
Accelerating Simulated Annealing for the Permanent and

Combinatorial Counting Problems

Ivona Bezáková∗ Daniel Štefankovič∗ Vijay V. Vazirani†

Eric Vigoda†

July 15, 2005

Abstract
We present an improved “cooling schedule” for simulated annealing algorithms

for combinatorial counting problems. Under our new schedule the rate of cooling
accelerates as the temperature decreases. Thus, fewer intermediate temperatures
are needed as the simulated annealing algorithm moves from the high temperature
(easy region) to the low temperature (difficult region). We present applications of our
technique to colorings and the permanent (perfect matchings of bipartite graphs).
Moreover, for the permanent, we improve the analysis of the Markov chain underly-
ing the simulated annealing algorithm. This improved analysis, combined with the
faster cooling schedule, results in an O(n7 log4 n) time algorithm for approximating
the permanent of a 0/1 matrix.

1 Introduction

Simulated annealing is an important algorithmic approach for counting and sampling
combinatorial structures. Two notable combinatorial applications are estimating the
partition function of statistical physics models, and approximating the permanent of a
non-negative matrix. For combinatorial counting problems, the general idea of simulated
annealing is to write the desired quantity, say Z, (which is, for example, the number of
colorings or matchings of an input graph) as a telescoping product:

Z =
Z`

Z`−1

Z`−1

Z`−2
. . .

Z1

Z0
Z0, (1)

∗Department of Computer Science, University of Chicago, Chicago, IL 60637. Email:
{ivona,stefanko}@cs.uchicago.edu. I.B. was supported by NSF grant CCR-0237834.

†College of Computing, Georgia Institute of Technology, Atlanta, GA 30332. Email:
{vazirani,vigoda}@cc.gatech.edu. V.V. is supported by NSF grants CCR-0311541 and CCR-0220343.
E.V. is supported by NSF grant CCR-0237834.

1

where Z` = Z and Z0 is trivial to compute. By further ensuring that each of the ratios
Zi/Zi−1 is bounded, a small number of samples (from the probability distribution corre-
sponding to Zi−1) suffices to estimate the ratio. These samples are typically generated
from an appropriately designed Markov chain.

Each of the quantities of interest corresponds to the counting problem at a different
temperature. The final quantity Z = Z` corresponds to zero-temperature, whereas the
trivial initial quantity Z0 is infinite temperature. The temperature slowly decreases from
high temperature (easy region) to low temperature (difficult region). A notable appli-
cation of simulated annealing to combinatorial counting was the algorithm of Jerrum,
Sinclair and Vigoda [8] for approximating the permanent of a non-negative matrix. In
their algorithm, the cooling schedule is uniform: the rate of cooling was constant.

Our first main result is an improved cooling schedule. In contrast to the previous
cooling schedule for the permanent, our schedule is accelerating (the rate of cooling ac-
celerates as the temperature decreases). Consequently, fewer intermediate temperatures
are needed, and thus fewer Markov chain samples overall suffice. It is interesting to
note that our schedule is similar to the original proposal of Kirkpatrick et al [11], and is
related to schedules used recently in geometric settings by Lovász and Vempala [13] and
Kalai and Vempala [9].

We illustrate our new cooling schedule in the context of colorings, which corresponds
to the anti-ferromagnetic Potts model from statistical physics. We present general re-
sults defining a cooling schedule for a broad class of counting problems. These general
results seem applicable to a wide range of combinatorial counting problems, such as the
permanent, and binary contingency tables [1].

The permanent of an n× n matrix A is defined as

per(A) =
∑

σ

n∏
i=1

ai,σ(i),

where the sum goes over all permutations σ of [n]. The permanent of a 0/1 matrix A is the
number of perfect matchings in the bipartite graph with bipartite adjacency matrix A. In
addition to traditional applications in statistical physics [10], the permanent has recently
been used in a variety of areas, e. g., computer vision [15], and statistics [14]. Jerrum,
Sinclair, and Vigoda presented a simulated annealing algorithm [8] for the permanent of
non-negative matrices with running time O(n10 log3 n) for 0/1 matrices.

