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Announcements

A3 due Thursday, let us know about partners and/or slip
days before the due date!

Midterm in one week, counts for 25% of final grade
* Material from today may be included on the exam
* Some review today
* Even more review next class

* 15% partial credit for “I don’t know”, but must erase or
cross out anything else on that question



Pipeline Trade-offs

e Pros: Decrease the total execution time (Increase the “throughput”).
e Cons: Increase the latency of each instruction as new registers are

needed between pipeline stages.
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Throughput

* The rate at which the processor can finish executing an
instruction (at the steady state).
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps
Thrupt: 5.9 GIPS
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput
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Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
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e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
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Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component
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What logic do you need there?

Hint: it needs to control the clock signals of the
two registers and the select signal of the MUX.




Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
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Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
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Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.
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Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

e The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost
of extra hardware.
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Pipeline Stages

Fetch
» Use PC to read instruction

« Compute new PC for non-
jump instructions

Decode

* Read program registers
Execute

* Operate ALU

* Compute new PC for jump
instructions

Memory
» Read or write data memory

Write Back
« Update reqister file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

A B
Decode Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC
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Control Dependency

e Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.
o Jump instruction example below:

« jne L1 determines whether irmovg $1,

executed

« But yne doesn’t know its outcome until after its Execute stage

]

Srax should be

2

3

4

5

X0rg %srax, Ssrax F

D

6

jne L1 # Not taken

nop

nop

irmovg $1, %rax
L1 irmovg $4, 5%rcx

irmovg $3, %rax

# Fall Through
# Target

# Target + 1
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Better Pipelining

Fetch
» Use PC to read instruction

« Compute new PC for non-
jump instructions

Decode
« Read program registers

« Compute new PC for jump
instructions

Execute

* Operate ALU
Memory

» Read or write data memory
Write Back

» Update reqgister file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB
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d_srcA,
d_srcB
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Decode Register™
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Saving One Cycle

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4 5 6 7 8 9

X0rg %srax, srax F D E M W

jne L1 # Not taken F DyE M W

nop F\D E M W

irmovg $1, %$rax # Fall Through Ye ' b E/M W
L1 irmovg $4, %rcx # Target F D E M W

irmovg $3, %rax # Target + 1 F D E M

14



Resolving Control Dependencies

o Software Mechanisms

« Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
o Stalling (Think of it as hardware automatically inserting nops)
e Branch Prediction
e Return Address Stack

15



Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of
the jump direction

X0rg %srax, srax F p/E M w
jne L1 # Not taken F¥ D E M W
irmovg $1, %$rax # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F DI E M | W
irmovg $3, %rax # Target + 1 F D E M W
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Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction
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Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

X0rg %srax, srax F p/E M w
jne L1 # Not taken F¥ D E M W
irmovg $1, %$rax # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F DI E M | W
irmovg $3, %rax # Target + 1 F D E M W
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Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

e Always Taken

e Always Not-taken
Dynamic Prediction

e Dynamically predict taken/not-taken for each specific jump instruction

17



Static Prediction



Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

18
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Static Prediction
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Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Strategy:
e Forward jumps (i.e., if-else): always predict not-taken
e Backward jumps (i.e., loop): always predict taken

CIMpq srsi,srdi <before>
Jle -COLNEL Case .L1: <body> Mostly taken
<do A>

_ \ cmpg B, A

.corner case:

<do B> Mostly not taken J1 L1
ret <after>

18



Static Prediction

Knowing branch prediction strategy helps us write faster code
e Any difference between the following two code snippets”?

¢ \What if you know that hardware uses the always non-taken
branch prediction?

if (cond) { 1f (!cond) {
do A() do B()
} else | } else {

do B () do A()

19



Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

20



Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

for (1i=0; 1 <5; i++) {..}
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Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

for (1i=0; 1 <5; i++) {..}

lteration #1 0 1 2 3 4
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Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict

* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind
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More Advanced Dynamic Prediction

* | ook for past histories across instructions

e Branches are often correlated

* Direction of one branch determines another

condl branch not-
taken means (x <=0)
branch taken

x = 0

if (condl) x = 3
1f (cond2) y = 19
if (x <= 0) z = 13

22



What Happens If We Mispredict?

