
The Art of Data 
Structures

Sorting

Alan Beadle
CSC 162: The Art of Data 
Structures



Agenda

 To be able to explain and implement 
various sorting algorithms

 Bubble

 Selection

 Insertion

 Shell

 Merge

 Quick



Sorting



Sorting

 This is the process of organizing data in 
some particular order

 Numbers, increasing order

 Words, alphabetically

 etc

 Some algorithms benefit with pre-sorted 
data, e.g. binary search



Sorting

 Sorting is an important area of computer 
science

 Many sorting algorithms have been 
developed, and analyzed

 Sorting can take significant time, and is 
related to the number of items to 
process



Sorting

 Sorting requires two main operations:

 Comparisons of items to see if they 
are out of order; comparisons will be 
an important metric

 Exchange of items can be a costly 
operation, and also an important 
metric



Bubble Sort



Bubble Sort
bubble_sort: The First Pass



Bubble Sort
Exchanging Two Values in 

Python



Bubble Sort
Implementation

def bubble_sort(alist):
    for passnum in range(len(alist)-1,0,-1):
        for i in range(passnum):
            if alist[i]>alist[i+1]:
                temp = alist[i]
                alist[i] = alist[i+1]
                alist[i+1] = temp



Bubble Sort
Modified Implementation (cont.)

def bubble_sorted(alist):
    exchanges = True
    passnum = len(alist)-1
    while passnum > 0 and exchanges:
       exchanges = False
       for i in range(passnum):
           if alist[i] > alist[i+1]:
               exchanges = True
               temp = alist[i]
               alist[i] = alist[i+1]
               alist[i+1] = temp
       passnum = passnum-1



Selection Sort



Selection Sort



Selection Sort
Implementation

def selection_sort(alist):
    for fillslot in range(len(alist)-1, 0, -1):
        position_of_max = 0
        for location in range(1, fillslot+1):
            if alist[location] > alist[position_of_max]:
                position_of_max = location

        temp = alist[fillslot]
        alist[fillslot] = alist[position_of_max]
        alist[position_of_max] = temp



Insertion Sort



Insertion Sort



Insertion Sort
insertion_sort: The Fifth Pass



Insertion Sort
Implementation (cont.)

def insertion_sort(alist):
    for index in range(1, len(alist)):
        currentvalue = alist[index]
        position = index

        while position > 0 and alist[position-1] > currentvalue:
            alist[position] = alist[position-1]
            position = position-1

        alist[position] = currentvalue



Shell Sort



Shell Sort
With Increments of Three 



Shell Sort
After Sorting Each Sublist



Shell Sort
A Final Insertion Sort with 

Increment of 1 



Shell Sort
Initial Sublists for a Shell Sort



Shell Sort
Implementation

def shell_sort(alist):
    sublistcount = len(alist)//2
    while sublistcount > 0:
        for startposition in range(sublistcount):
            gap_insertion_sort(alist, startposition, sublistcount)

        print("After increments of size", sublistcount, "The list is", alist)

        sublistcount = sublistcount // 2



Shell Sort
Implementation

def gap_insertion_sort(alist, start, gap):
    for i in range(start+gap, len(alist), gap):
        currentvalue = alist[i]
        position = i

        while position >= gap and \
                alist[position-gap] > currentvalue:
            alist[position] = alist[position-gap]
            position = position-gap

        alist[position] = currentvalue



Merge Sort



Merge Sort
Splitting and Merging



Merge Sort
Splitting and Merging



Merge Sort
Implementation

def merge_sort(alist):
    print("Splitting ", alist)
    if len(alist) > 1:
        mid = len(alist)//2
        lefthalf = alist[:mid]
        righthalf = alist[mid:]

        merge_sort(lefthalf)
        merge_sort(righthalf)

        i = 0
        j = 0
        k = 0



Merge Sort
Implementation (cont.)

       while i < len(lefthalf) and j < len(righthalf):
            if lefthalf[i] < righthalf[j]:
                alist[k] = lefthalf[i]
                i = i+1
            else:
                alist[k] = righthalf[j]
                j = j+1
            k = k+1

        while i < len(lefthalf):
            alist[k] = lefthalf[i]
            i = i+1
            k = k+1

        while j < len(righthalf):
            alist[k] = righthalf[j]
            j = j+1
            k = k+1
    print("Merging ", alist)



Quick Sort



Quick Sort
The First Pivot Value



Quick Sort
Finding the Split Point for 54



Quick Sort
Completing the Partition 

Process to Find the Split Point 
for 54



Quick Sort
Implementation

def quick_sort(alist):
   quick_sort_helper(alist, 0, len(alist)-1)

def quick_sort_helper(alist, first, last):
   if first<last:

       splitpoint = partition(alist,first,last)

       quick_sort_helper(alist, first, splitpoint-1)
       quick_sort_helper(alist, splitpoint+1, last)



Quick Sort
Implementation (cont.)

def partition(alist, first, last):
   pivotvalue = alist[first]

   leftmark = first+1
   rightmark = last

   done = False
   while not done:
       while leftmark <= rightmark and \
               alist[leftmark] <= pivotvalue:
           leftmark = leftmark + 1

       while alist[rightmark] >= pivotvalue and \
               rightmark >= leftmark:
           rightmark = rightmark -1

# Continued on next slide...



Quick Sort
Implementation (cont.)

      if rightmark < leftmark:
           done = True
       else:
           temp = alist[leftmark]
           alist[leftmark] = alist[rightmark]
           alist[rightmark] = temp

   temp = alist[first]
   alist[first] = alist[rightmark]
   alist[rightmark] = temp

   return rightmark



Analysis



Analysis

 A bubble sort, a selection sort, and an 
insertion sort are O(n2) algorithms

 A shell sort improves on the insertion 
sort by sorting incremental sub-lists

  It falls between O(n) and O(n2)

 A merge sort is O(n log n), but requires 
additional space for the merging process



Analysis

 A quick sort is O(n log n), but may 
degrade to O(n2) if the split points are 
not near the middle of the list

 It does not require additional space



Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