Our cooling schedule reduces the number of intermediate temperatures in the sim-
ulated annealing for the permanent from O(n2 log n) to O(n log2 n). We also improve
the analysis of the Markov chain used for sampling. The improved analysis comes from
several new inequalities about perfect matchings in bipartite graphs. The consequence
of the new analysis and improved cooling schedule is an O(n7 log4 n) time algorithm for
estimating the permanent of an 0/1 n × n matrix. Here is the formal statement of our

2

result:

Theorem 1. For all ε > 0, there exists a randomized algorithm to approximate, within a
factor (1±ε), the permanent of a 0/1 n×n matrix A in time O(n7 log4(n)+n6 log5(n)ε−2).
The algorithm extends to arbitrary matrices with non-negative entries.

The remainder of the paper is organized as follows. In Section 2 we present our
new cooling schedule, motivated by its application to colorings. We then focus on the
permanent in Section 3. We begin by presenting the simulated annealing algorithm for
the permanent in Section 3. In Section 4 we explain the background techniques for
analyzing the Markov chain. We present our new inequalities in Section 5. Finally, in
Section 6 we use these new inequalities for bounding the mixing time of the Markov
chain. We then conclude the analysis of the permanent algorithm for 0/1 matrices in
Sections 7 and 8, and present the extension to non-negative matrices in Section 9.

2 Improved Cooling Schedule

We begin by motivating the simulated annealing framework in the context of colorings.
We then present a general method for obtaining improved cooling schedules and show
how it can be applied to colorings. We conclude with the proofs of technical lemmas for
improved cooling schedules.

2.1 Counting Colorings

Our focus in this section is counting all valid k-colorings of a given graph G. Let G =
(V,E) be the input graph and k be the number of colors. A (valid) k-coloring of G is
an assignment of colors from [k] to the vertices of G such that no two adjacent vertices
are colored by the the same color (i. e., σ(u) 6= σ(v) for every (u, v) ∈ E). Let Ω = Ω(G)
denote the set of all k-colorings of G. For input parameters ε, δ, our goal is to approximate
|Ω| within a multiplicative factor 1± ε with probability ≥ 1− δ.

Before we present our new reduction, it is worth illustrating the standard reduction
(see e.g., [6]). Let E0 = E = {e1, ..., em} (ordered arbitrarily), and, for 1 ≤ i ≤ m, let
Ei = Ei−1 \ ei and Gi = (V,Ei). Then the number of k-colorings of G can be written as
a telescoping product:

|Ω(G)| = kn
∏

i

|Ω(Gi−1)|
|Ω(Gi)|

For k ≥ ∆+2 where ∆ is the maximum degree of G, it is possible to verify the following
bound on the i-th ratio:

1
2
≤ |Ω(Gi−1)|
|Ω(Gi)|

≤ 1,

3

Therefore we can estimate the i-th ratio by generating random k-colorings of Gi and
counting the proportion that are also valid k-colorings of Gi−1. This reduces the approx-
imate counting problem of estimating the cardinality of Ω(G) to m random sampling
problems, see Jerrum [6] for details on the reduction as a function of the error parameter
ε and confidence parameter δ.

We instead look at a continuous version of the problem, the anti-ferromagnetic Potts
model from Statistical Physics, which allows more flexibility in how we remove edges.
In addition to the underlying graph G and the number of partitions k, the Potts model
is also specified by an activity1 λ. The configuration space of the Potts model, denoted
[k]V , is the set of all labelings σ : V → [k]. The partition function of the Potts model
counts the number of configurations weighted by their “distance” from a valid k-coloring.
The “distance” is measured in terms of the activity λ and we will specify it shortly. As
the activity goes to zero, the partition function limits to |Ω|.

Our reduction from approximating |Ω| to sampling from Ω, works by specifying a
sequence of activities for the anti-ferromagnetic Potts model, so that the partition func-
tions do not change by more than a constant factor between successive activities. This
allows us to reduce the activity to an almost zero value while being able to estimate
the ratios of two consecutive partition functions. Then, as before, we can approximate
|Ω|. The advantage of the new reduction lies in using fewer random sampling prob-
lems, namely instead of m problems we now need to consider only O(n log n) sampling
problems to estimate |Ω|.

For λ > 0, the partition function of the Potts model is

Z(λ) =
∑

σ∈[k]V

λM(σ)

where M(σ) = MG(σ) = |(u, v) ∈ E : σ(u) = σ(v)| is the number of monochromatic
edges of the labeling σ.

