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

* Assumptions Made in This Lecture
 Memory is word addressed
* Words are int-sized
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Dynamic Memory Allocation

* Types of allocators

« Explicit allocator. application (i.e., programmer) allocates and frees
space

« E.g.,, mallocand freeinC
« Implicit allocator: application allocates, but does not free space
« E.g. garbage collection in Java, JavaScript, Python, etc...

* Will discuss simple explicit memory allocation today

21



Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)
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Constraints

e Applications
« Can issue arbitrary sequence of malloc and free requests

« free request mustbeto amalloc’d block
e Allocators
« Can’t control number or size of allocated blocks
« Must respond immediately to malloc requests
 j.e., can’t reorder or buffer requests
« Must allocate blocks from free memory
* j.e., can place allocated blocks only in free memory
« Must align blocks so they satisfy all alignment requirements
« 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
« Can manipulate and modify only free memory
« Can’t move the allocated blocks once they are malloc’d
« J.e., compaction is not allowed; more on this later
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External Fragmentation

* Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)
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External Fragmentation

* Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(6) QOops! (what would happen now?)

e Depends on the pattern of future requests
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Key Issues in Dynamic Memory Allocation

* Free:
 How do we know how much memory to free given just a pointer?
 How do we keep track of the free blocks”?
* How do we reinsert freed block?

* Allocation:

* What do we do with the extra space when allocating a structure
that is smaller than the free block it is placed in”?

* How do we pick a block to use for allocation -- many might fit"?

25



Knowing How Much to Free

e Standard method

« Keep the length of a block in the word preceding the block.

« This word is often called the header field or header
« Requires an extra word for every allocated block

pO = malloc (4) 5

block size payload

free (p0)

26



Internal Fragmentation

Block
A
a N
Internal Payload .

frag mentation |

Internal
fragmentation

* For a given block, internal fragmentation occurs if payload is

smaller than block size



Internal Fragmentation

Block
AN
- N
Internal . —t— Payload <
fragmentation

Internal
fragmentation

* For a given block, internal fragmentation occurs if payload is

smaller than block size
e Caused by

« Overhead of maintaining heap data structures

« Padding for alignment purposes

 Explicit policy decisions (e.g., to return a big block to satisfy a small

request)
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Keeping Track of Free Blocks

e Method 1: Impilicit list using length—Ilinks all blocks
/\/\A/_\‘

5 4 6 2
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Keeping Track of Free Blocks

e Method 1: Impilicit list using length—Ilinks all blocks
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« Different free lists for different size classes
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Keeping Track of Free Blocks

e Method 1: Impilicit list using length—Ilinks all blocks

* Method 2: Explicit list among the free blocks using pointers

.

5 - 4 6 2

e Method 3: Segregated free list
« Different free lists for different size classes

* Method 4: Blocks sorted by size

« Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key



Today

e Dynamic memory allocation

¢ Implicit free lists

29



Implicit List

* For each block we need both size and allocation status
« Could store this information in two words: wasteful!
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Implicit List

* For each block we need both size and allocation status
« Could store this information in two words: wasteful!

1 word

Size

a

Payload

Optional
padding

a = 1: Allocated block
a = 0: Free block
Size: block size

Payload: application data
(allocated blocks only)
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Implicit List

* For each block we need both size and allocation status
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Implicit List

* For each block we need both size and allocation status
« Could store this information in two words: wasteful!

e Standard trick
« |f blocks are aligned, some low-order address bits are always O
« Instead of storing an always-0 bit, use it as a allocated/free flag
« When reading size word, must mask out this bit

1 word
A
—
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
free blocks Payload: application data
(allocated blocks only)
Optional
padding
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Detailed Implicit Free List Example

Start U"”sed/\ /\

/\

8/0

16/1

32/0

16/1

B

heap

. Double-word
aligned

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit
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Finding a Free Block

e First fit:
« Search list from beginning, choose first free block that fits
« (Can take linear time in total number of blocks (allocated and free)
e In practice it can cause “splinters” at beginning of list
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Finding a Free Block

e First fit:
« Search list from beginning, choose first free block that fits
« (Can take linear time in total number of blocks (allocated and free)
e In practice it can cause “splinters” at beginning of list

e Next fit:
« Like first fit, but search list starting where previous search finished
« Should often be faster than first fit: avoids re-scanning unhelpful blocks

