CS 242 Final Project: Reinforcenent Learning

Al bert Robi nson
May 7, 2002

| nt roducti on

Rei nforcenent |learning is an area of machine [earning in
whi ch an agent learns by interacting with its environnent.
In particular, reward signals are provided to the agent so
it can understand and update its performance accordingly.

For this project | explored different reinforcenent
| earni ng techni ques and tested the effectiveness of those
techni ques under different sets of circunstances.

An Brief (Non-Technical) Overview of Reinforcenent
Lear ni ng

Rei nforcenent learning is one of the nore recent fields in
artificial intelligence. Arthur Samuel (1959) was anong
the first to work on nachine learning, wth his checkers
program His work didn't nmake use of the reward signals
that are a key conponent of nodern reinforcenent | earning,
but, as Sutton & Barto point out, (1998) sone of the

t echni ques he devel oped bear a strong resenbl ance to
contenporary algorithnms |ike tenporal difference.

Wrk in the 1980s and 90s led to a resurgence in, and a
nore detailed formalization of, reinforcenent |earning
research. Consequently, nost of the techniques currently
enpl oyed are recent. Most notably, Sutton (1988)
formalized the tenporal difference (TD) | earning technique.

There are sone general ideas that go along with nost

rei nforcenent |earning problens. A reinforcenent |earning
agent has four main elenents: a policy, a reward function,
a value function, and sonetinmes a nodel of the environnent
interacted with. Note that in this case, “environnment”
refers to anything outside the direct decision-making
entity (i.e., anything that is sensed by the agent is part
of the environnent, even if it is inside the physical agent
in areal-world inplementation |ike a robot). The agent
consi ders every uni que configuration of the environnent a
di stinct state.

A policy is a function that tells the agent how to behave
at any particular point intinme. It is essentially a
function that takes in information sensed fromthe

envi ronnment, and outputs an action to perform

A reward function is a function that assigns a value to
each state the agent can be in. Reinforcenent |earning
agents are fundanentally reward-driven, so the reward
function is very inportant. The ultinmate goal of any
reinforcenent learning agent is to maxim ze its accunul at ed
reward over tine, generally by attenpting to reach, by a
particul ar sequence of actions, the states in the
environnent that offer the highest reward.

A value function is an estimation of the total amount of
reward that the agent expects to accunulate in the future.
Whereas a reward function is generally static and linked to
a specific environnent, a value function is normally
updat ed over tinme as the agent explores the environnent.
This updating process is a key part of nost reinforcenent

| earning algorithnms. Value functions can be mapped from
either states or state-action pairs. A state-action pair
is a pairing of each distinct state and each action that
can be taken fromthat state.

A nodel of the environnent is an internal, and normally
sinplified, representation of the environnent that is used
by agents to try and predict what m ght happen as a result
of future actions. A nore sophisticated agent m ght use a
nodel to do planning of its future course of action (as
opposed to doing sinple reaction-based, trial-and-error
expl oration).

Rei nf or cenent Lear ni ng Techni ques

There are many different techni ques for solving problens
using reinforcenment |earning. Sutton & Barto (1998)
identify three basic ones: Dynam c Progranmm ng, Monte
Carl o, and Tenporal -Difference. Following are brief
descriptions of each.

Dynam c¢ Progranmm ng (DP)

Dynanmic programming is a technique for conputing opti mal
policies. An optimal policy can, by definition, be used to
maxi m ze reward, so DP can be very useful under the right

ci rcunst ances. The drawbacks of DP are that it requires a
perfect nodel of the environnment and it can require a
consi der abl e anobunt of conputati on.

One of the nost basic DP nethods is to conpute the exact
val ue function for a given policy, and then use that val ue
function to produce a new policy. |If we assune that we
have a good val ue function that assigns a value to each
state, a sensible policy is often to sinply nove to the

adj acent state with the highest value. (“Adjacent state”
in this sense is defined as any state that can be reached
wth a single action.) 1In this way, the policy can be
updat ed using the inproved value function. This technique
is called policy inprovenent. The problemw th policy

i nprovenent is that conputing the exact value function can
take a considerably long tine, since it requires iterating
many tines over every possible state. Even sinple problens
can have environnents with a nunber of states so |arge that
such iteration is realistically inpossible.