The partition function can be viewed as a polynomial in λ. Notice that its absolute
coefficient equals |Ω|, the number of k-colorings of G. Moreover, Z(1) = |Ω(Gm)| = kn

is the sum of the coefficients of Z. It can be shown that for k > ∆ the number of
k-colorings of G is bounded from below by (k/e)n (i. e., |Ω| ≥ (k/e)n). For completeness,
we prove this lower bound in the Appendix in Corollary 20 of Section 11. If we used
the trivial lower bound of |Ω| ≥ 1, we would introduce an extra factor of O(log k) in the
final running time. Observe that the value of the partition function at λ = 1/en is at
most 2|Ω|:

|Ω| ≤ Z(1/en) ≤ |Ω|+ Z(1)(1/en) ≤ |Ω|+ kn/en ≤ 2|Ω|. (2)

This will be sufficiently close to |Ω| so that we can obtain an efficient estimator for |Ω|.
1The activity corresponds to the temperature of the system. Specifically, the temperature is 1/ ln λ,

thus λ = 1 corresponds to the infinite temperature and λ = 0 corresponds to the zero temperature.

4

We will define a sequence

λ0 = 1, λ1, . . . , λ` ≤ 1/en, λ`+1 = 0,

where ` = O(n log n), and, for all 0 ≤ i ≤ `,

1
2
≤ Z(λi+1)

Z(λi)
≤ 1.

We estimate the number of k-colorings of G via the telescoping product:

|Ω| = kn
∏

0≤i≤`

αi,

where αi = Z(λi+1)/Z(λi). We will estimate αi by sampling from the probability dis-
tribution corresponding to Zi. Before we describe how to estimate these ratios, we first
specify the cooling schedule (i.e., the sequence of activities).

2.2 Intuition for Accelerating Cooling Schedule for Colorings

We need to ensure that for consecutive λi, λi+1 the ratio Z(λi+1)/Z(λi) is in the in-
terval [12 , 1]. The polynomial Z has degree m since any labeling has at most m = |E|
monochromatic edges. Hence it suffices to define λi+1 = 2−1/mλi, then Z(λi+1) ≥
(2−1/m)mZ(λi) ≥ Z(λi)/2. This specifies a uniform cooling schedule with a rate of
decrease 2−1/m.

If we had Z(λ) = knλm we could not decrease λ faster than 2−1/m. Fortunately, in
our case the absolute coefficient of Z(λ) is at least |Ω| ≥ (k/e)n. To illustrate the idea
of non-uniform decrease, let fi(λ) = λi. The polynomial fm will always decrease faster
than Z. At first (for values of λ close to 1) this difference will be small, however, as λ
goes to 0, the rate of decrease of Z slows down because of its absolute term. Thus, at a
certain point fm−1 will decrease faster than Z. Once λ reaches this point, we can start
decreasing λ by a factor of 2−1/(m−1). As time progresses, the rate of Z will be bounded
by the rate of polynomials fm, then fm−1, fm−2, . . . , all the way down to f1 for λ close
to 0. When the polynomial fi “dominates” we can decrease λ by a factor of 2−1/i. Note
that the rate of decrease increases with time, i. e., the schedule is accelerating.

2.3 General Cooling Schedule

Now we formalize the accelerated cooling approach. We state our results in a general
form which proves useful in other contexts, e. g., for the permanent later in this paper,
and binary contingency tables [1].

Let Z(λ) be the partition function polynomial. Let s be the degree of Z(λ) (note
that s = m for colorings). Our goal is to find 1 = λ1 ≥ λ2 ≥ · · · ≥ λ` such that

5

Z(λi)/Z(λi+1) ≤ c (e. g., for colorings we took c = 2). The important property of
Z(λ) for colorings is Z(0) ≥ (k/e)n (i. e., Z(λ) has large constant coefficient). For some
applications it will not be possible to make the absolute coefficient large, instead we will
show that a coefficient aD of λD is large (for some small D). Finally, let γ be an upper
bound on Z(1)/aD. For colorings we can take γ = en. The γ measures how small λ
needs to get for Z(λ) to be within constant factor of Z(0). Now we present a general
algorithm in terms of parameters s, c, γ,D.

Algorithm for computing the cooling schedule λ, given parameters s, c, γ,
and D:

Set λ̂0 = 1, i = s and j = 0.
While λ̂j > 1/γ do

Set λ̂j+1 = c−1/iλ̂j .
If i > D + 1 and λ̂j+1 < (s/γ)1/(i−D),

Set λ̂j+1 = (s/γ)1/(i−D) and decrement i = i− 1.
Increment j = j + 1.

