Efficient secure two-party computation secure against active adversary using Yao's Garbled Circuit and GMW paradigm

Mohammad Hossein Faghihi Sereshgi University Of Rochester

Collaborators: Jackson Abascal, Carmit Hazay, Yuval Ishai, Muthuramakrishnan Venkitasubramaniam

Outline

- What is secure Multi-party Computation
- Yao's Garbled Circuit
- Protocol with Active security
- Proof of Security
- Results

- *n* parties want to compute $F(x_1, x_2, ..., x_n)$
 - Keep the inputs private
 - No one learns anything more than the output of the function

- Trusted Third Party
 - Receives the inputs and returns the output

• It is almost impossible to find an entity trusted by everyone

• Use a protocol that does not need a TTP.

• Secure Two-Party Computation

Adversary

- Two types of adversary
 - Semi-Honest (Passive, Honest-but-curious)
 - Follows the protocol
 - Investigates the communications
 - Malicious (Active, Byzantine)
 - Deviates from the protocol
 - Sends bogus messages or goes offline
 - Adversary wants to violate correctness of result and privacy

Yao's Garbled Circuit [Yao96]

- One of the first protocol for 2PC
- Passive security
- Assumption:
 - Oblivious Transfer

Oblivious Transfer

• Consider a circuit C that computes the function F

13

• Garbling AND gate

- Garbler sends the encoded truth table and his encoded input
- For Evaluator's input, they use OT

- Evaluator decrypts all possible outputs
 - Only one of them will be valid
- Assume Garbler's input is 1 and Evaluator's input is 0

х	У	Z		
k_{0}^{0}	k_0^1	$Enc_{k_0^0}\left(Enc_{k_0^1}(k_0^8)\right)$	$Dec_{k_1^0}\left(Dec_{k_0^1}(\cdots)\right)$	Invalid!
k_{0}^{0}	k_1^1	$Enc_{k_0^0}\left(Enc_{k_1^1}(k_0^8)\right)$	$Dec_{k_1^0}\left(Dec_{k_0^1}(\cdots)\right)$	Invalid!
k_{1}^{0}	k_0^1	$Enc_{k_1^0}\left(Enc_{k_0^1}(k_0^8)\right)$	$Dec_{k_1^0}\left(Dec_{k_0^1}(\cdots)\right)$	Valid
k_{1}^{0}	k_{1}^{1}	$Enc_{k_1^0}\left(Enc_{k_1^1}(k_1^8)\right)$	$Dec_{k_1^0}\left(Dec_{k_0^1}(\cdots)\right)$	Invalid!

- Complexities:
 - Communication: $O(\kappa |C|)$ bits
 - O(|C|) PRG invocation
 - *n* Oblivious Transfer on pairs of κ -bit strings
 - *n*: length of Evaluator's input

- Secure against passive (honest-but-curious) adversary
- In the OT-hybrid, the protocol is secure against actively corrupted Evaluator
- However, an actively corrupted Garbler can attack the protocol!

- Theoretical solution
 - GMW Paradigm [GMW87]: Attach a zero-knowledge proof (ZK) with every message
 - Not considered practical!
- Concretely efficient solutions:
 - Cut-and-Choose [LP07,...]
 - Authenticated Garbling [IKOPS11,WRK17,YWZ19]

This Work: GMW is practical!