O her nmethods, such as iterating over the policies

t hensel ves, or localizing iteration over relevant parts of
the environment, exist, but in many cases simlar
[imtations remain. One of the nobst severe such
[imtations is the requirenent of a perfect nodel of the
envi ronment .

Monte Carl o (MO)

Monte Carl o techniques, on the other hand, require no
know edge of the environment at all. They are instead
based on accunul ated experience with the problem As the
name m ght suggest, MCis often used to solve problens,
such as ganbling ganes, that have | arge nunbers of random
el enent s.

Li ke DP, MC centers on |learning the value function so that
the policy can be inproved. The sinplest way of doing this
is to average each reward that a given state (or state-
action pair, if that is the type of value function being
used) results in. For exanple, in a game of poker, there
are a finite nunber of states (based on the perceptions of
the player) that exist. An MC technique would be to keep
track of the rewards received after each state, and then
make the val ue of each state equal to the average of al
the rewards (nmoney won or |ost) encountered follow ng that
state (in that particular gane). Assum ng an “agent has
Royal Flush” state had been encountered at all, the val ue
for that state would probably be very high. On the other

hand, an “agent has a worthl ess hand” state woul d probably
have a very |ow value. oviously, accumulating usef ul

val ue data for states requires many repeat plays of the
game. In general, since MC learns with experience, nmany
repetitions of problens are required.

It is possible to “solve” problens using MC by exploring
every possibility and then generating an optinmal policy.
However, this can take a long tinme, (the nunber of
variabl es in a human poker gane nmake the nunber of states
huge) and for many problens (like blackjack), the
randommess is so great that, as Sutton & Barto (1998) note,
a “solution” doesn’t result in wnning even half the tine.

Tenporal Difference (TD)

One of the problenms common to both dynam ¢ progranm ng and
Monte Carlo is that the two techni ques often don’t produce
information that’s useful until a huge nunber of possible
states have been encountered nultiple tinmes. It is
possible to get over this problemw th sonme DP net hods by
| ocal i zi ng updates, but in that case, the problemremnains
that DP requires a perfect nodel of the environnent.

One solution to these problens lies in the nethod of
tenporal difference (TD), which conbines many of the

el enents of DP and MC. TD was fornalized | argely by Sutton
(1988), though earlier influential work was done by Sanuel
(1959), Holland (1986), and others.

Li ke MC, TD uses experience to update an estimate of the
val ue function over tine. Like MC, after a visit to a
state or state-action pair, TD will update the val ue
function based on what happened. However, MC only updates
after the run-through of the problem or episode, has been
conpleted. It is at that point that MC goes back and
updates the val ue averages for all the states visited,
based on the reward received at the end of the episode.

TD, on the other hand, updates after every single step
taken. The general methodol ogy for basic TD, sonetines
called TD(0), is to choose an action based on the policy,
and then update the value of the current state based on the
sum of the reward given by the follow ng state and the

di fference in val ues between the current and foll ow ng
state. This sumis often nmultiplied tinmes a constant

called a step-size paraneter. This technique of updating
to new estimates based partly on current estinmates is
cal | ed boot strappi ng.

TD works wel | because it allows the agent to explore the
environnent and nodify its value function while it’s

wor ki ng on the current problem This neans that it can be
a much better choice than MCis for problens that have a

| arge nunber of steps in a given episode, since MC only
updates after the episode is conpleted. Also, if the
policy depends partly on the value function, the behavior
of the agent should beconme nore effective at maxi m zing
reward as updating continues. This is called using TD for
control (as opposed to sinply predicting what future

val ue), and there are a nunber of well-known al gorithnms,
such as Sarsa and Q Learning, that do it.