Set ` = j.

The following lemma estimates the number of intermediate temperatures in the above
cooling schedule, i.e., the length ` of the λ̂ sequence.

Lemma 2. Let c, γ > 0, D ≥ 0 and let λ̂0, . . . , λ̂` be the sequence computed by the above
algorithm. Then ` = O([(D +1) log(s−D)+ s/(s−D)] logc γ). If c and D are constants
independent of s, then ` = O(log s log γ).

We will prove the lemma in Section 2.5. Note that for colorings ` = O(n log n).
The following lemma shows that for the sequence of the λi the value of Z(λ) changes

by a factor ≤ c for consecutive λi and λi+1. We postpone the proof to Section 2.5.

Lemma 3. Let c, γ, D ≥ 0 and let Z1, . . . , Zq be a collection of polynomials of degree s.
Suppose that for every i ∈ [q], the polynomial Zi satisfies the following conditions:

i) Zi has non-negative coefficients,

ii) there exists d ≤ D such that the coefficient of xd in Zi is at least Zi(1)/γ.

Let λ̂0, λ̂1, . . . , λ̂` be the sequence constructed by the above algorithm. Then

Zi(λ̂j) ≤ cZi(λ̂j+1) for every i ∈ [q] and j ∈ [`].

6

2.4 Applying the Improved Cooling Schedule to Colorings

Before applying these general results to colorings, we quickly review how to approximate
the ratios αi in the telescoping product (1) (see [6] for details). We can approximate αi

using the following unbiased estimator. Let Xi ∼ πi denote a random labeling chosen
from the distribution πi defined by Z(λi), (i. e., the probability of a labeling σ is πi(σ) =
λi

M(σ)/Z(λi)). Let Yi = (λi+1/λi)M(Xi). Then Yi is an unbiased estimator for αi:

E (Yi) = EXi∼πi

(
(λi+1/λi)M(Xi)

)
=
∑

σ∈[k]V

(λi+1)M(σ)

Z(λi)
=

Z(λi+1)
Z(λi)

= αi. (3)

Assume that we have an algorithm for generating labelings X ′
i from a distribution that

is within variation distance ≤ ε/` of πi. We draw Θ(`/ε2) samples of X ′
i and take

the mean Y i of their corresponding estimators Y ′
i . Then the expected value of Y i is

E[Y i](1± ε/`) and the variance can be bounded as V [Y i] = O(ε2/`)E[Y i]2. Therefore,
by the Chebyshev’s inequality kn

∏`−1
i=0 Y i equals |Ω|(1± 2ε) with probability ≥ 3/4.

If the algorithm generates a sample X ′
i from a distribution within variation distance ≤

ε/` of πi in time T (ε/`), then the computation of kn
∏`−1

i=0 Y i takes time O(`2/ε2T (ε/`)).
Now we return to colorings, and conclude the final running time of the algorithm. Re-

call that ` = O(n log n). For k > 2∆, it is possible to generate a labeling within variation
distance ≤ ε′ of πi in time T (ε′) = k

k−2∆n log(n/ε′) [3, 6]. Hence one can approximate

|Ω| within a multiplicative factor 1±ε with probability ≥ 3/4 in O(k
k−2∆

n3 log2 n
ε2 ln(n/ε))

time. In contrast, for k > 2∆ using the standard counting to sampling reduction, Jer-
rum states a running time of O(k

k−2∆
nm2

ε2 ln(n/ε)) where m is the number of edges. For
k ≤ 2∆ results on mixing time are known for certain classes of graphs [5]. These are
proved for k-colorings, but most likely they can be extended to the non-zero temperature.

2.5 Proof of Lemmas 2 and 3

The rest of this section is devoted to the proof of Lemmas 2 and 3.

Proof of Lemma 2. We define intervals:

Is = [(s/γ)1/(s−D),∞),

for i = D + 2, . . . , s− 1,

Ii = [(s/γ)1/(i−D), (s/γ)1/(i+1−D)],

and finally,
ID+1 = (0, (s/γ)1/2)].

7

Let `i be the number of λ̂ values lying in the interval Ii. For i ∈ {D + 2, . . . , s− 1}
we have the estimate:

`i ≤ logc

(
[(s/γ)1/(i+1−D)]i

[(s/γ)1/(i−D)]i

)
≤ D + 1

i−D
logc γ.