• Timeline of some of the works on 2PC

Zero-knowledge proof

- Prover *P* has witness *w* that $x \in L$ and wants to convince *V* that $x \in L$
- Soundness: if $x \notin L$, a cheating P^* cannot convince V
- Zero Knowledge: The protocol reveals nothing more than $x \in L$

Active Security

GMW Paradigm [GMW87]

- ZKP + passive security = Active security
 - Costly

Comparison

• Asymptotic Complexity

Protocol	Func-ind (Comm./Comp)	Func-dep (Comm./Comp.)	Online (Comm.)
[Yao86]		O (C k)	O(I k + O)
[HIV17]		$oldsymbol{O}(oldsymbol{C} oldsymbol{k})$ (Input dependent)	O(I k + O)
Authenticated garble[WRK17]	$O\left(\frac{ C \rho k}{\log \tau + \log c }\right)$	0 (C)	O(I k + O)
[IPS08] in Authenticated garble[WRK17]	O(C k)	O(C k)	O(I k + O)
[AFHIV20]		$O\left(C k+\sqrt{ C k} ight)$	O(I k + O)

- **k** Computational security parameter
- ho Statistical security parameter
- $oldsymbol{ au}$ Number of protocol executions in the amortized setting

Features of the protocol

- Boolean operations
 - Based on Yao's GC
- Secure against active Garbler using ZKP
 - Uses Ligero [AHIV17]
- Offline-Online phase
- Offline Phase is non-interactive
 - The two parties do not need to know each other
- Online phase needs only one round

Yao's GC+ZKP

- Garbler proves that:
 - The GC is constructed correctly
 - The Garbler's input is consistent with the GC
 - The Evaluator's encoded input is consistent with the GC
- First Variant: Non-black-box in PRG but black-box in OT
- How? Certified OT [IKOPS11,HIV17]

- COT is parameterized with an NP-relation R
- The receiver will receive the output only if the relation is true We modularly show how to realize COT using OT in a black-box way

Certified OT

- ZKP shows that
 - NP-relation R on sender's input is satisfied
 - The MAC values are computed correctly
- Can compress rounds using known (Fiat-Shamir's) heuristic

Certified OT-Input-Value Disjunction (IVD)

Sender
$$S_{1}^{0}, S_{1}^{1}, ..., S_{n}^{0}, S_{n}^{1}$$

 $P = (v^{1} \lor v^{2} \lor \cdots \lor v^{n})$
 x, w
 $R((x, s_{1}^{0}, s_{1}^{1}, ..., s_{n}^{0}, s_{n}^{1}), w)$
Receiver

Certified OT- IVD

• Encode the receiver's input in order to deal with the 1bit leakage [LP07,IKOPS11,SS13]

- Probabilistic Polynomial-Time Turing Machine
- Generates (simulates) the view of the adversary
 - View: $\{x, r, m_0, m_1, ...\}$
 - Given adversary's input and the output

Real World

Certified OT-IVD: Proof of Security

Certified OT-IVD: Proof of Security

Offline-Online setting

- The GC Proof is input independent
 - Can be done offline without interaction (Silent preprocessing)
 - The Garbler can make the GC and the ZKP available on internet.
- The Evaluator's message for OT protocol does not need Interaction.
 - The Evaluator can make it available on internet before protocol starts.

Offline-Online setting

We split the protocol in Offline phase and Online phase

- Offline phase
 - Garbler publishes the GC and its proof of correctness
 - Evaluator publishes the first message of the OT protocol
- Online phase
 - Garbler sends the response to OT
 - Garbler sends a proof that the labels transmitted are consistent with the GC

Offline-Online setting

- Split the zero-knowledge proofs into two parts:
 - ZK_{off}
 - GC is constructed correctly
 - ZK_{on}
 - Inputs to OT functionality are consistent with the GC
- Need a commit-and-prove system where we can give multiple proofs on committed values
 - Instantiate using MPC-in-the-head paradigm [IKOS07]
 - Design a concretely efficient variant with sublinear communication complexity (using a variant of Ligero [AHIV17])

Variants of the protocol

- Variant 1: Certified OT
 - Implementation!
 - Most communication efficient 2PC to date
 - Competitive computational complexity
- Variant 2: OT (Non-black-box on OT and PRG)
 - Larger ZKP in the online phase. Competitive for large input sizes
 - Reusable (Non-Interactive Secure Computation) NISC!

Results-Offline

42

Results-Online

Thank You