TD is often used with state-action pair values rather than
sinply state values. Since the value of a given state-
action pair is an estimation of the value of the next
state, TD is considered to predict the next val ue.

TDX0) predicts ahead one step. There is a nore generalized
formof TD prediction called n-Step TD Predicti on,

characterized by TD(A). This uses a nechanismcalled an
eligibility trace that keeps track of which states (or
state-action pairs) leading up to the current state are
responsi ble for the current state, and then updates the
val ues of those states to reflect the extent to which they
made a difference. As Sutton & Barton (1998) point out,

the generalized MC nethod can be considered a formof TD(A)
that tracks the entire sequence of actions and then updates
all the visited states (w thout using a discount factor)
once a reward has been reached. MC, in other words, can be
considered a formof TD that is on the opposite end of the
spectrumfrom TD(0). TD(0) only predicts one state, but M
“predicts” every state (though in this sense “prediction”
refers to | earning about past events).

Using TD(A) in this way results in sone of the sanme probl ens
that MC has, in that sone information isn’t | earned about a
state until well after that state has been encountered.
However, if multiple episodes are expected in the sane
environnent, the information | earned during one episode

will becone useful in the next episode. Also, if the sane
state is visited twice, the information will be imedi ately
usef ul .

More Advanced Techni ques

Much nore sophisticated and conplicated techni ques have
been devel oped that nmake use of conbinations or altered
versions of the above nethods. 1In general, conputation
time is a major issue in reinforcenent |earning because
many problens require real-tinme updating, and techni ques
that rely on information that won't be updated until many
steps in the future can have difficulty doing sone things.
This is why nodels of the environnment are sonetines

i npl enented in agents, because they allow agents to use
pl anni ng techni ques on the nodel that coincide with
experience in the actual environnent. Assum ng the node
is accurate, the agents will be able to make opti nal
deci si ons nmuch nore quickly.

A particularly fanous use of reinforcenent |earning

t echni ques, aside fromthe aforenentioned groundbreaki ng
wor k by Samuel (1959), has been the program TD Ganrmon
(Tesauro, 1992, 1994, 1995). This is a Backganmon-pl ayi ng
program that conbi nes TD techniques with a neural network
that aids in prediction of future values. 1In one of its
nore recent incarnations, TD Ganmon after only two weeks of
training (by playing against itself) was rated on a | evel
al nost equal to that of the best human Backgammon pl ayers
in the world.

Clearly the devel opnent of nethods that conmbi ne and enhance
t he basics of reinforcenent |earning can result in great
achievements. |In order to better understand the
fundanental techni ques of reinforcenent |earning, |

i npl enented a nunber of different problens and al gorithns
so | could analyze how they worked.

Problenms | Worked Wth

Fol |l owi ng are descriptions and results of different

probl enms (both environnments and rei nforcenent |earning
techni ques) that | explored. They are listed roughly in
the same order that their respective techniques are |listed
above. For nore conplete information about using the
programfiles, see the readne file (robinson5.txt). Many
of the problenms | worked on are based on those nentioned by

Sutton & Barto (1998) in their book Reinforcenent Learning.
This is noted where applicable.

Dynam ¢ Progranm ng
Sinple Iterative Policy Evaluation (DPGid.java)
This problem taken from Sutton & Barto (1998) p. 92,
used a sinple 4x4 grid as an environnent, wth

termnal states set to the upper left and | ower right
corners, and every other state having reward -1. (See

Figure 1.)
0 -1 -1 -1
(Term)
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0
(Term)

Figure 1. DPGid Reward Layout

The goal of the problemis to find values that lead to
an optimal policy, by iterating with a sinple
iterative policy evaluation algorithmuntil the val ues
are stabilized. The final grid produced by this
solution is in Figure 2.

