
CS 242 Final Project: Reinforcement Learning

Albert Robinson
May 7, 2002



Introduction

Reinforcement learning is an area of machine learning in
which an agent learns by interacting with its environment.
In particular, reward signals are provided to the agent so
it can understand and update its performance accordingly.

For this project I explored different reinforcement
learning techniques and tested the effectiveness of those
techniques under different sets of circumstances.

An Brief (Non-Technical) Overview of Reinforcement
Learning

Reinforcement learning is one of the more recent fields in
artificial intelligence. Arthur Samuel (1959) was among
the first to work on machine learning, with his checkers
program. His work didn’t make use of the reward signals
that are a key component of modern reinforcement learning,
but, as Sutton & Barto point out, (1998) some of the
techniques he developed bear a strong resemblance to
contemporary algorithms like temporal difference.

Work in the 1980s and 90s led to a resurgence in, and a
more detailed formalization of, reinforcement learning
research. Consequently, most of the techniques currently
employed are recent. Most notably, Sutton (1988)
formalized the temporal difference (TD) learning technique.

There are some general ideas that go along with most
reinforcement learning problems. A reinforcement learning
agent has four main elements: a policy, a reward function,
a value function, and sometimes a model of the environment
interacted with. Note that in this case, “environment”
refers to anything outside the direct decision-making
entity (i.e., anything that is sensed by the agent is part
of the environment, even if it is inside the physical agent
in a real-world implementation like a robot). The agent
considers every unique configuration of the environment a
distinct state.

A policy is a function that tells the agent how to behave
at any particular point in time. It is essentially a
function that takes in information sensed from the
environment, and outputs an action to perform.

 2



A reward function is a function that assigns a value to
each state the agent can be in. Reinforcement learning
agents are fundamentally reward-driven, so the reward
function is very important. The ultimate goal of any
reinforcement learning agent is to maximize its accumulated
reward over time, generally by attempting to reach, by a
particular sequence of actions, the states in the
environment that offer the highest reward.

A value function is an estimation of the total amount of
reward that the agent expects to accumulate in the future.
Whereas a reward function is generally static and linked to
a specific environment, a value function is normally
updated over time as the agent explores the environment.
This updating process is a key part of most reinforcement
learning algorithms. Value functions can be mapped from
either states or state-action pairs. A state-action pair
is a pairing of each distinct state and each action that
can be taken from that state.

A model of the environment is an internal, and normally
simplified, representation of the environment that is used
by agents to try and predict what might happen as a result
of future actions. A more sophisticated agent might use a
model to do planning of its future course of action (as
opposed to doing simple reaction-based, trial-and-error
exploration).

Reinforcement Learning Techniques

There are many different techniques for solving problems
using reinforcement learning. Sutton & Barto (1998)
identify three basic ones: Dynamic Programming, Monte
Carlo, and Temporal-Difference. Following are brief
descriptions of each.

Dynamic Programming (DP)

Dynamic programming is a technique for computing optimal
policies. An optimal policy can, by definition, be used to
maximize reward, so DP can be very useful under the right
circumstances. The drawbacks of DP are that it requires a
perfect model of the environment and it can require a
considerable amount of computation.

 3



One of the most basic DP methods is to compute the exact
value function for a given policy, and then use that value
function to produce a new policy. If we assume that we
have a good value function that assigns a value to each
state, a sensible policy is often to simply move to the
adjacent state with the highest value. (“Adjacent state”
in this sense is defined as any state that can be reached
with a single action.) In this way, the policy can be
updated using the improved value function. This technique
is called policy improvement. The problem with policy
improvement is that computing the exact value function can
take a considerably long time, since it requires iterating
many times over every possible state. Even simple problems
can have environments with a number of states so large that
such iteration is realistically impossible.

Other methods, such as iterating over the policies
themselves, or localizing iteration over relevant parts of
the environment, exist, but in many cases similar
limitations remain. One of the most severe such
limitations is the requirement of a perfect model of the
environment.

Monte Carlo (MC)

Monte Carlo techniques, on the other hand, require no
knowledge of the environment at all. They are instead
based on accumulated experience with the problem. As the
name might suggest, MC is often used to solve problems,
such as gambling games, that have large numbers of random
elements.

