CSC 252: Computer
Organization
Fall 2021: Lecture 14

Processor Architecture:
Pipeline dependencies

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Announcements

A3 due Thursday, let us know about partners and/or slip
days before the due date!

Midterm in one week, counts for 25% of final grade
* Material from today may be included on the exam
* Some review today
* Even more review next class

* 15% partial credit for “I don’t know”, but must erase or
cross out anything else on that question

Pipeline Trade-offs

e Pros: Decrease the total execution time (Increase the “throughput”).
e Cons: Increase the latency of each instruction as new registers are

needed between pipeline stages.
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
300 ps 20 ps Clock
Combinational Z
logic g

Clock

Throughput

* The rate at which the processor can finish executing an
instruction (at the steady state).

Inst 1
Inst 2

Inst 3
Inst 4

Inst 5

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
B C Clock
A B C
A B C Throughput of this 3-stage
A g c processor is 1 instruction every
120 ps, or 8.3 Giga (billion)
A | B Instructions per Second (GIPS).

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

100 ps

Comb.
logic
A

20 ps

R

@

g

100 ps

Comb.
logic
B

20 ps

R

®

g

100 ps

Comb.
logic
C

20 ps

R

®

g

Clock

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
_ Comb. R Comb. R Comb. R
Delay: 360 ps logic e logic e logic e
Thrupt: 8.3 GIPS A g B g C g
Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C 9

Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C 9

Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps
Thrupt: 5.9 GIPS

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C 9

Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

170 ps
i
OP1 | A C
OP2 A B
OP3 A
Time
>
50 ps 20 ps 150 ps 20 ps 100 ps
Cycle time: 170 ps
: Comb. R Comb. R Comb.
Delay: 510 ps 'Ogc e logic e logic
Thrupt: 5.9 GIPS g B g C

20 ps

®

Clock

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Copy 1
Comb. R Comb. R Comb. R
logic logic e logic e
g B g C g

®

Copy 2
Comb.
logic

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Copy 1
Comb. R Comb. R Comb. R
logic logic e logic e
g B g C g

®

XC=

Copy 2
Comb.
logic

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
Copy 1 —
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B M g C g
U
X
Copy 2
R Comb.
e logic ~—
g B

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
Copy 1 —
Comb. R Comb. R Comb. R
logic LWh_at? e logic e logic e
A ogic? g B M g C g
U
X
Copy 2
R Comb.
e logic —
g B

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
Copy 1 —
Comb. R Comb. R Comb. R
logic LWh_at? e logic e logic e
A 0gIC g B M g C g
U
X
Copy 2
R Comb.
e logic —
g B

What logic do you need there?

Hint: it needs to control the clock signals of the
two registers and the select signal of the MUX.

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
lect
Copy1 | °° '
)
Comb. R Comb. R Comb. R
logic \iWh_ag e logic e logic e
A 0gIC g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic —
g B

What logic do you need there?

Hint: it needs to control the clock signals of the
two registers and the select signal of the MUX.

Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy 1 selec/t_l\
Comb. R Comb. R Comb. R
logic \iWh_aE? e logic e logic e
A 0gic? g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B

Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy 1 selec;t_l\
Comb. R Comb. R Comb. R
Iog\ic \ng/h_iE) e logic e logic e
9l g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B

10

Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

e The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost
of extra hardware.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy 1 selec;t_l\
Comb. R Comb. R Comb. R
logic \iWh_aE) e logic e logic e
A 0gic? g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B

10

Pipeline Stages

Fetch
» Use PC to read instruction

« Compute new PC for non-
jump instructions

Decode

* Read program registers
Execute

* Operate ALU

* Compute new PC for jump
instructions

Memory
» Read or write data memory

Write Back
« Update reqister file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

A B
Decode Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

11

Control Dependency

e Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.
o Jump instruction example below:

« jne L1 determines whether irmovg $1,

executed

« But yne doesn’t know its outcome until after its Execute stage

]