0 -11 -15.5 -16.5
-11 -14.5 -16 -15.5
-15.5 -16 -14.5 -11
-16.5 -15.5 -11 0

Figure 2. DPGid Value Results

The val ues are diagonally symretric, as would be
expected given that the terminal states are al so

di agonal ly symmetric. The policy resulting from

val ues like these sinply calls for noving towards the
adj acent state with the highest value, so it is clear
that fromany point on this board the values lead to a
policy which finds a termnal state as quickly as
possi bl e.

mazeWdr | d eval uati on (mazeSol ver. j ava)
This programuses an algorithmsimlar to the one

above to devel op state values for a world containing a
10x10 maze. The nmaze’'s |layout is shown in Figure 3:

X End
X
X
X X X
X
X X
X X
X X X
X X
Start

Figure 3. The mazeWrld Layout (X = Wall)

The results for this problemwere nessier than the
ones for DPGid, since the layout is nore conplicated.
Not ably, following a policy of going to the hi ghest
adj acent value will not let this maze be conpl et ed,
because there are areas where the val ues are highest
in a corner, which would obviously cause such a policy
to get stuck in the corner. A better solution would
have to check for |loops to nmake sure that didn’t
happen. This problemwth the algorithmis
interesting, and it shows how the al gorithm can be

| ess effective under certain circunstances.

Monte Carlo

N- Armed Bandit (NABOpti mal Aver age. java &
NABScor eAver age. j ava)

The N-Arned Bandit problemis introduced in the

begi nning of Sutton & Barto (1998), on p. 26. It is a
simplified Monte Carlo problemthat denonstrates how
the techni que can inprove the playing of sem -random
games over tine.

The environnment of the problemis a device that allows
n actions (or levers — the problemis based on the
principles of the 1-Arnmed Bandit slot machine). Each
action has an average reward, but on any given use of
the action it returns a reward random zed over a
normal distribution with the average as a nean. The
goal of the agent is to maximze total reward over
repeat playing by |earning which actions have the

hi ghest average reward.

The inplenmentation of the solution is sinple. The
agent sinply keeps track of the average val ue for each
action so far, and its policy is to pick the action

with the highest average value with frequency 1 - e.

This is called a &greedy nethod. Wth € probability
it chooses a conpletely random acti on.

| attenpted to duplicate the results Sutton & Barto
found, so |I duplicated their experinment exactly. They
nmeasured average reward over nunber of plays for

di fferent € val ues, and percentage of optimal action

chosen over nunber of plays for different € values. The
results are graphed in Figures 4 and 5, respectively.

10

1.8

chosen.

11

1.6
1.4 1
1.2
’“’ 7 !
-E 1+ ‘.t el |F‘ || IR B B BR I a 2N
©
50.8
[]
g 06
(4
>
< o4 -
0.2 -
0
T O O 0O NN O I I O N T O O O NN O W ST O N T O O o N~ ©
< MM - D O O NN - 10 OO M © O I 0 N © O < 0 N 10 O M I~
0.2 ~ - - N N O 0O O F ¥ 0 0 0 © © M M N~ O O 0 OO O
-0.4
Plays
—e=0.1 e=0.01 e=0]
Figure 4. Average Reward over plays for N Arned
Bandit with a sinple MC algorithm
0.9
0.8 |
0.7 1
c 06 -
S
< 051
©
£
§_0.4f et
°\°'o.3—/‘w
02 -
0.1 -
0
~ OO M O M - O NN L M - 0O NN OB MO >~ O NN OO M - OO NN WO M - O
MO M~ ~ IO O N © O T 0 v« I O M kN O T 0 N © O M N~ «— 1B ©
~ - - N N O O O & & 8 UL OB © © © M M M O 0 OO O O
Plays
e=0.1 e=0.01 e=0]|
Figure 5. Percentage of tine optinmal action was

The data are averaged over 2000 runs. Each run had
1000 epi sodes. The graphs are alnost identical to the
data Sutton & Barto reported, so | amfairly confident
that my inplenmentation of the algorithmwas accurate.