Like DP, MC centers on learning the value function so that
the policy can be improved. The simplest way of doing this
is to average each reward that a given state (or state-
action pair, if that is the type of value function being
used) results in. For example, in a game of poker, there
are a finite number of states (based on the perceptions of
the player) that exist. An MC technique would be to keep
track of the rewards received after each state, and then
make the value of each state equal to the average of all
the rewards (money won or lost) encountered following that
state (in that particular game). Assuming an “agent has
Royal Flush” state had been encountered at all, the value
for that state would probably be very high. On the other

 4



hand, an “agent has a worthless hand” state would probably
have a very low value. Obviously, accumulating useful
value data for states requires many repeat plays of the
game. In general, since MC learns with experience, many
repetitions of problems are required.

It is possible to “solve” problems using MC by exploring
every possibility and then generating an optimal policy.
However, this can take a long time, (the number of
variables in a human poker game make the number of states
huge) and for many problems (like blackjack), the
randomness is so great that, as Sutton & Barto (1998) note,
a “solution” doesn’t result in winning even half the time.

Temporal Difference (TD)

One of the problems common to both dynamic programming and
Monte Carlo is that the two techniques often don’t produce
information that’s useful until a huge number of possible
states have been encountered multiple times. It is
possible to get over this problem with some DP methods by
localizing updates, but in that case, the problem remains
that DP requires a perfect model of the environment.

One solution to these problems lies in the method of
temporal difference (TD), which combines many of the
elements of DP and MC. TD was formalized largely by Sutton
(1988), though earlier influential work was done by Samuel
(1959), Holland (1986), and others.

Like MC, TD uses experience to update an estimate of the
value function over time. Like MC, after a visit to a
state or state-action pair, TD will update the value
function based on what happened. However, MC only updates
after the run-through of the problem, or episode, has been
completed. It is at that point that MC goes back and
updates the value averages for all the states visited,
based on the reward received at the end of the episode.

TD, on the other hand, updates after every single step
taken. The general methodology for basic TD, sometimes
called TD(0), is to choose an action based on the policy,
and then update the value of the current state based on the
sum of the reward given by the following state and the
difference in values between the current and following
state. This sum is often multiplied times a constant

 5



called a step-size parameter. This technique of updating
to new estimates based partly on current estimates is
called bootstrapping.

TD works well because it allows the agent to explore the
environment and modify its value function while it’s
working on the current problem. This means that it can be
a much better choice than MC is for problems that have a
large number of steps in a given episode, since MC only
updates after the episode is completed. Also, if the
policy depends partly on the value function, the behavior
of the agent should become more effective at maximizing
reward as updating continues. This is called using TD for
control (as opposed to simply predicting what future
value), and there are a number of well-known algorithms,
such as Sarsa and Q-Learning, that do it.

TD is often used with state-action pair values rather than
simply state values. Since the value of a given state-
action pair is an estimation of the value of the next
state, TD is considered to predict the next value.

TD(0) predicts ahead one step. There is a more generalized
form of TD prediction called n-Step TD Prediction,
characterized by TD(λ). This uses a mechanism called an
eligibility trace that keeps track of which states (or
state-action pairs) leading up to the current state are
responsible for the current state, and then updates the
values of those states to reflect the extent to which they
made a difference. As Sutton & Barton (1998) point out,
the generalized MC method can be considered a form of TD(λ)
that tracks the entire sequence of actions and then updates
all the visited states (without using a discount factor)
once a reward has been reached. MC, in other words, can be
considered a form of TD that is on the opposite end of the
spectrum from TD(0). TD(0) only predicts one state, but MC
“predicts” every state (though in this sense “prediction”
refers to learning about past events).

Using TD(λ) in this way results in some of the same problems
that MC has, in that some information isn’t learned about a
state until well after that state has been encountered.
However, if multiple episodes are expected in the same
environment, the information learned during one episode
will become useful in the next episode. Also, if the same
state is visited twice, the information will be immediately
useful.