« Some research suggests that fragmentation is worse

e Best fit:
« Search the list, choose the best free block: fits, with fewest bytes left over
« Keeps fragments small—usually improves memory utilization
o Wil typically run slower than first fit
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Allocating in Free Block

e Allocated space might be smaller than free space

e We could simply leave the extra space there. Simple to implement but

causes internal fragmentation
* Or we could split the block

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1;
int oldsize = *p & -2;
*p = newsize | 1;
if (newsize < oldsize)
* (p+tnewsize) = oldsize - newsize;

//
//
//

//
//

round up to even
mask out low bit
set new length

set length in remaining
part of block
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Freeing a Block

* Simplest implementation:

« Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

« But can lead to “false fragmentation”
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Freeing a Block

* Simplest implementation:

« Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

« But can lead to “false fragmentation”

free (p)

malloc(5) Qops!

There is enough free space, but the allocator won’t be able to find it
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Coalescing

* Join (coalesce) with next/previous blocks, if they are free

« Coalescing with next block

///’—‘\\\~///’—‘\\u(//"_‘\\‘//—\\

4 4 4 2 2
4
free (p) p
AAA

4 4 6 2 2

void free block(ptr p) {

*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if

} // not allocated

logically
gone
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Coalescing

e How about now?

4 4 4 2 2
A
free (p) P
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Coalescing

e How about now?

e How do we coalesce with previous block?

free (p)

37



Coalescing

e How about now?
e How do we coalesce with previous block?

e | inear time solution: scans from beginning

free (p)
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Bidirectional Coalescing (Constant Time)

® Boundary tags [Knuth73]
* Replicate size/allocated word at “bottom” (end) of free blocks

» Allows us to traverse the “list” backwards, but requires extra space
* Important and general technique!
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* Replicate size/allocated word at “bottom” (end) of free blocks

» Allows us to traverse the “list” backwards, but requires extra space
* Important and general technique!

/\A/\A/_\A
4 414 4 6 6 4 4
Header > Size a a = 1: Allocated block
a =0: Free block
Format of _ _
allocated and Payload and Size: Total block size
addin
free blocks P < Payload: Application data
(allocated blocks only)
Boundary tag——» Size

(footer)
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» Allows us to traverse the “list” backwards, but requires extra space
* Important and general technique!

/\A/\A/_\A
4 4 4 4 6 6 4 4
Header . Size a a =1: Allocated block
a =0: Free block
Format of _ _
allocated and Payload and Size: Total block size
addin
free blocks . 2 Payload: Application data
(allocated blocks only)
Boundary tag——»| Size a

(footer)
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Bidirectional Coalescing (Constant Time)

® Boundary tags [Knuth73]
* Replicate size/allocated word at “bottom” (end) of free blocks
» Allows us to traverse the “list” backwards, but requires extra space
* Important and general technique!

e Disadvantages? (Think of small blocks...)

/\A/\A/_\A
4 4 4 4 6 6 4 4
Header . Size a a =1: Allocated block
a =0: Free block
Format of _ _
allocated and Payload and Size: Total block size
addin
free blocks . 2 Payload: Application data
(allocated blocks only)
Boundary tag——»| Size a

(footer)
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Summary of Key Allocator Policies

* Placement policy:
 First-fit, next-fit, best-fit, etc.
« Trades off lower throughput for less fragmentation
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Summary of Key Allocator Policies

* Placement policy:
 First-fit, next-fit, best-fit, etc.
« Trades off lower throughput for less fragmentation

e Splitting policy:
« When do we split free blocks?
« How much internal fragmentation are we willing to tolerate?

* Coalescing policy:
« Immediate coalescing: coalesce each time free is called

« Deferred coalescing: try to improve performance of free by deferring
coalescing until needed. Examples:

« Coalesce as you scan the free list formalloc

e Coalesce when the amount of external fragmentation reaches
some threshold
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Implicit Lists: Summary

* Implementation: very simple
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Implicit Lists: Summary

* Implementation: very simple

* Allocate cost:
e linear time worst case
* |dentify free blocks requires scanning all the blocks!

* Free cost:
e constant time worst case
* Memory usage:
« Will depend on placement policy
e First-fit, next-fit, or best-fit
* Not used in practice because of linear-time allocation
« used in many special purpose applications

* However, the concepts of splitting and boundary tag coalescing
are general to all allocators
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