CSC 162
DATA STRUCTURES



Traversing graphs

Depth-First Search

like a post-order traversal of a tree

Breadth-First Search

Less like tree traversal



Exploring a Maze

A depth-first search (DFS) 1in an undirected graph
G 1s like wandering 1n a maze with a string and
a can of paint — you can prevent yourself from
getting lost.



Example




DFS

1. Start at vertex s
Tie the end of the string to s and mark “visited” on s
Make s the current vertex u
2. Travel along an arbitrary edge (u,v)
unrolling string
3. Ifedge(u,v) leads to an already visited vertex v
then return to u
else mark v as “visited”, set v as current u, repeat (@ step 2

4. When all edges lead to visited verticies, backtrack to
previous vertex (roll up string) and repeat (@ step 2

5. When we backtrack to s and explore all 1t’s edges we
are done



DFS Pseudocode (labels edges)

DFS( Vertex v)
for each edge incident on v do:
if edge e 1s unexplored then
let w be the other endpoint of €
if vertex w 1s unexplored then
label e as a discovery edge
recursively call DFS(w)
else
label e as a backedge
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DFES Tree




DFS Properties

Starting at s

The traversal visits al the vertices in the connected
component of s

The discovery edges form a spanning tree of the
connected component of s



DFS Runtime

DEFS i1s called on each vertex exactly once

Every edge 1s examined exactly twice (once from each of
its vertices)

So, for n_ vertices and m_ edges in the connected
component of the vertex s, the DFS runs in O(n+m,) 1t:

- The graph data structure methods take constant time
- Marking takes constant time

- There 1s a systematic way to examine edges (avoiding
redundancy)



Marking Verticies

Extend vertex structure to support variable for
marking

Use a hash table mechanism to log marked vertices



Breadth-First Search

Starting vertex has level O (anchor vertex)

Visit (mark) all vertices that are only one edge
away

mark each vertex with its “level”

One edge away from level 0 1s level 1

One edge away from level 1 1s level 2
Etc. ...
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BFS Pseudocode (1 of 2)

BSF(Vertex s)
initialize container L, to contain vertex s
1 < 0
while L. 1s not empty do
to 1nitially be empty

create container L.,

for each vertex v in L. do

// next slide
1 < 1+1



BFS Pseudocode (2 of 2)

// for each vertex v in L. do

if edge e incident on v do
let w be the other endpoint of e
if w 1s unexplored then
label e as a discovery edge
insert w into L.,

else
label e as a cross edge
/1< 1+1



BSF Properties

The traversal visits all vertices 1in the connected
component of s

The discover edges form a spanning tree of the cc

For each vertex v at level I, the path of the BSF
tree T between s and v has I edges and any
other path of G between s and v has at least I
edges

If (u,v) 1s an edge that is not in the BSF tree, then
the level number of u and v differ by at most
one



Run Time

A BSF traversal takes O(n+m) time

Also, there exist O(n+m) time algorithms base on
BFS which test for
Connectivity of graph
Spanning tree of G
Connected component
Minimum number of edges path between s and v
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