 6



More Advanced Techniques

Much more sophisticated and complicated techniques have
been developed that make use of combinations or altered
versions of the above methods. In general, computation
time is a major issue in reinforcement learning because
many problems require real-time updating, and techniques
that rely on information that won’t be updated until many
steps in the future can have difficulty doing some things.
This is why models of the environment are sometimes
implemented in agents, because they allow agents to use
planning techniques on the model that coincide with
experience in the actual environment. Assuming the model
is accurate, the agents will be able to make optimal
decisions much more quickly.

A particularly famous use of reinforcement learning
techniques, aside from the aforementioned groundbreaking
work by Samuel (1959), has been the program TD-Gammon
(Tesauro, 1992, 1994, 1995). This is a Backgammon-playing
program that combines TD techniques with a neural network
that aids in prediction of future values. In one of its
more recent incarnations, TD-Gammon after only two weeks of
training (by playing against itself) was rated on a level
almost equal to that of the best human Backgammon players
in the world.

Clearly the development of methods that combine and enhance
the basics of reinforcement learning can result in great
achievements. In order to better understand the
fundamental techniques of reinforcement learning, I
implemented a number of different problems and algorithms
so I could analyze how they worked.

Problems I Worked With

Following are descriptions and results of different
problems (both environments and reinforcement learning
techniques) that I explored. They are listed roughly in
the same order that their respective techniques are listed
above. For more complete information about using the
program files, see the readme file (robinson5.txt). Many
of the problems I worked on are based on those mentioned by

 7



Sutton & Barto (1998) in their book Reinforcement Learning.
This is noted where applicable.

Dynamic Programming
 

Simple Iterative Policy Evaluation (DPGrid.java)

This problem, taken from Sutton & Barto (1998) p. 92,
used a simple 4x4 grid as an environment, with
terminal states set to the upper left and lower right
corners, and every other state having reward –1. (See
Figure 1.)

0
(Term.)

-1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 0
(Term.)

Figure 1. DPGrid Reward Layout

The goal of the problem is to find values that lead to
an optimal policy, by iterating with a simple
iterative policy evaluation algorithm until the values
are stabilized. The final grid produced by this
solution is in Figure 2.

0 -11 -15.5 -16.5

-11 -14.5 -16 -15.5

-15.5 -16 -14.5 -11

-16.5 -15.5 -11 0

Figure 2. DPGrid Value Results

 8



The values are diagonally symmetric, as would be
expected given that the terminal states are also
diagonally symmetric. The policy resulting from
values like these simply calls for moving towards the
adjacent state with the highest value, so it is clear
that from any point on this board the values lead to a
policy which finds a terminal state as quickly as
possible.

 

mazeWorld evaluation (mazeSolver.java)

This program uses an algorithm similar to the one
above to develop state values for a world containing a
10x10 maze. The maze’s layout is shown in Figure 3:

X End

X

X

X X X

X

X X

X X

X X X

X X

Start

Figure 3. The mazeWorld Layout (X = Wall)

 9



The results for this problem were messier than the
ones for DPGrid, since the layout is more complicated.
Notably, following a policy of going to the highest
adjacent value will not let this maze be completed,
because there are areas where the values are highest
in a corner, which would obviously cause such a policy
to get stuck in the corner. A better solution would
have to check for loops to make sure that didn’t
happen. This problem with the algorithm is
interesting, and it shows how the algorithm can be
less effective under certain circumstances.

Monte Carlo

N-Armed Bandit (NABOptimalAverage.java &
NABScoreAverage.java)

The N-Armed Bandit problem is introduced in the
beginning of Sutton & Barto (1998), on p. 26. It is a
simplified Monte Carlo problem that demonstrates how
the technique can improve the playing of semi-random
games over time.

The environment of the problem is a device that allows
n actions (or levers – the problem is based on the
principles of the 1-Armed Bandit slot machine). Each
action has an average reward, but on any given use of
the action it returns a reward randomized over a
normal distribution with the average as a mean. The
goal of the agent is to maximize total reward over
repeat playing by learning which actions have the
highest average reward.

The implementation of the solution is simple. The
agent simply keeps track of the average value for each
action so far, and its policy is to pick the action
with the highest average value with frequency 1 - ε.
This is called a ε-greedy method. With ε probability
it chooses a completely random action.

I attempted to duplicate the results Sutton & Barto
found, so I duplicated their experiment exactly. They
measured average reward over number of plays for
different ε values, and percentage of optimal action
chosen over number of plays for different ε values. The
results are graphed in Figures 4 and 5, respectively.