Srax should be

2

3

4

5

X0rg %srax, Ssrax F

D

6

jne L1 # Not taken

nop

nop

irmovg $1, %rax
L1 irmovg $4, 5%rcx

irmovg $3, %rax

Fall Through
Target

Target + 1

F

7

m O m

8

m O/ mZ

omZ S

9

mom=Z s

<

Mmoo mZZ S

om=zZ =

12

Better Pipelining

Fetch
» Use PC to read instruction

« Compute new PC for non-
jump instructions

Decode
« Read program registers

« Compute new PC for jump
instructions

Execute

* Operate ALU
Memory

» Read or write data memory
Write Back

» Update reqgister file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

A B
Decode Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

13

Better Pipelining

Fetch
» Use PC to read instruction

« Compute new PC for non-
jump instructions

Decode
« Read program registers

« Compute new PC for jump
instructions

Execute

* Operate ALU
Memory

» Read or write data memory
Write Back

» Update reqgister file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

Another [N
Decode ALU d_srcB

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

13

Saving One Cycle

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4 5 6 7 8 9

X0rg %srax, srax F D E M W

jne L1 # Not taken F DyE M W

nop F\D E M W

irmovg $1, %$rax # Fall Through Ye ' b E/M W
L1 irmovg $4, %rcx # Target F D E M W

irmovg $3, %rax # Target + 1 F D E M

14

Resolving Control Dependencies

o Software Mechanisms

« Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
o Stalling (Think of it as hardware automatically inserting nops)
e Branch Prediction
e Return Address Stack

15

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of
the jump direction

X0rg %srax, srax F p/E M w
jne L1 # Not taken F¥ D E M W
irmovg $1, %$rax # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F DI E M | W
irmovg $3, %rax # Target + 1 F D E M W

16

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction

X0rg %srax, srax F p/E M w
jne L1 # Not taken F¥ D E M W
irmovg $1, %$rax # Fall Through F D E M
L1 irmovg $4, %rcx # Target F D E W,
irmovg $3, %rax # Target + 1 F D M | W

16

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

X0rg %srax, srax F p/E M w
jne L1 # Not taken F¥ D E M W
irmovg $1, %$rax # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F DI E M | W
irmovg $3, %rax # Target + 1 F D E M W

16

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

e Always Taken

e Always Not-taken
Dynamic Prediction

e Dynamically predict taken/not-taken for each specific jump instruction

17

Static Prediction

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

18

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

cmpg $rsi, srdi
Jle .corner case
<do A>

.corner case:
<do B>

ret

18

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

cmpg $rsi, srdi

Jle .corner case

<do A> \
.corner case:

<do B> Mostly not taken

ret

18

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Cllmpq $rsi, srdi <before>
Jle .corner case Ll: <body>
<do A>
— \ cmpg B, A
.corner case: o
<do B> Mostly not taken J .

ret <after>

18

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

CIMpq srsi,srdi <before>
Jle -COLNEL Case .L1: <body> Mostly taken
<do A>

_ \ cmpg B, A

.corner case:

<do B> Mostly not taken J1 L1
ret <after>

18

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Strategy:
e Forward jumps (i.e., if-else): always predict not-taken
e Backward jumps (i.e., loop): always predict taken

CIMpq srsi,srdi <before>
Jle -COLNEL Case .L1: <body> Mostly taken
<do A>

_ \ cmpg B, A

.corner case:

<do B> Mostly not taken J1 L1
ret <after>

18

Static Prediction

Knowing branch prediction strategy helps us write faster code
e Any difference between the following two code snippets”?

