CSC 162
DATA STRUCTURES



Traversing graphs

Depth-First Search

like a post-order traversal of a tree

Breadth-First Search

Less like tree traversal



Exploring a Maze

A depth-first search (DFS) 1in an undirected graph
G 1s like wandering 1n a maze with a string and
a can of paint — you can prevent yourself from
getting lost.



Example




DFS

1. Start at vertex s
Tie the end of the string to s and mark “visited” on s
Make s the current vertex u
2. Travel along an arbitrary edge (u,v)
unrolling string
3. Ifedge(u,v) leads to an already visited vertex v
then return to u
else mark v as “visited”, set v as current u, repeat (@ step 2

4. When all edges lead to visited verticies, backtrack to
previous vertex (roll up string) and repeat (@ step 2

5. When we backtrack to s and explore all 1t’s edges we
are done



DFS Pseudocode (labels edges)

DFS( Vertex v)
for each edge incident on v do:
if edge e 1s unexplored then
let w be the other endpoint of €
if vertex w 1s unexplored then
label e as a discovery edge
recursively call DFS(w)
else
label e as a backedge



Example




Example




Example




Example




Example

BF/J z




Example

BF/J Z




Example

BF/J Z




Example




Example




Example




Example




Example




Example




Example




Example




Example




Example




Example




Example




Example




Example




Example




Example




DFES Tree




DFS Properties

Starting at s

The traversal visits al the vertices in the connected
component of s

The discovery edges form a spanning tree of the
connected component of s



DFS Runtime

DEFS i1s called on each vertex exactly once

Every edge 1s examined exactly twice (once from each of
its vertices)

So, for n_ vertices and m_ edges in the connected
component of the vertex s, the DFS runs in O(n+m,) 1t:

- The graph data structure methods take constant time
- Marking takes constant time

- There 1s a systematic way to examine edges (avoiding
redundancy)



Marking Verticies

Extend vertex structure to support variable for
marking

Use a hash table mechanism to log marked vertices



Breadth-First Search

Starting vertex has level O (anchor vertex)

Visit (mark) all vertices that are only one edge
away

mark each vertex with its “level”

One edge away from level 0 1s level 1

One edge away from level 1 1s level 2
Etc. ...



Example




Example




Example




Example




Example




Example




Example
|




Example
1 2




Example




Example
|




Example
|




Example
|




Example
|




Example
|




Example
|







BFS Pseudocode (1 of 2)

BSF(Vertex s)
initialize container L, to contain vertex s
1 < 0
while L. 1s not empty do
to 1nitially be empty

create container L.,

for each vertex v in L. do

// next slide
1 < 1+1



BFS Pseudocode (2 of 2)

// for each vertex v in L. do

if edge e incident on v do
let w be the other endpoint of e
if w 1s unexplored then
label e as a discovery edge
insert w into L.,

else
label e as a cross edge
/1< 1+1



BSF Properties

The traversal visits all vertices 1in the connected
component of s

The discover edges form a spanning tree of the cc

For each vertex v at level I, the path of the BSF
tree T between s and v has I edges and any
other path of G between s and v has at least I
edges

If (u,v) 1s an edge that is not in the BSF tree, then
the level number of u and v differ by at most
one



Run Time

A BSF traversal takes O(n+m) time

Also, there exist O(n+m) time algorithms base on
BFS which test for
Connectivity of graph
Spanning tree of G
Connected component
Minimum number of edges path between s and v



	Binary Search Trees
	Traversing graphs
	Exploring a Maze
	Example
	DFS
	DFS Pseudocode (labels edges)
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	DFS Tree
	DFS Properties
	DFS Runtime
	Marking Verticies
	Breadth-First Search
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	BFS Tree
	Slide 51
	BFS Pseudocode
	BSF Properties
	Run Time

