
Homework 4 Due Thursday Oct 7

• CLRS 12-4 (number of binary trees)

• CLRS 13.3-6 (rb insert implementation)

1



Chapter 13: Red-Black Trees

A red-black tree is a node-colored BST.

Each node is colored either black or red. The

following special rules apply:

1. The root is always black.

2. A nil is considered to be black. This

means that every non-NIL node has two

children.

3. Black Children Rule: The children of

each red node are black.

4. Black Height Rule: For each node v,

there exists an integer bh(v) such that

each downward path from v to a nil has

exactly bh(v) black real (i.e. non-nil)

nodes. Call this quantity the black

height of v.

We define the black height of an RB tree to

be the black height of its root.

2



An Example

NILNIL: black nodes

NIL
NIL

NILNIL
NILNILNIL

: red nodes

2

8
3 11

9 14
1510

3



RB Trees Are Balanced

Lemma A Let T be an RB tree having

some n ≥ 1 nodes. Then the height of T is at

most 2 lg(n + 1) − 1.

Proof Let h be the height of T . Let

v0, v1, . . . , vh+1 be an arbitrary length h

downward path from the root to a nil, where

v0 is the root, vh is the leaf, and vh+1 is the

nil. v0 is black and vh+1 is black. The

number of red nodes among v1, . . . , vh is

maximized when for all odd i vi is red. So,

the number of red nodes is at most h/2. This

means that the number of black ones among

v1, . . . , vh is at least h − h/2. Thus,

bh(T ) ≥ h/2

4



Proof (cont’d)

If a node has a real black child, then it has

another child. This means that the tree

contains a complete binary tree of height

bh(T ) − 1, consisting solely of real black

nodes. The number of nodes in the complete

binary tree is 2bh(T ) − 1 black nodes in T .

This number is at most n. So, we have

lg(n + 1) ≥ bh(T ) ≥ h/2.

By solving this we have h ≤ 2 lg(n + 1).

5



Operations on RB Trees

We will study two operations, insertion and

deletion. The two operations make use of two

operations, Left-Rotate and Right-Rotate.

6



Left-Rotate and Right-Rotate

right-rotate at y

left-rotate at xα β

γx

β γ

x

α

y

y

Rotations do not break the BST-property.

7



1. Insertion

Suppose that we want to insert a node x into

an RB tree T . To do this, we insert x as a

red node using the insertion algorithm for

BST’s and then resolve violation of the

coloring rules. The exception is when the tree

T is empty. Then we color x black.

Will this operation violate any

rule?

8



Will this operation violate any

rule?
Because the node x is red, the

Black Children Rule may be

violated.

The violation happens when

the parent of x is red.

The other rules are not

violated.

9



Enforcing the Black Children Rule After

Insertion

Let p be the parent of x. Assume p is red;

otherwise there is no violation. Since p is red,

it cannot be the root. So, let g be the grand

parent of x. Let u be the sibling of p. Let s

be the sibling of x, which can be nil. Since

there was no violation before insertion of x, g

is black and s is black. However, u can be

either red or black. We assume that p is the

left child of g. The treatment in the case

when p is the right child is similar.

We consider two cases, u is black and u is red.

10



(Case 1) color [u] = black

First, if x is not the left child of p, then

left-rotate at p and swap the role of x and

that of p. This preserves bh at g’s position.

Next, right-rotate at g, then swap the color

of p and that of g. Also, at the end the node

at g’s position is black. So, there is no

violation any more.

11



u u

e

g

ds

e

p

s x

d

g
new−x

new−p

new−s
left−rotate at p

new−d new−e

g

u

x

us

d

e

s

d

g

e

swap colors
of p & g

d

p

p
xu

g

x

p

s eright−rotate at g

violation resolved

12



(Case 2) color [u] = red

In this case, we color both p and u black and

color g red. This eliminates the violation of

the Black Children Rule between p and x, but

may introduce violation, which is between g

and its parent. So, we may be back to square

one, but the location of the violation, if

introduced, is two levels closer to the root.

Thus, the bad situation does not repeat more

than the height of the tree.

13



up
g

sx

up
g

sx violation
may occur

14



What will happen at the end?

Either Case 1 holds or the

resolution for Case 2 does not

introduce violation.

What other condition might

be violated?

15



It is when the resolution for

Case 2 eliminates violation of

the Black Children Rule but

turns the root red.

