
CSC 252: Computer
Organization

Fall 2021: Lecture 11

 Processor Architecture:
Circuits

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

Assignment 3 out!



Midterm will be 3 weeks from today (Monday 10/25)

 Can include things discussed on Monday 10/18

 Format based on previous exams, new questions

 Open book, unlimited notes, no electronics

 Recommend making your own condensed note sheet
(helps with learning, and faster to find things)

Carnegie Mellon

!5

So far in 252…

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

!6

Today: Circuits Basics
• Basics

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

Overview of Circuit-Level Design
• Fundamental Hardware Requirements

• Communication: How to get values from one place to another. Mainly
three electrical wires.

• Computation: transistors. Combinational logic.
• Storage: transistors. Sequential logic.

•Circuit design is often abstracted as logic design

�7

Voltage

Time

0 1 0

Carnegie Mellon

!8

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

!9

Inverter (NOT Gate)
+1.2V

+0.0V

Carnegie Mellon

!9

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

Carnegie Mellon

!9

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

NMOS

Carnegie Mellon

!9

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

Carnegie Mellon

!9

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

!9

Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

!10

NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.

Carnegie Mellon

!11

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�12

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�12

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�12

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�12

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay

Falling Delay

Carnegie Mellon

Combinational Circuits

• A Network of Logic Gates

• Continuously responds to changes on primary inputs
• Primary outputs become (after some delay) Boolean functions of

primary inputs

�13

Primary
Inputs

Primary
Outputs

Carnegie Mellon

Bit Equality

�14

Carnegie Mellon

Bit Equality

�14

Carnegie Mellon

Bit Equality

�14

a

b

Carnegie Mellon

Bit Equality

�14

a

b

Carnegie Mellon

Bit Equality

�14

a

b

Carnegie Mellon

Bit Equality

�14

a

b

Carnegie Mellon

Bit Equality

�14

a

b

Carnegie Mellon

Bit Equality

�14

a

b

eq

Carnegie Mellon

Bit Equality

�14

Bit equal
a

b

eq

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

�15

Bit equal
a

b

eq

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

�15

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

�15

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

�15

Bit equal
a

b

eq1

4.3

4.7

Critical Path

Carnegie Mellon

64-bit Equality

�16

=
B

A

Eq

Carnegie Mellon

64-bit Equality

�16

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

bool out = (s&&a)||(!s&&b)

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

bool out = (s&&a)||(!s&&b)

s

b

a

out

Bit MUX

s

B

A
OutMUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

What’s the latency of
this implementation?

1

4.7
4.3

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

• Take a Logic Design or Very Large Scale Integrated-Circuit
(VLSI) course if you want to know more about circuit design.

• Logic design uses the gate-level abstractions
• VLSI tells you how the gates are implemented at transistor-level

!19

Carnegie Mellon

!20

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Carnegie Mellon

!20

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

 | (A & ~B & ~Cin)

 | (A & B & Cin)

Cou = (~A & B & Cin)

 | (A & ~B & Cin)

 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

!21

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

Carnegie Mellon

!21

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!21

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!22

Four-bit Adder

Carnegie Mellon

!22

Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

Carnegie Mellon

!22

Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously

Carnegie Mellon

OF
ZF
CF

Arithmetic Logic Unit

�23

A
L
U

Y

X

Result of some computation
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:

• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11

• How can this ALU be implemented?

Carnegie Mellon

Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results

�24

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out

Carnegie Mellon

!25

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.

Carnegie Mellon

Build a 1-Bit Storage

�27

Q

D

C

Some Logic

•What I would like:

• D is the data I want to store (0 or 1)
• C is the control signal

• When C is 1, Q becomes D (i.e., storing the data)
• When C is 0, Q doesn’t change with D (data stored)

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

1

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

1
0

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

�28

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

�28

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

D Latch

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

D

C

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control 0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control 0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control 0

1
0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period

�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period
• Value latched depends on data

as C rises (i.e., 0–>1); usually
called at the rising edge of C

�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period
• Value latched depends on data

as C rises (i.e., 0–>1); usually
called at the rising edge of C
•Output remains stable at all

other times
�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