 10



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 40 79 11
8

15
7

19
6

23
5

27
4

31
3

35
2

39
1

43
0

46
9

50
8

54
7

58
6

62
5

66
4

70
3

74
2

78
1

82
0

85
9

89
8

93
7

97
6

Plays

A
ve

ra
ge

 R
ew

ar
d

e = 0.1 e = 0.01 e = 0

Figure 4. Average Reward over plays for N-Armed
Bandit with a simple MC algorithm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9

45
7

49
5

53
3

57
1

60
9

64
7

68
5

72
3

76
1

79
9

83
7

87
5

91
3

95
1

98
9

Plays

%
 O

pt
im

al
 A

ct
io

n

e = 0.1 e = 0.01 e = 0

Figure 5. Percentage of time optimal action was
chosen.

 11



The data are averaged over 2000 runs. Each run had
1000 episodes. The graphs are almost identical to the
data Sutton & Barto reported, so I am fairly confident
that my implementation of the algorithm was accurate.

The data are notable for a few reasons. Figures 4 and
5 both demonstrate how important proper choice of ε can
be in a ε-Greedy algorithm. With ε set to 0, no random
exploration occurred, so the optimality leveled out
quite dramatically. The average reward was 1 in this
case, which is to be expected since the random rewards
were chosen with 1 as a median.

Also it is interesting that the choice of ε = 0.1 made
average reward climb higher sooner than ε = 0.01 did,
but the slope of ε = 0.01 is greater. This means that
the lower greed value will eventually overtake and
pass the higher one. This also makes sense, because
in the long run the highest averaged value is more
likely to be an accurate representation of the best
action to choose, so a higher likelihood of greedy
action is good.

Temporal Difference

mazeWorld (mazeTester.java)

I designed a modification of the GridWorld environment
that features walls inside it so that exploration
becomes akin to exploring a maze. The layout I used
for this problem is in Figure 3.

Along with the DP algorithm I ran on this environment,
I implemented two TD algorithms, Sarsa and Q-Learning.
I had these algorithms explore the maze and tracked
their performance over time, in terms of how many
steps it took each one to find the goal from the
start. Their relative performance over 300 episodes
is in Figure 6.

Sarsa differs from Q-Learning in that Sarsa is On-
Policy, whereas Q-Learning is Off-Policy. That means
that Sarsa’s value update depends on what future
state-action pair is chosen by the policy. With Q-
Learning, the highest value available is chosen for
updating, regardless of what choice the policy makes.

 12



Of course, the policy still guides Q-Learning value
updating in that it decides where to go, but in terms
of looking ahead for prediction, policy has no effect
in Q-Learning. Because it does not rely on the
policy, Q-Learning is an inherently simply algorithm.

0

500

1000

1500

2000

2500

1 26 51 76 101 126 151 176 201 226 251 276
Episodes

St
ep

s 
/ E

pi
so

de

Sarsa (TD) Q-Learning

        Figure 6. Steps per episode taken as the number
of episodes increases for mazeWorld exploration
by two TD algorithms Sarsa and Q-Learning.

Both algorithms clearly level out at a minimum, which
is effectively the minimum number of steps needed to
get to the goal. However, Sarsa stays consistently
above Q-Learning the whole time, though not by much.
This makes sense, because Sarsa is acting on more
information that Q-Learning is. If the two algorithms
were acting less greedy (ε = 0.1 here), Q-Learning
might perform better because it would not suffer from
“learning” about potentially bad random actions that
the policy makes. As it is, Q-Learning is slightly
less effective.

 13



Windy Grid World (WGWtester.java)

Windy Grid World is an environment from Sutton & Barto
(1998), that is explained on p. 147. It is a
GridWorld that is modified to contain a vertical
“wind” vector. This vector modifies all movement so
that, for a given column, any move made will also push
the agent up by an amount specified by the vector.
With the Goal state right in the center of a
collection of level 1 and 2 wind values, the task of
reaching the goal becomes significantly more difficult
than it would otherwise be. The agent starts on the
left side of the grid, so it must cross across the top
of the grid, over the Goal, and then come down the far
right side of the grid (which has wind level 0) far
enough that its trip to the left causes the wind to
drive it to the goal.