16



Example 1:

4
5

7
8

2
3

11
14

1513p
x

u
g

case 2 applies

4
5

7
8

2
3

11
14

1513

p
xs

u
g

case 1 applies

11
14

15138
sx

p u
g

3
7

52
4

13 15
8

11
7

3
52

4
14

swap colors

13 15
8

11
7

3
52

4
14

17



Example 2:
10

201
15

12

14

17
swap colors

left−rotate

10
201

14 17
15

12

right−rotate

10
1 15

14

17

20

12

left−rotate

10
15

20

1 14 17

12

swap colors

20

1 14 17

10
15

12

18



2. Deletion of a node z

We first apply BST-Delete. In the case when

a node is copied to z (the successor of z

comes to z’s position), color the new one by

the color of z.

The deletion routine gives back the pointer,

x, to a node where the actual elimination

took places. There are two possibilities: (1)

There was a leaf at x’s position and x is a nil

(2) The node who was at x’s position had a

unique child and now this unique child is at

x’s position.

In the latter case, the unique

child is red.

Why?

19



In the latter case, the unique

child is red.

Why?
Assume otherwise.

Then the black height of the

other subtree, which is a nil,

is one, while the black height

of the unique subtree is at

least two.

That means that the Black

Height Rule is already

violated.

20



So, the latter case will not create violation.

Thus, we will consider only the case when

there was a leaf at x is position.

Furthermore, if the leaf that has been

eliminated is red, then the elimination does

not introduce violation. So, we assume that

the leaf is black.

21



Resolving the Black Height Rule Violation

Let w be a node. We say that Few(w) holds

if the following conditions are satisfied:

• The Black Height Rule is violated in the

red-black tree.

• Tw, the subtree rooted at w, is a red-black

tree without coloring rule violation, except

the rule about the color of the root.

• If bh(w) were bh(w) + 1 then the

Black-Height Rule would be satisfied for

all the nodes outside Tw

22



Some Properties of Few(·)

• The condition Few initially holds at the

nil who’s replacing x.

• If Few(w) holds and w is red, then

coloring w black resolves violation. So, we

will consider the case when w is black.

• If Few(w) holds then w cannot be the

root.

23



Assume that x is the left child of its parent p.

The case in which x is the right child can be

solved similarly. Let s be x’s sibling.

Let A and B be the left child and the right

child of s, respectively. These two nodes exist

since we’ve eliminated a real black node.

Here we can preprocess the trees so that the

following two conditions are satisfied:

1. the sibling of x is black and

2. if the left child of the sibling of x is

red, then the right child of the sibling

of x is red.

24



x

BA
-1

0 0

s

p

25



Establishing Property #1

We need to make sure that the sibling of x is

black.

Suppose that s is red. Then its parent and its

children are all black. That is, p, A, and B

are black.

Suppose we left-rotate at p and then swap

the colors of p and s. Then,

• the sibling of x is now A and is black;

• the bh-value is unchanged for x, A, and

B, so Few(x) still holds;

• the depth of x, i.e. the location of Few, is

increased by 1; and

• the parent of x is red.

26



−1

0 0
BA

p

x
swap colors

x A

p B

0

0

−1

s
left−rotate

s

27



Establishing Property #2

We need to ensure that if the left child of the

sibling of x is red, then the right child of the

sibling of x is red.

Suppose that A is red and B is black. Let C

and D be the children of A. Then these two

are black. Suppose we right-rotate at s and

swap the colors of A and s. Then,

• A becomes the sibling of x;

• C and s become the left child and the

right child of A, respectively;

• the bh-value is preserved for x, C, D, B,

and the sibling of x, so Few(x) still holds;

• the left child of x’s sibling is now black.

28



C

D B

x A

s
0

−1

0 0

p

0
BA

0 0

s

C D

x
−1

p

right−
rotate

A

−1
C

D

s

0 0
B

x
−1

p
swap colors

29



Resolution After Enforcing the Conditions

In the case when A and B are both black, we

do the following.

If p is black, then we color s red. Then, the

downward paths going through s lose one

black node. Thus, the location of the Few

condition moves one level up to p.

If p is red, we color p black and color s red.

Then the Few condition disappears.

30



sx

A B

p

sx

A B

p

s

p

x

A B

p

sx

A B

31



The Remaining Cases

p A B status

B B B done
R B B done

R R B prohibited
B R B prohibited

R R R to be done
R B R to be done
B R R to be done
B B R to be done

We left-rotate at p. Furthermore, in the case

of (R,R,R) we color s red and color p and B

black and in the case of (B,R,R) and (B,B,R)

we color B black.

32



B

B

A A A

p

p

s

sx

x

s

x

Bp

B

B

p

psx

x A

s

A

B

B

A A A

sx

p

x

p

s

x

Bp

s

B

Bsx

p

x A

p

s

x A

Bp

s

A

33