Similarly,

`s ≤ logc

(
γ

[(s/γ)1/(s−D)]s

)
≤ 2s−D

s−D
logc γ,

and

`D+1 ≤ logc

(
[(s/γ)1/2]D+1

[1/γ]D+1

)
≤ D + 1

2
logc γ.

Putting it all together, we get the bound

` ≤
s∑

i=D+1

`i ≤
(

(D + 1)Hs−D +
2s−D

s−D
+

D + 1
2

)
logc γ,

where Hi =
∑i

j=1 1/j = O(log i) is the harmonic sum. Therefore

` = O([(D + 1) log(s−D) + s/(s−D)] logc γ).

The log-derivative of a function f is (log f)′ = f ′/f . The log-derivative measures how
quickly a function increases.

Definition 4. We say that a polynomial f is dominant over a polynomial g on an
interval I if f ′(x)/f(x) ≥ g′(x)/g(x) for every x ∈ I.

Lemma 5. Let f, g : I → R+ be two non-decreasing polynomials. If f dominates over
g on I, then f(y)/f(x) ≥ g(y)/g(x) for every x, y ∈ I, x ≤ y.

We partition the interval (0,∞) into subintervals ID+1, . . . , Is such that xi dominates
over every Z-polynomial on the interval Ii. The λ̂j in Ii will be such that xi decreases
by a factor c between consecutive λ̂. Therefore the Z-polynomials decrease by at most
a factor of c.

Lemma 6. Let g(x) =
∑s

j=0 ajx
j be a polynomial with non-negative coefficients. Then

xs dominates over g on the interval (0,∞).

Proof. It suffices to verify that (xs)′/xs ≥ g′(x)/g(x) for every x > 0.

8

Lemma 7. Let g(x) =
∑s

j=0 ajx
j be a polynomial with non-negative coefficients such

that g(1) ≤ γ and at least one of a0, a1, . . . , aD is ≥ 1. Then for any i ≥ D + 1 the
polynomial xi dominates g on the interval (0, (s/γ)1/(i+1−D)].

Proof. The logarithmic derivative of xi is i/x. Hence we need to prove that ig(x) ≥ xg′(x)
for x ≤ (s/γ)1/(i+1−D).

Let d be the smallest integer such that ad ≥ 1. From the assumptions of the lemma
d ≤ D. For x ≤ (s/γ)1/(i+1−D) the following holds

s∑
j=i+1

jajx
j−d ≤

s∑
j=i+1

sajx
j−D ≤

s∑
j=i+1

saj

(
s

γ

)(j−D)/(i+1−D)

≤
s∑

j=i+1

saj

(
s

γ

)
≤ 1.

Since i > d, for x ≤ (s/γ)1/(i+1−D) we have

xg′(x) =
i∑

j=0

jajx
j +

s∑
j=i+1

jajx
j ≤

i∑
j=d

jajx
j + adx

d ≤
i∑

j=d

iajx
j = ig(x).

Proof of Lemma 3. Let ID+1, . . . , Is be as in the proof of Lemma 2. Let Qq(λ) =
γZq(λ)/Zq(1). Notice that the Qq satisfy the conditions required of g by Lemma 7.
Therefore xi dominates over every Qq (and hence also Zq) on the interval Ii for i < s.
Moreover, Lemma 7 and Lemma 5 imply that xs dominates over every Qq (and hence
Zq) on the interval Is. Notice that if λ̂j , λ̂j+1 ∈ Ii, then cλ̂i

j+1 ≥ λ̂i
j (where inequality

happens only if λ̂j+1 = (s/γ)1/(i−D)). Therefore all of the Zq-polynomials decrease by a
factor at most c between consecutive values of λ̂.

3 Permanent Algorithm

Here we describe the simulated annealing algorithm for the permanent. We show the
application of our improved cooling schedule, and our improvement in the mixing time
bound for the Markov chain underlying the simulated annealing algorithm. We present
the new inequalities which are key to the improved mixing time result. This analysis is
more difficult than the earlier work of [8].

3.1 Preliminaries

Let G = (V1, V2, E) be a bipartite graph with |V1| = |V2| = n. We will let u ∼ v
denote the fact that (u, v) ∈ E. For u ∈ V1, v ∈ V2 we will have a positive real number
λ(u, v) called the activity of (u, v). If u ∼ v, λ(u, v) = 1 throughout the algorithm, and

9

otherwise, λ(u, v) starts at 1 and drops to 1/n! as the algorithm evolves. The activities
allow us to work on the complete graph on V1 and V2.