¢ \What if you know that hardware uses the always non-taken
branch prediction?

if (cond) { 1f (!cond) {
do A() do B()
} else | } else {

do B () do A()

19

Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

20

Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

for (1i=0; 1 <5; i++) {..}

20

Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

for (1i=0; 1 <5; i++) {..}

lteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

for (1i=0; 1 <5; i++) {..}

lteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict

* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

21

Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict
* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (i=0; 1 <5; i++) {..}

Predict with 1-bit N|T [T|[T|T

Actual Outcome TI(T|T|T|N

Predict with 2-bit N|N|T(T|T

Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict
* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (i=0; 1 <5; i++) {..}

Predict with 1-bit N|T|T|T|TN[T T[T T

Actual Outcome T |T|T|T|N:T[T|T[T|N

Predict with 2-bit N|N|T|T[T/T|T T[T /T

Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict
* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (i=0; 1 <5; i++) {..}

Predict with 1-bit N|T |T[T|TN|T [T{T [TiN[T|T|T|T

Actual Outcome T [T [T[T|NT [T{T [T INT [T[T[T N

Predict with 2-bit N|N[T[T|T{T [T [T|T|[TiT|T[TIT|T

21

Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict

* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (i=0; 1 <5; i++) {..}

Predict with 1-bit N|T |T[T[TiN[T [T [T |T:N[T T[T [TN|[T|T|T|T

Actual Outcome T |T|T|TINIT [T|T [T |NiT [T T[T INT{T|T|T|N

Predict with 2-bit N[N[T[TITiIT T T TITT T T T T T TTT

21

More Advanced Dynamic Prediction

* | ook for past histories across instructions

e Branches are often correlated

* Direction of one branch determines another

condl branch not-
taken means (x <=0)
branch taken

x = 0

if (condl) x = 3
1f (cond2) y = 19
if (x <= 0) z = 13

22

What Happens If We Mispredict?

demo-7.ys 1 2 3 B! 5 6 7 8 9 10
0x000: xorqg %*rax, 3rax F D E M| W
0x002: jne target # Not taken F D E M| W
0x016: irmovq $2,%rdx # Target F D
bubble LE|mM|w
0x020: irmovqg $3, %rbx # Target+l F
bubble LpleE|[M]|w
0x00b: irmovq $1,%rax # Fall through F D E M| W
0x015: halt F D E M| W

Cancel instructions when mispredicted
* Assuming we detect branch not-taken in execute stage

« On following cycle, replace instructions in execute and
decode by bubbles

* No side effects have occurred yet

23

Today: Making the Pipeline Really Work

e Data Dependencies
* Inserting Nops
e Stalling
 Out-of-order execution

24

Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 5%rbx

3 mrmovqg 100 (%rbx) ,

$rdx

25

Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 5%rbx

3 mrmovqg 100 (%rbx) ,

$rdx

25

Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 5%rbx

3 mrmovq 100(%r5§),

$rdx

25

Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 3rbx
3 mrmovqg 100 (%rbx), %rdx

« Result from one instruction used as operand for another
» Read-after-write (RAW) dependency

« \Very common in actual programs

« Must make sure our pipeline handles these properly
» Get correct results

* Minimize performance impact

25

A Subtle Data Dependency

« Jump instruction example below:
e jne L1 determines whether irmovg $1, %rax should be executed

« But jne doesn’t know its outcome until after its Execute stage.
Why?

X0rg %srax, Ssrax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

26

A Subtle Data Dependency

« Jump instruction example below:
e jne L1 determines whether irmovg $1, %rax should be executed

« But jne doesn’t know its outcome until after its Execute stage.
Why?
« There is a data dependency between xorg and jne. The “data” is the
status flags.

X0rg %srax, Ssrax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

26

Data Dependencies in Single-Cycle Machines

Combinational I:
lodi
ogic g
Clock
OP1
OP2 <
OP3

Time

In Single-Cycle Implementation:
« Each operation starts only after the previous operation finishes.

Dependency always satisfied.

Data Dependencies in Pipeline Machines

Comb. R Comb. Comb. R
logic e logic logic e
A g B C g
lock
o1 [A] BJ[C Cloc
OP2 A B C
OP3 A B C
OP4 A B C
Time

Data Hazards happen when:

» Result does not feed back around in time for next operation

28

Data Dependencies in Pipeline Machines

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
ori[A [B | CJ o
OP2 Al B | C
OP3 A | B | C
OP4 A B C
Time

Data Hazards happen when:
» Result does not feed back around in time for next operation

Data Dependencies: No Nop

0x000:
0x00a:
0x014:
Ox01l6:

