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Announcements

Assignment 3 out!

 

Midterm will be 3 weeks from today (Monday 10/25)

 Can include things discussed on Monday 10/18

 Format based on previous exams, new questions

 Open book, unlimited notes, no electronics

 Recommend making your own condensed note sheet 
(helps with learning, and faster to find things)
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So far in 252…

C Program

Assembly 
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture
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Today: Circuits Basics
• Basics

• Circuits for computations

• Circuits for storing data
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Overview of Circuit-Level Design
• Fundamental Hardware Requirements


• Communication: How to get values from one place to another. Mainly 
three electrical wires. 

• Computation: transistors. Combinational logic. 
• Storage: transistors. Sequential logic. 

•Circuit design is often abstracted as logic design
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Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data
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Inverter (NOT Gate)
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Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V
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NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.
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Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)
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a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay

Falling Delay



Carnegie Mellon

Combinational Circuits

• A Network of Logic Gates

• Continuously responds to changes on primary inputs 
• Primary outputs become (after some delay) Boolean functions of 

primary inputs

�13

Primary
Inputs

Primary
Outputs
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Bit Equality
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Bit equal
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7

�15

Bit equal
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis
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Bit equal
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Carnegie Mellon

64-bit Equality
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64-bit Equality
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b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal
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Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0
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Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

bool out = (s&&a)||(!s&&b)

s

b

a

out

Bit MUX

s

B

A
OutMUX
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11
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s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

What’s the latency of 
this implementation?

1

4.7
4.3
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Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of 

outputs of a gate (fan-out) will affect the gate delay.
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gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and 

appropriately characterized logic gates (delay, operating 
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best” 
gate-level implementation of a piece of logic.
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Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of 

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the 

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and 

appropriately characterized logic gates (delay, operating 
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best” 
gate-level implementation of a piece of logic.

• Take a Logic Design or Very Large Scale Integrated-Circuit 
(VLSI) course if you want to know more about circuit design.


• Logic design uses the gate-level abstractions 
• VLSI tells you how the gates are implemented at transistor-level

!19
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Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t
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0 1 1 0 1
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Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0
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1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
        | (~A & B & ~Cin)

        | (A & ~B & ~Cin)

        | (A &  B &  Cin)

Cou = (~A & B & Cin)
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        | (A & B & ~Cin)
        | (A &  B &  Cin)
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Four-bit Adder
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Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width
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Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously
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OF
ZF
CF

Arithmetic Logic Unit
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A
L
U

Y

X

Result  of some computation 
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:


• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11


• How can this ALU be implemented?
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Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results

�24

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out
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Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data
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The Need for Storing Bits
• Assembly programs set architecture (processor) states.


• Register File 
• Status Flags 
• Memory 
• Program Counter
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The Need for Storing Bits
• Assembly programs set architecture (processor) states.


• Register File 
• Status Flags 
• Memory 
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.
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Build a 1-Bit Storage

�27

Q

D

C

Some Logic

•What I would like:

• D is the data I want to store (0 or 1) 
• C is the control signal 

• When C is 1, Q becomes D (i.e., storing the data) 
• When C is 0, Q doesn’t change with D (data stored)
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Bitstable Element
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Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1
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1
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Bitstable Element
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Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.
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Storing and Accessing 1 Bit
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Storing and Accessing 1 Bit

�29
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0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S
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Storing and Accessing 1 Bit

�29

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–
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Q–
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Storing and Accessing 1 Bit
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Storing and Accessing 1 Bit
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q !q

Storing and Accessing 1 Bit
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Storing and Accessing 1 Bit
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!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0
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!q q

q !q

Storing and Accessing 1 Bit

�29

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0
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0 1
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Q+ value unchanged
i.e., stored!
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Storing and Accessing 1 Bit
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R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

If R and S are different, Q+ is the same as S
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Building on top of R-S Latch

�30
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Q+ will continuously 
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Q+
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R
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D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d
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Q+ will continuously 
change as d changes

If R and S are different, Q+ is the same as S
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Building on top of R-S Latch
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0
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Q+ will continuously 
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S
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D-Latch is “Transparent”
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D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
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• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+ 

and Q–. So hold C for a while until the signal is fully propagated

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C



Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+ 

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
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D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+ 

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
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Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+ 

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.
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Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

D

C



Carnegie Mellon
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Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->1



Carnegie Mellon
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Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)
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Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period
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Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period
• Value latched depends on data 

as C rises (i.e., 0–>1); usually 
called at the rising edge of C
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Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period
• Value latched depends on data 

as C rises (i.e., 0–>1); usually 
called at the rising edge of C
•Output remains stable at all 

other times
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