Let P denote the set of perfect matchings (recall that we are working on the complete
graph now), and let N (u, v) denote the set of near-perfect matchings with holes (or
unmatched vertices) at u and v. Similarly, let N (x, y, w, z) denote the set of matchings
that have holes only at the vertices x, y, w, z. Let Ni denote the set of matchings with
exactly i unmatched vertices. The set of states of the Markov chain is Ω = P ∪N2. For
any matching M , denote its activity as

λ(M) :=
∏

(u,v)∈M

λ(u, v).

For a set S of matchings, let λ(S) :=
∑

M∈S λ(M). For u ∈ V1, v ∈ V2 we will have a
positive real number w(u, v) called the weight of the hole pattern u, v. Given weights w,
the weight of a matching M ∈ Ω is

w(M) :=

{
λ(M)w(u, v) if M ∈ N (u, v), and
λ(M) if M ∈ P.

The weight of a set S of matchings is

w(S) :=
∑
M∈S

w(M).

For given activities, the ideal weights on hole patterns are the following:

w∗(u, v) =
λ(P)

λ(N (u, v))
(4)

Note that for the ideal weights all the N (u, v) and P have the same weight. Hence,
w∗(Ω) = (n2 + 1)λ(P).

For the purposes of the proof, we need to extend the weights to 4-hole matchings.
Let

w∗(x, y, w, z) =
λ(P)

λ(N (x, y, w, z))

and for M ∈ N (x, y, w, z), let

w∗(M) = λ(M)w∗(x, y, w, z).

10

3.2 Markov chain definition

At the heart of the algorithm lies a Markov chain MC, which was used in [8], and a slight
variant was used in [2, 7]. Let λ : V1 × V2 → R+ be the activities and w : V1 × V2 → R+

be the weights. The state space is Ω, the set of all perfect and near-perfect matchings
of the complete bipartite graph on V1, V2. The stationary distribution π is proportional
to w, i. e., π(M) = w(M)/Z where Z =

∑
M∈Ω w(M).

The transitions Mt →Mt+1 of the Markov chain MC are defined as follows:

1. If Mt ∈ P, choose an edge e uniformly at random from Mt. Set M ′ = Mt \ e.

2. If Mt ∈ N (u, v), choose vertex x uniformly at random from V1 ∪ V2.

(a) If x ∈ {u, v}, let M ′ = M ∪ (u, v).
(b) If x ∈ V2 and (w, x) ∈Mt, let M ′ = M ∪ (u, x) \ (y, x).
(c) If x ∈ V1 and (x, z) ∈Mt, let M ′ = M ∪ (x, v) \ (x, z).
(d) Otherwise, let M ′ = Mt.

3. With probability min{1, w(M ′)/w(Mt)}, set Mt+1 = M ′; otherwise, set Mt+1 =
Mt.

Note, cases 1 and 2a move between perfect and near-perfect matchings, whereas cases
2b and 2c move between near-perfect matchings with different hole patterns.

The key technical theorem is that the Markov chain quickly converges to the sta-
tionary distribution π if the weights w are close to the ideal weights w∗. The mixing
time τ(δ) is the time needed for the chain to be within variation distance δ from the
stationary distribution.

Theorem 8. Assuming the weight function w satisfies inequality

w∗(u, v)/2 ≤ w(u, v) ≤ 2w∗(u, v) (5)

for every (u, v) ∈ V1 × V2 with M(u, v) 6= 0, then the mixing time of the Markov chain
MC is bounded above by τ(δ) = O(n4(ln(1/π(M)) + log δ−1)).

This theorem improves the mixing time bound by O(n2) over the corresponding result
in [8]. The theorem will be proved in Section 6.

