
Homework 8 due Tues 11/16

• CLRS 18.1-5 (red-black vs. BTrees)

• CLRS 18.2-6 (complexity in t)

1



Chapter 18: B-Trees

A B-tree is a balanced tree scheme in which

balance is achieved by permitting the nodes

to have multiple keys and more than two

children.

2



Definition Let t ≥ 2 be an integer. A tree T

is called a B-tree having minimum degree t

if the leaves of T are at the same depth and

each node u has the following properties:

1. u has at most 2t− 1 keys.

2. If u is not the root, u has at least t− 1

keys.

3. The keys in u are sorted in the increasing

order.

4. The number of u’s children is precisely

one more than the number of u’s keys.

5. For all i ≥ 1, if u has at least i keys and

has children, then every key appearing in

the subtree rooted at the i-th child of u is

less than the i-th key and every key

appearing in the subtree rooted at the

(i + 1)-st child of u is greater than the

i-th key.

3



SRP

D

YWV

M

N

QTXH

LKJF GB C Z

root[T]

4



Notation

Let u be a node in a B-tree. By n[u] we

denote the number of keys in u. For each i,

1 ≤ i ≤ n[u], key i[u] denotes the i-th key of u.

For each i, 1 ≤ i ≤ n[u] + 1, ci[u] denotes the

i-th child of u.

Terminology

We say that a node is full if it has 2t− 1 keys

and we say that a node is lean if it has the

minimum number of keys, that is t− 1 keys in

the case of a non-root and 1 in the case of

the root.

2-3-4 Trees

B-trees with maximum degree 2 are called

2-3-4 trees to signify that the number of

children is two, three, or four.

5



Depth of a B-tree

Theorem A Let t ≥ 2 and n be integers.

Let T be an arbitrary B-tree with minimum

degree t having n keys. Let h be the height

of T . Then h ≤ logt
n+1
2 .

Proof The height is maximized when all the

nodes are lean. If T is of that form, the

number of keys in T is

1+
h∑

i=1

2(t−1)ti−1 = 2(t−1)
th − 1

t− 1
+1 = 2th−1.

Thus the depth of a B-tree is at most 1
lg t of

the depth of an RB-tree.

6



Searching for a key k in a B-tree

Start with x = root[T ].

1. If x = nil, then k does not exist.

2. Compute the smallest i such that the i-th

key at x is greater than or equal to k.

3. If the i-th key is equal to k, then the

search is done.

4. Otherwise, set x to the i-th child.

The number of examinations of the key is

O((2t− 1)h) = O(t logt(n + 1)/2).

Binary search may improve the search within

a node

How do we search for a

predecessor?

7



B-Tree-Predecessor(T, x, i)

1: � Find a pred. of key i[x] in T

2: if i ≥ 2 then

3: if ci[x] = nil then return key i−1[x]

4: � If i ≥ 2 & x is a leaf

5: � return the (i− 1)st key

6: else {

7: � If i ≥ 2 & x is not a leaf

8: � find the rightmost key in the i-th child

9: y ← ci[x]

10: repeat

11: z ← cn[y]+1

12: if z 6= nil then y ← z

13: until z = nil

14: return keyn[y][y]

15: }

8



16: else {

17: � Find y and j ≥ 1 such that

18: � x is the leftmost key in cj[y]

19: while y 6= root[T ] and c1[p[y]] = y do

20: y ← p[y]

21: j ← 1

22: while cj[p[y]] 6= y do j ← j + 1

23: if j = 1 then return “No Predecessor”

24: return keyj−1[p[y]]

25: }

9



Basic Operations, Split & Merge

Split takes a full node x as part of the input.

If x is not the root, then its parent should not

be full. The input node is split into three

parts: the middle key, a node that has

everything to the left of the middle key, and a

node that has everything to the right of the

middle key. Then the three parts replace the

pointer pointing to x. As a result, in the

parent node the number of children and the

number of keys are both increased by one.

10



XR BF D HF

N P

H m

LJ

B X

N P Q

R

m

D

LJ K QK

t=4inserted

node y node y node z

node x

11



B-Tree-Split(T, x)

1: if n[x] < 2t− 1 then return “Can’t Split”

2: if x 6= root[T ] and n[p[x]] = 2t− 1 then

3: return “Can’t Split”

4: � Create new nodes y and z

5: n[y]← t− 1

6: n[z]← t− 1

7: for i← 1 to t− 1 do {
8: key i[y]← key i[x]

9: key i[z]← key i+t[x]

10: }
11: for i← 1 to t do {
12: ci[y]← ci[x]

13: ci[z]← ci+t[x]

14: }
15: � If x is the root then create a new root

16: if x = root[T ] then {
17: � Create a new node v

18: n[v]← 0

19: c1[v]← x

20: p[x]← v

21: root[T ]← v

22: }

12



23: � Find the spot for insertion

24: j ← 1

25: while cj[p[x]] 6= x do j ← j + 1

26: � Open up space for insertion

27: if j ≤ n[p[x]] then

28: for i← n[p[x]] downto j do {

29: key i+1[p[x]]← key i[p[x]]

30: ci+2[p[x]]← ci+1[p[x]]

31: }

32: � Insertion

33: keyj[p[x]]← key t[x]

34: cj[p[x]]← y

35: cj+1[p[x]]← z

36: n[p[x]]← n[p[x]] + 1

37: p[y]← p[x]

38: p[z]← p[x]

39: � Return the pointer to the parent

40: return p[x]

13



Merge takes as input a node and the position

of a key. Then it merges the key and the pair

of children flanking the key into one node.