This is the type of problem that TD can be good at
solving, because the algorithms don’t “know” about the
wind. Instead, the wind is simply perceived as part
of the environment and factored in to the values, so
after some initial learning they solve the problem
fast. Figure 7 shows a comparison between the
performance of Sarsa and Q-Learning on this world.

0

500

1000

1500

2000

2500

3000

3500

1 26 51 76 101 126 151 176 201 226 251 276
Episodes

St
ep

s 
/ E

pi
so

de

Q-Learning
Sarsa (TD)

Figure 7. Sarsa vs. Q-Learning on WindyGridWorld.

 14



The performance here was very similar to that on the
mazeWorld, and the discussion there applies here. It
is interesting that even though the problems appear
different from an external viewpoint, (mazeWorld is
about dealing with walls, WindyGridWorld is about
dealing with shifts in movement) the fact that those
differences are part of the environment and not the
agent itself means that to the agent, the problems are
actually the same.

As can be seen from comparing Figure 7 to Figure 6,
initially the WindyGridWorld problem required a lot
more exploration than mazeWorld, but once that
exploration was done both algorithms almost
immediately plunged in step time so that their
episodic performance was close to optimal every time.

Future Ideas

Given time, an interesting project would be one that
combined TD learning techniques in a large-scale, semi-
random environment, with an evolutionary algorithm.

One such project would be a life simulation with predator
and prey agents that moved around in a semi-dynamic world
over a series of time steps. While moving through the
world the agents would collect information using TD
techniques about the values of certain areas, as pertaining
to certain impulses (hunger, sleeping, etc.). Then, when
some random variable triggered that impulse, the agents
could make use of the built-up value functions for that
particular impulse to find a semi-optimal path to what they
needed. Without a representation like this, an agent would
need either a full representation of the world (cheating),
or it would wander around semi-blindly. Both predator and
prey would reproduce at certain times, and a genetic
algorithm would use some fitness function to determine
which agents reproduced. Part of the reproduction would
include a combination of the value functions that had been
built up by the agents, as well as, perhaps, some other
learned policy.

There a few difficulties with this project. The first is
coming up with a world complex enough to make evolution of
value functions worthwhile. Such a world would greatly

 15



increase computational requirements. The larger problem is
balancing such a world with the proper use of variables.

Nevertheless, if a stable version of this world could be
developed, it would be very interesting to experiment with,
and it would do a great job of showing off the power of
combining reinforcement learning techniques to solve larger
problems.  

 16



 
 
 
 
References

Holland, J. H. (1986). Escaping brittleness: The possibilities
of general-purpose learning algorithms applied to rule-based
systems. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell
(eds.), Machine Learning: An Artificial Intelligence Approach,
vol. 2, pp. 593-623. Morgan Kaufmann, San Mateo, CA.

Russell, S., and Norvig, P. (1995). Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs, NJ.

Samuel, A. L. (1959). Some studies in machine learning using the
game of checkers. IBM Journal on Research and Development,
3:211-229.

Sutton, R.S. (1988). Learning to predict by the method of
temporal differences. Machine Learning, 3:9-44.

Sutton, R.S., and Barto, A. G. (1998). Reinforcement Learning:
An Introduction. MIT Press, Cambridge, Massachusetts.

Tesauro, G. J. (1992). Practical issues in temporal difference
learning. Machine Learning, 8:257-277.

Tesauro, G. J. (1994). TD-Gammon, a self-teaching backgammon
program, achieves master-level play. Neural Computation, 6:215-
219.

Tesauro, G. J. (1995). Temporal difference learning and TD-
Gammon. Communications of the ACM, 38:58-68.

 17


	CS 242 Final Project: Reinforcement Learning
	Introduction
	An Brief (Non-Technical) Overview of Reinforcement Learning
	Reinforcement Learning Techniques
	Monte Carlo (MC)
	Problems I Worked With

	Dynamic Programming
	The values are diagonally symmetric, as would be expected given that the terminal states are also diagonally symmetric.  The policy resulting from values like these simply calls for moving towards the adjacent state with the highest value, so it is clear
	Monte Carlo
	Future Ideas