3.3 Bootstrapping Ideal Weights

We will run the chain with weights w close to w∗, and then we can use samples from
the stationary distribution to redefine w so that they are arbitrarily close to w∗. For the
Markov chain run with weights w, note that

π(N (u, v)) =
w(u, v)λ(N (u, v))

Z
=

w(u, v)λ(P)
Zw∗(u, v)

= π(P)
w(u, v)
w∗(u, v)

11

Rearranging, we have

w∗(u, v) =
π(P)

π(N (u, v))
w(u, v) (6)

Given weights w which are a rough approximation to w∗, identity (6) implies an easy
method to recalibrate weights w to an arbitrarily close approximation to w∗. We gener-
ate many samples from the stationary distribution, and observe the number of perfect
matchings in our samples versus the number of near-perfect matchings with holes u, v.
By generating sufficiently many samples, we can estimate π(P)/π(N (u, v)) within an ar-
bitrarily close factor, and hence we can estimate w∗(u, v) (via (6)) within an arbitrarily
close factor.

More precisely, recall that for w = w∗, the stationary distribution of the chain sat-
isfies π(N (u, v)) = 1/(n2 + 1). For weights w that are within a factor of 2 of the
ideal weights w∗, it follows that π(N (u, v)) ≥ 1/4(n2 + 1). Then, by Chernoff bounds,
O(n2 log(1/η̂)) samples of the stationary distribution of the chain suffice to approximate
π(P)/π(N (u, v)) within a factor

√
2 with probability ≥ 1− η̂. Thus, by (6) we can also

approximate w∗ within a factor
√

2 with the same bounds.
Theorem 8 (with δ = O(1/n2)) implies that O(n4 log n) time is needed to generate

each sample. To be precise this requires the use of “warm start” samples. We refer the
reader to [8] for details of this aspect.

3.4 Simulated Annealing with New Cooling Schedule

In this section we present an O∗(n7) algorithm for estimating the ideal weights w∗. The
algorithm will be used in Section 8 to approximate the permanent of a 0-1 matrix. The
algorithm can be generalized to compute the permanent of general non-negative matrices,
the necessary modifications are described in Section 9.

The algorithm runs in phases, each characterized by a parameter λ̂. In every phase,

λ(e) =

{
1 for e ∈ E

λ̂ for e 6∈ E
(7)

We start with λ̂ = 1 and slowly decrease λ̂ until it reaches its target value 1/n!.
At the start of each phase we have a set of weights within a factor 2 of the ideal

weights, for all u, v, with high probability. Applying Theorem 8 we generate many
samples from the stationary distribution. Using these samples and (6), we refine the
weights to within a factor

√
2 of the ideal weights:

w∗(u, v)√
2
≤ w(u, v) ≤

√
2w∗(u, v) (8)

12

This allows us to decrease λ̂ so that the current estimates of the ideal weights for λ̂i are
within a factor 2 of the ideal weights for λ̂i+1.

In [8], O(n2 log n) phases are required. A straightforward way to achieve this is to
decrease λ̂ by a factor (1 − 1/3n) between phases. This ensures that the weight of any
matching changes by at most a factor (1− 1/3n)n ≤ exp(1/3) <

√
2.

We use only O(n log2 n) phases by progressively decreasing λ̂ by a larger amount per
phase. Initially we decrease λ̂ by a factor of roughly (1 − 1/3n) per phase, but during
the final phases we decrease λ̂ by a constant factor per phase.

Here is the pseudocode of our algorithm. The algorithm outputs w which is a 2-
approximation of the ideal weights w∗ with probability ≥ 1 − η. The quantities S and
T satisfy S = O(n2(log n + log η−1)) and T = O(n4 log n).

Algorithm for approximating ideal weights of 0-1 matrices:

Initialize λ̂ = 1 and i = n.
Initialize w(u, v)← n for all (u, v) ∈ V1 × V2.
While λ̂ > 1/n! do:

Take S samples from MC with parameters λ, w, using a warm start simulation
(i. e., inital matchings for the simulation are the final matchings from
the previous simulation). We use T steps of the MC per sample,
except for the first sample which needs O(Tn log n) steps.

Use the samples to obtain estimates w′(u, v) satisfying
condition (8), for all u, v. The algorithm fails
(i. e., (8) is not satisfied) with small probability.

Set λ̂ = 2−1/(2i)λ̂.
If i > 2 and λ̂ < (n− 1)!−1/(i−1),

Set λ̂ = (n− 1)!−1/(i−1) and decrement i = i− 1.
If λ̂ < 1/n!, set λ̂ = 1/n!.
Set w(u, v) = w′(u, v) for all u ∈ V1, v ∈ V2.

Output the final weights w(u, v).