# demo-7.ys 1 2 3 B! 5 6 7 8 9 10
0x000: xorqg %*rax, 3rax F D E M| W
0x002: jne target # Not taken F D E M| W
0x016: irmovq $2,%rdx # Target F D
bubble LE|mM|w
0x020: irmovqg $3, %rbx # Target+l F
bubble LpleE|[M]|w
0x00b: irmovq $1,%rax # Fall through F D E M| W
0x015: halt F D E M| W

Cancel instructions when mispredicted
* Assuming we detect branch not-taken in execute stage

« On following cycle, replace instructions in execute and
decode by bubbles

* No side effects have occurred yet

23



Today: Making the Pipeline Really Work

e Data Dependencies
* Inserting Nops
e Stalling
 Out-of-order execution

24



Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 5%rbx

3 mrmovqg 100 (%rbx) ,

$rdx
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Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 3rbx
3 mrmovqg 100 (%rbx), %rdx

« Result from one instruction used as operand for another
» Read-after-write (RAW) dependency

« \Very common in actual programs

« Must make sure our pipeline handles these properly
» Get correct results

* Minimize performance impact

25



A Subtle Data Dependency

« Jump instruction example below:
e jne L1 determines whether irmovg $1, %rax should be executed

« But jne doesn’t know its outcome until after its Execute stage.
Why?

X0rg %srax, Ssrax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1
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A Subtle Data Dependency

« Jump instruction example below:
e jne L1 determines whether irmovg $1, %rax should be executed

« But jne doesn’t know its outcome until after its Execute stage.
Why?
« There is a data dependency between xorg and jne. The “data” is the
status flags.

X0rg %srax, Ssrax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1
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Data Dependencies in Single-Cycle Machines

Combinational I:
lodi
ogic g
Clock
OP1
OP2 <
OP3

Time

In Single-Cycle Implementation:
« Each operation starts only after the previous operation finishes.

Dependency always satisfied.



Data Dependencies in Pipeline Machines

Comb. R Comb. Comb. R
logic e logic logic e
A g B C g
lock
o1 [ A ] BJ[C Cloc
OP2 A B C
OP3 A B C
OP4 A B C
Time

Data Hazards happen when:

» Result does not feed back around in time for next operation

28



Data Dependencies in Pipeline Machines

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
ori[A [ B | CJ o
OP2 Al B | C
OP3 A | B | C
OP4 A B C
Time

Data Hazards happen when:
» Result does not feed back around in time for next operation



Data Dependencies: No Nop

0x000:
0x00a:
0x014:
Ox01l6:

1

2

3

4

5

irmovg $10, $rdx F

D

irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get
updated in the Write-back stage

F

M |O |Mm

Mm(o|m|Z

om|(Z|S
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Data Dependencies: No Nop

0x000:
0x00a:
0x014:
Ox01l6:

1

2

3

4

5

irmovg $10, $rdx F

D

irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get
updated in the Write-back stage

addq reads wrong %rdx and %rax

F

M |O |Mm

Mm(o|m|Z

om|(Z|S
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Data Dependencies: 1

0x000:
0x00a:
0x014:
0x015:
0x017:

addq still reads wrong %rdx and %rax

irmovg $10, $rdx
irmovg $3,%rax
nop

addg 5%rdx, $rax

halt

1

2

F|{ D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M
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Data Dependencies: 2 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x018:

addq reads the correct %rdx,
but %rax still wrong

irmovg $10, $rdx
irmovg $3,%rax
nop

nop

addg 5%rdx, $rax

halt

1 2 3 4 5 6 7 8 9 10
F| D| E| M| W
F{ D| E| M| W
F| D| E| M| W
F| D E| M| W
F| D| E| M| W
F| D| E| M| W
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Data Dependencies: 3 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x017:
0x019:

addq reads the correct %rdx

irmovg $10, $rdx
irmovg $3,%rax
nop
nop
nop

addg 5%rdx, $rax

halt

and %rax

1 2 3 4 5 6 7 8 9 10 M1
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D E| M| W
F| D E| M| W
F| D| E| M| W

F| D| E| M| W
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

R R R R wite R

Fetch el Decode |e| Execute |e| Memory |e e
g g g g back g
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst2 Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst3 Inst2 Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Stall
Inst3 Inst2 Inst1 Inst0
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Stall
bubble
Inst3 Inst2 Inst1 Inst0
(nop)
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Stall Stall
bubble bubble
Inst3 Inst2 Inst1
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

bubble bubble
Inst4 Inst3 Inst2
(nop) (nop)
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

bubble
Inst4 Inst3 Inst2
(nop)
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g
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Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
« Why is it good for the hardware to do so anyways”?