1

2

3

4

5

irmovg $10, $rdx F

D

irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get
updated in the Write-back stage

F

M |O |Mm

Mm(o|m|Z

om|(Z|S

29

Data Dependencies: No Nop

0x000:
0x00a:
0x014:
Ox01l6:

1

2

3

4

5

irmovg $10, $rdx F

D

irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get
updated in the Write-back stage

addq reads wrong %rdx and %rax

F

M |O |Mm

Mm(o|m|Z

om|(Z|S

29

Data Dependencies: 1

0x000:
0x00a:
0x014:
0x015:
0x017:

addq still reads wrong %rdx and %rax

irmovg $10, $rdx
irmovg $3,%rax
nop

addg 5%rdx, $rax

halt

1

2

F|{ D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M

30

Data Dependencies: 2 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x018:

addq reads the correct %rdx,
but %rax still wrong

irmovg $10, $rdx
irmovg $3,%rax
nop

nop

addg 5%rdx, $rax

halt

1 2 3 4 5 6 7 8 9 10
F| D| E| M| W
F{ D| E| M| W
F| D| E| M| W
F| D E| M| W
F| D| E| M| W
F| D| E| M| W

31

Data Dependencies: 3 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x017:
0x019:

addq reads the correct %rdx

irmovg $10, $rdx
irmovg $3,%rax
nop
nop
nop

addg 5%rdx, $rax

halt

and %rax

1 2 3 4 5 6 7 8 9 10 M1
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D E| M| W
F| D E| M| W
F| D| E| M| W

F| D| E| M| W

32

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

R R R R wite R

Fetch el Decode |e| Execute |e| Memory |e e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst2 Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst3 Inst2 Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Stall
Inst3 Inst2 Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Stall
bubble
Inst3 Inst2 Inst1 Inst0
(nop)
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Stall Stall
bubble
Inst3 Inst2 Inst1 Inst0
(nop)
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Stall Stall
bubble bubble
Inst3 Inst2 Inst1
(nop) (nop)
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

bubble bubble
Inst4 Inst3 Inst2
(nop) (nop)
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

bubble
Inst4 Inst3 Inst2
(nop)
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst4 Inst3 Inst2
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

How are Stall and Bubble Implemented in Hardware?

34

How are Stall and Bubble Implemented in Hardware?

Input =y Output = x

Normal =DIX—>

stall ﬁ bubble

=0 =0

How are Stall and Bubble Implemented in Hardware?

] Risin T
Input =y Output = x |:> cIocl? |:> Output =y

Normal —Dix— — —D y—=>

stall ﬁ bubble —

=0 =0

How are Stall and Bubble Implemented in Hardware?

Rising

Input =y Output = x |:> clock |:> Output =y
Normal —DIX—> - =D y—>
stall bubble —
= O _ﬁ_ = O

Input =y Output = x

Stall =DIX =D

stall bubble
stall_yy_bubble

How are Stall and Bubble Implemented in Hardware?

Risin
Input =y Output = x |:> cIocl? |:> Output =y
Normal —DIX—> - =D y—>
stall bubble —
Pl e
] Risin]
Input =y Output = x |:> cIockg |:> Output = x
Stall =DIX = — = =D

stall bubble
stall_yy_bubble

34

How are Stall and Bubble Implemented in Hardware?

Normal

Stall

Bubble

Input =y

Input =y

Output = x

=DIX =D

stall ﬁ bubble

=0 =0

Output = x

=X —>

stall bubble
stall_yy_bubble

Input =y Output = x

=X —>

stall bubble

=0—’.;— =1

=

=

Rising
clock

Rising
clock

=

—>

Output =y

y—>

Output = x

34

How are Stall and Bubble Implemented in Hardware?