The data are notable for a few reasons. Figures 4 and
5 both denonstrate how i nportant proper choice of € can

be in a e-Geedy algorithm Wth € set to 0, no random
exploration occurred, so the optimality |evel ed out
quite dramatically. The average reward was 1 in this
case, which is to be expected since the random rewards
were chosen with 1 as a nedi an.

Also it is interesting that the choice of € = 0.1 nade
average reward clinb higher sooner than ¢ = 0.01 did,
but the slope of ¢ = 0.01 is greater. This nmeans that
the lower greed value wll eventually overtake and
pass the higher one. This also nmakes sense, because
in the long run the highest averaged value is nore
likely to be an accurate representati on of the best
action to choose, so a higher likelihood of greedy
action is good.

Tenporal Difference
mazeWor|l d (nazeTester.java)

| designed a nodification of the Gidwrld environnent
that features walls inside it so that exploration
beconmes akin to exploring a maze. The layout | used
for this problemis in Figure 3.

Along with the DP algorithmI| ran on this environnent,
| inplemented two TD al gorithms, Sarsa and Q Lear ni ng.
| had these al gorithnms explore the maze and tracked

t heir performance over time, in ternms of how many
steps it took each one to find the goal fromthe
start. Their relative performance over 300 epi sodes
is in Figure 6.

Sarsa differs fromQLearning in that Sarsa is On-
Policy, whereas QLearning is Of-Policy. That neans
that Sarsa’s val ue update depends on what future
state-action pair is chosen by the policy. Wth @
Learni ng, the highest value available is chosen for
updati ng, regardl ess of what choice the policy makes.

12

O course, the policy still guides Q Learning val ue
updating in that it decides where to go, but in terns
of | ooking ahead for prediction, policy has no effect
in QLearning. Because it does not rely on the
policy, QLearning is an inherently sinply algorithm

Steps / Episode

2500
2000 -
1500 -
1000

500 -

bt
. M MWNMMW AR o AR A
1 26 51 76 101 126 151 176 201 226 251 276
Episodes
Sarsa (TD) —— Q-Learning ‘

Figure 6. Steps per episode taken as the nunber
of episodes increases for mazeWrl d expl oration
by two TD al gorithns Sarsa and Q Learning.

Both algorithns clearly level out at a m nimum which
is effectively the m ni nrum nunber of steps needed to
get to the goal. However, Sarsa stays consistently
above Q Learning the whole tinme, though not by nuch.
Thi s makes sense, because Sarsa is acting on nore
information that Q Learning is. |If the two algorithmns
were acting less greedy (¢ = 0.1 here), Q Learning

m ght perform better because it would not suffer from
“l earni ng” about potentially bad random acti ons that
the policy makes. As it is, QLearning is slightly

| ess effective.

13

Wndy Gid Wrld (WGW ester.java)

Wndy Gid Wrld is an environnent from Sutton & Barto
(1998), that is explained on p. 147. It is a
Gidwrld that is nodified to contain a vertica

“W nd” vector. This vector nodifies all novenent so
that, for a given colum, any nove made will|l al so push
t he agent up by an anount specified by the vector.
Wth the Goal state right in the center of a
collection of level 1 and 2 wi nd values, the task of
reachi ng the goal becones significantly nore difficult
than it would otherwi se be. The agent starts on the

| eft side of the grid, so it nust cross across the top
of the grid, over the Goal, and then cone down the far
right side of the grid (which has wind | evel 0) far
enough that its trip to the left causes the wind to
drive it to the goal

This is the type of problemthat TD can be good at

sol ving, because the algorithnms don’t “know about the
wind. Instead, the wind is sinply perceived as part
of the environnent and factored in to the val ues, so
after sone initial learning they solve the problem
fast. Figure 7 shows a conparison between the
performance of Sarsa and Q Learning on this world.

Steps / Episode

3500

3000

2500 -

N
o
o
o

——Q-Learning
Sarsa (TD)

-

[6)]

o

o
!

1000 -

500 A

1 26 51 76 101 126

176 201 226 251 276

151
Episodes

Figure 7. Sarsa vs. Q Learning on WndyG i dWrl d.