What kind of properties must

the input node and the

children satisfy for such an

operation be possible?

14



What kind of properties must

the input node and the

children satisfy for such an

operation be possible?

The input node must not be

lean, and the two children

must be lean.

15



HD F B HDB R

N P

F X

LJ

X R

LJ K m N P QQ

m

K
node znode y

node x dropped node x

node y

t=4

16



B-Tree-Merge(T, x, i)

1: � Merge the i-th key of x and the two

2: � children flanking the i-th key

3: y ← ci[x] � y is the left child

4: z ← ci+1[x] � z is the right child

5: if (n[y] > t− 1 or n[z]] > t− 1) then

6: return “Can’t Merge”

7: keyt[y]← key i[x] � Append the middle key

8: for j ← 1 to t− 1 do � Copy keys from z

9: keyt+j[y]← keyj[z]

10: for j ← 1 to t do {

11: ct+j[y]← cj[z] � Copy children from z

12: p[cj[z]]← y � Fix the parent pointers

13: }

14: n[x]← n[x]− 1 � Fix the n-tag

15: if (n[x] = 0) then { � If x was the root

16: root[T ]← y � and was lean, then

17: p[y]← nil � y becomes the root

18: }

17



19: � If the middle key is not the last key

20: � Fill the gap by moving things

21: else if i ≤ n[x] then {

21: for j ← i to n[x] do

22: keyj[x]← keyj+1[x]

23: for j ← i to n[x] do

24: cj[x]← cj+1[x]

25: }

18



Insertion of a key

Suppose that a key k needs to be inserted in

the subtree rooted at y in a B-tree T .

Before inserting the key we make sure that is

room for insertion, that is, not all the nodes

in the subtree are full. Since visiting all the

nodes in the subtree is very costly, we will

make sure only that y is not full.

If y is a leaf, insert the key. If not, find a

child in which the key should go to and then

make a recursive call with y set to the child.

19



M

R S

A B C

N O

S

S

Q

R

V

QD U

K

V

U

Y

T

G

Y

P

Z

S

A

R

B

Q

C

U

D

V

E

Y

P

Z

O
T

E
X

Z

T

G

X

M

F

P

E

T

D

X

L

J

K

N

J

L

N

U

O

V

A

Y

B

J

C

K

G

Z

M

RONKJEDCBA
XPMG

EDCA KJ ON VUTSR ZY
XPMGthe initial tree

B inserted

Q inserted

L inseted

F inserted

20



B-Tree-Insert(T, y, k)

1: z ← y

2: f ← false

3: while f = false do {

3: if n[z] = 2t− 1 then

4: z ← B-Tree-Split(T, z)

5: j ← 1

6: while keyj[z] < k and j ≤ n[z] do

7: j ← j + 1

8: if cj[z] 6= nil then z ← cj[z]

9: else f ← true

10: }

11: for i← n[z] downto j do

12: keyj+1[z]← keyj[z]

13: keyj ← k

14: n[z]← n[z] + 1

15: return z

21



Deletion

The task is to receive a key k and a B-tree T

as input and eliminate it from T if it is in the

tree. To accomplish this, we will take an

approach similar to that we took for binary

search trees.

• Search for k. If the node containing k is a

leaf, eliminate k.

• Otherwise, search for the predecessor k in

the subtree immediate to the right of k.

Relocate the predecessor to the position

of k.

What should we be careful

about?

22



We should avoid removing a

key from a lean leaf.

To avoid such a case, we can

take a strategy similar to that

we took in Insertion, that is,

when a node is about to be

visited, make sure that the

node is not lean.

23



Strategy

When a lean node x is about to be visited, do

the following:

• In the case when x is not the first child, if

its immediate left sibling is not lean move

the last key and the last child of the

sibling to x; otherwise merge the sibling,

x, and the key between them into one.

• In the case when x is the first child, if its

immediate right sibling is not lean move

the first key and the first child of the

sibling to x; otherwise merge the sibling,

x, and the key between them into one.

We can then assume that if x is not the root

then its parent is not lean.

24



As we go down the tree, at each level there

are three cases:

1. found k, this is a leaf

2. found k, this is not a leaf

3. did not find k

Case 1: k is in a leaf node: remove k
k

25



Case 2: k is in an internal node:

2a: left child has at least t nodes: take

predecessor
k

uu

k’

k’

2a: right child has at least t nodes: take

successor
k

k’

k’

v v

2c: both children are lean: merge children
k

kuu
26



Case 3: not found yet: find subtree

containing k

Case 3a: either sibling has at least t keys:

move key
m

l

l

m

Case 3b: both siblings lean: merge with one

sibling

m

mu vv

27



D

R

M

X

Z
X

Y

J

P

N

J

O

K

VK

S

N

T

O

U

R

V

S

Y

T

Z

U

C

Z

D

S

J

S

K

TA UC VD Y

M

Z

P

E

X

YC TD

N

J

O

M

R

N V
K

U
P

R

X

PME

EDCA KJ ON VUTSR ZY
XPMG

C

the initial tree

G deleted

A deleted

O deleted

E deleted

28