Input =y

Output = x

—>

Normal =—DiX

=0

Input =y

stall ﬁ bubble

=0

Output = x

Stall =DIX =D

Input =y

stall bubble
stall_yy_bubble

Output = x

Bubble —DIX >

bubble

stall
=0 j— =1

=

=

=

Rising
clock

Rising
clock

Rising
clock

Output =y
=
=Dy
Output = x
=
=D X—
|:> _n Output =nop
—Df o>
p

34

Detecting Stall Condition

0x000: irmovqg $10, %rdx F D E 1T MW
0x00a: irmovg $3,%rax F D E1T M| W
0x014: nop F|IDIE|M|W
0x015: nop F | D EIM|W

bubble rE|M|W
0x016: addg %rdx, $rax F|D]|D E| M| W
0x018: halt F|F|[D|E|M

« Using a “scoreboard”. Each register has a bit.

« Every instruction that writes to a register sets the Dbit.

« Every instruction that reads a register would have to check the bit first.
o If the bit is set, then generate a bubble
« Otherwise, free to go!!

Data Forwarding

Naive Pipeline
« Register isn’t written until completion of write-back stage
e Source operands read from register file in decode stage
* The decode stage can’t start until the write-back stage finishes
Observation
 Value generated in execute or memory stage
Trick
« Pass value directly from generating instruction to decode stage
« Needs to be available at end of decode stage

36

Data Forwarding Example

0x000: irmovg $10, $rdx F D E M W

0x00a: irmovg $3,%rax F D E M| W

0x014: nop F Dl E| M| W

0x015: nop F| DL E| M| W

0x016: addg % rdx, $rax F D E M| W
0x018: halt F| D| E| M| W

e irmovg writes $rax to the register file at the end of the write-back
stage

« But the value of $rax is already available at the beginning of the write-
back stage

« Forward $rax to the decode stage of addg.

Data Forwarding Example

1 2 3 4 5 6 7 8 9 10

0x000: irmovqg $10, $rdx F D E Ml W

0x00a: irmovg $3,%rax F D E Ml W

0x014: nop F Dl EfM| W

0x015: nop FI DIE| M| W

0x016: addg % rdx, $rax FwD E M| W
0x018: halt F| D| E| M| W

e irmovg writes $rax to the register file at the end of the write-back
stage

« But the value of $rax is already available at the beginning of the write-
back stage

« Forward $rax to the decode stage of addg.

Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

4

F | D M| W

F E|M|W
Dl E| M| W
F|{D|E | M

38

Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

3

4

F|D|EJM|W
F|DJIE|M|W
FyD|E| M| W
F|{D|E | M

38

Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

4

F|D M| W

F E|[M|wW
bl E|[M|W
F|D|E|M

38

Out-of-order Execution

e Compiler could do this, but has limitations

e Generally done in hardware

r0
r3
r4
r/

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[x0]
r3 + ro
r5 + ril

'

r0
r3
r’/

r4

rl + r2
MEM[x0]
r5 4+ ril

J;'"3+r6

39

Out-of-order Execution

e Compiler could do this, but has limitations

e Generally done in hardware

rO

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[x0]

r4‘\\r3 + ro6

r’/

r5 + ril

'

r0
r3
r’/

r4

rl + r2
MEM[x0]
r5 4+ ril

£3 + ro6

39

Out-of-order Execution

r0O = rl + r2
r3 = MEM[rO]
rd = r3 + r6
rée = rb5 + ril

40

Out-of-order Execution

r0
r3
r4
r6

rl + r2
MEM[rO]
r3 + r6
r5 + ril

Is this correct?

—

r(
r3
r6

r4

rl + r2
MEM[rQ]
r5 + ril

= r3 + r6

40

Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
r5 + ril

Is this correct?

—

r(
r3
r6

r4

rl + r2
MEM[rQ]
r5 + ril

= r3 + r6

40

Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3

rd4 =

r4

rl + r2
MEM[rO]
r5 + ril

= r3 + r6

rl + r2
MEM[rO]
r5 + rl

r3 4+ ro

40

Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3

rd4 =

r4

rl + r2
MEM[rO]
r5 + ril

= r3 + r6

rl + r2
MEM[rO]
r5 + rl

r3 4+ ro

“Tomasolu Algorithm” is the algorithm that is most

widely implemented in modern hardware to get out-of-

order execution right.

40