14

The performance here was very simlar to that on the
mazeWsr |l d, and the discussion there applies here. It
is interesting that even though the probl ens appear
different froman external viewpoint, (mazeWrld is
about dealing with walls, WndyGidwrld is about
dealing with shifts in novenent) the fact that those
differences are part of the environment and not the
agent itself means that to the agent, the problens are
actually the sane.

As can be seen fromconparing Figure 7 to Figure 6,
initially the WndyGidwrld problemrequired a | ot
nore exploration than mazeWrl d, but once that

expl oration was done both al gorithns al nost

i mredi ately plunged in step tinme so that their

epi sodi ¢ performance was close to optinmal every tine.

Future | deas

Gven tinme, an interesting project would be one that
conbi ned TD | earning techniques in a |l arge-scale, sem -
random environnent, with an evolutionary al gorithm

One such project would be a life simulation with predator
and prey agents that noved around in a sem -dynam c world
over a series of time steps. Wile noving through the
worl d the agents woul d collect information using TD

t echni ques about the values of certain areas, as pertaining
to certain inmpul ses (hunger, sleeping, etc.). Then, when
sone random variable triggered that inpulse, the agents
coul d make use of the built-up value functions for that
particular inpulse to find a sem -optiml path to what they
needed. Wthout a representation |like this, an agent woul d
need either a full representation of the world (cheating),
or it would wander around sem -blindly. Both predator and
prey woul d reproduce at certain tines, and a genetic

al gorithm woul d use sone fitness function to determ ne

whi ch agents reproduced. Part of the reproduction would

i nclude a conbination of the value functions that had been
built up by the agents, as well as, perhaps, sone other

| earned policy.

There a few difficulties with this project. The first is

coming up with a world conpl ex enough to make evol uti on of
val ue functions worthwhile. Such a world would greatly

15

i ncrease conputational requirements. The |larger problemis
bal anci ng such a world with the proper use of variabl es.

Nevertheless, if a stable version of this world could be
devel oped, it would be very interesting to experinment wth,
and it would do a great job of show ng off the power of
conbi ning reinforcenent |earning techniques to solve |arger
probl ens.

16

Ref er ences

Hol and, J. H (1986). Escaping brittleness: The possibilities
of general -purpose |earning algorithnms applied to rul e-based
systems. In R S. Mchalski, J. G Carbonell, and T. M Mtchel
(eds.), Machine Learning: An Artificial Intelligence Approach,
vol . 2, pp. 593-623. Mrgan Kauf mann, San Mateo, CA

Russell, S., and Norvig, P. (1995). Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood diffs, NJ.

Sarmuel , A L. (1959). Sone studies in nmachine |earning using the
ganme of checkers. I1BM Journal on Research and Devel opnent,
3:211-229.

Sutton, R S. (1988). Learning to predict by the nmethod of
tenporal differences. Machine Learning, 3:9-44.

Sutton, R S., and Barto, A G (1998). Reinforcenent Learning:
An Introduction. MT Press, Canbridge, Mssachusetts.

Tesauro, G J. (1992). Practical issues in tenporal difference
| earni ng. Machi ne Learning, 8:257-277.

Tesauro, G J. (1994). TD Gammon, a sel f-teachi ng backgamon
program achi eves naster-|evel play. Neural Conputation, 6:215-
219.

Tesauro, G J. (1995). Tenporal difference |earning and TD
Gammon. Communi cations of the ACM 38:58-68.

17

	CS 242 Final Project: Reinforcement Learning
	Introduction
	An Brief (Non-Technical) Overview of Reinforcement Learning
	Reinforcement Learning Techniques
	Monte Carlo (MC)
	Problems I Worked With

	Dynamic Programming
	The values are diagonally symmetric, as would be expected given that the terminal states are also diagonally symmetric. The policy resulting from values like these simply calls for moving towards the adjacent state with the highest value, so it is clear
	Monte Carlo
	Future Ideas