Inst4 Inst3 Inst2
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




How are Stall and Bubble Implemented in Hardware?
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How are Stall and Bubble Implemented in Hardware?
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Detecting Stall Condition

0x000: irmovqg $10, %rdx F D E 1T MW
0x00a: irmovg $3,%rax F D E1T M| W
0x014: nop F|IDIE|M|W
0x015: nop F | D EIM|W

bubble rE|M|W
0x016: addg %rdx, $rax F|D]|D E| M| W
0x018: halt F|F|[D|E|M

« Using a “scoreboard”. Each register has a bit.

« Every instruction that writes to a register sets the Dbit.

« Every instruction that reads a register would have to check the bit first.
o If the bit is set, then generate a bubble
« Otherwise, free to go!!



Data Forwarding

Naive Pipeline
« Register isn’t written until completion of write-back stage
e Source operands read from register file in decode stage
* The decode stage can’t start until the write-back stage finishes
Observation
 Value generated in execute or memory stage
Trick
« Pass value directly from generating instruction to decode stage
« Needs to be available at end of decode stage
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Data Forwarding Example

0x000: irmovg $10, $rdx F D E M W

0x00a: irmovg $3,%rax F D E M| W

0x014: nop F Dl E| M| W

0x015: nop F| DL E| M| W

0x016: addg % rdx, $rax F D E M| W
0x018: halt F| D| E| M| W

e irmovg writes $rax to the register file at the end of the write-back
stage

« But the value of $rax is already available at the beginning of the write-
back stage

« Forward $rax to the decode stage of addg.



Data Forwarding Example

1 2 3 4 5 6 7 8 9 10

0x000: irmovqg $10, $rdx F D E Ml W

0x00a: irmovg $3,%rax F D E Ml W

0x014: nop F Dl EfM| W

0x015: nop FI DIE| M| W

0x016: addg % rdx, $rax FwD E M| W
0x018: halt F| D| E| M| W

e irmovg writes $rax to the register file at the end of the write-back
stage

« But the value of $rax is already available at the beginning of the write-
back stage

« Forward $rax to the decode stage of addg.



Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

4

F | D M| W

F E|M|W
Dl E| M| W
F|{D|E | M
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Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

4
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F E|[M|wW
bl E|[M|W
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Out-of-order Execution

e Compiler could do this, but has limitations

e Generally done in hardware

r0
r3
r4
r/

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[x0]
r3 + ro
r5 + ril

'

r0
r3
r’/

r4

rl + r2
MEM[x0]
r5 4+ ril

J;'"3+r6

39



Out-of-order Execution

e Compiler could do this, but has limitations

e Generally done in hardware

rO

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[x0]

r4‘\\r3 + ro6

r’/

r5 + ril

'

r0
r3
r’/

r4

rl + r2
MEM[x0]
r5 4+ ril

£3 + ro6
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Out-of-order Execution

r0O = rl + r2
r3 = MEM[rO]
rd = r3 + r6
rée = rb5 + ril

40



Out-of-order Execution

r0
r3
r4
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rl + r2
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r3 + r6
r5 + ril

Is this correct?

—

r(
r3
r6

r4

rl + r2
MEM[rQ]
r5 + ril

= r3 + r6
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Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
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Is this correct?

—

Is this correct?

—

r(
r3
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r4
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rd4 =
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rl + r2
MEM[rO]
r5 + ril

= r3 + r6
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Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3

rd4 =

r4

rl + r2
MEM[rO]
r5 + ril

= r3 + r6

rl + r2
MEM[rO]
r5 + rl

r3 4+ ro

“Tomasolu Algorithm” is the algorithm that is most

widely implemented in modern hardware to get out-of-

order execution right.
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