By Lemma 2, the above algorithm consists of O(n log2 n) phases. This follows from
setting s = n, c =

√
2, γ = n!, and D = 1 (the choice of D becomes clear in Section 7). In

Section 7 we show that Lemma 3 implies that our weights at the start of each phase satisfy
(5) assuming that the estimates w′ satisfied condition (8) throughout the execution of
the algorithm. Therefore the total running time is O(STn log2 n) = O(n7 log4 n). In
Section 8 we show how to use the (constant factor) estimates of the ideal weights to
obtain a (1± ε)-approximation of the permanent.

13

4 Canonical Paths for Proving Theorem 8

We bound the mixing time by the canonical paths method. For (I, F) ∈ Ω× P, we will
define a canonical path from I to F , denoted, γ(I, F), which is of length ≤ n. The path
is along transitions of the Markov chain. We then bound the weighted sum of canonical
paths (or “flow”) through any transition. More precisely, for a transition T = M →M ′,
let

ρ(T) =
∑

(I,F)∈Ω×P:
T∈γ(I,F)

π(I)π(F)
π(M)P (M,M ′)

,

denote the congestion through the transition T , where P (M,M ′) denotes the probability
of the transition T . Let

ρ = max
T

ρ(T).

Then (see [16, 4]) for any initial state M0, the mixing time is bounded as

τM0(δ) ≤
7nρ

π(P)
(
lnπ(M0)−1 + ln δ−1

)
The factor 1/π(P) comes from restricting to F ∈ P, see Lemma 9 in [8]. When the
weights w satisfy (5), we have π(P) = Ω(1/n2). Thus, to prove Theorem 8 we need to
prove ρ(T) = O(n) for every transition T .

We define the canonical paths now, and defer the bound on the congestion to Section
6, after presenting some combinatorial lemmas in Section 5. We will assume that the
vertices of G are numbered. If I ∈ P, then I ⊕ F consists of even length cycles. Let
us assume that the cycles are numbered according to the smallest numbered vertex
contained in them. The path γ(I, F) “corrects” these cycles in order. Let v0, v1, . . . , v2k

be a cycle C, where v0 is the smallest numbered vertex in C and (v0, v1) ∈ I. The path
starts by unmatching edge (v0, v1) and successively interchanging edge (v2i−1, v2i) for
edge (v2i, v2i+1). Finally it adds edge (v2k−1, v2k) to the matching.

If I ∈ N (w, z), then there is an augmenting path from w to z in I⊕F . The canonical
path starts by augmenting I along this path by first exchanging edges and finally adding
the last edge. It then “corrects” the even cycles in order.

For a transition T = M → M ′, we need to bound the number of canonical paths
passing thru T . We partition these paths into 2n2 + 1 sets,

cpT = {(I, F) ∈ P × P : γ(I, F) 3 T} ,

And, for all w, z,

cpw,z
T = {(I, F) ∈ N (w, z)× P : γ(I, F) 3 T} .

14

5 Key Technical Lemmas

The following lemma contains the new combinatorial inequalities which are the key to
our improvement of O(n2) in Theorem 8. They will be used to analyze the congestion
through a transition. In [8] weaker inequalities were proved without the sum in the left-
hand side, and were a factor of 2 smaller in the right-hand side. The proof of Lemma
10 below improves on Lemma 7 in [8] by constructing more efficient mappings. We first
present our mappings in the simpler setting of Lemma 9 and later use them to prove
Lemma 10. Using these new inequalities to bound the congestion requires more work
than the analysis of [8].

Lemma 9. Let u,w ∈ V1, v, z ∈ V2 be distinct vertices. Then,

1. ∑
x,y:(u,y),(x,v)∈E

|N (u, v)||N (x, y)| ≤ 2|P|2.

2. ∑
x:(x,v)∈E

|N (u, v)||N (x, z)| ≤ 2|N (u, z)||P|.

3. ∑
x,y:(u,y),(v,x)∈E

|N (u, v)||N (x, y, w, z)| ≤ 2|N (w, z)||P|.

The basic intuition for the proofs of these inequalities is straightforward. For example
consider the first inequality. Take matchings M ∈ N (u, v),M ′ ∈ N (x, y). The set
M ∪M ′ ∪ (u, y) ∪ (v, x) consists of a set of alternating cycles. Hence, this set can be
broken into a pair of perfect matchings. One of the perfect matchings contains the
edge (u, y) and one matching contains the edge (v, x). Hence, given the pair of perfect
matchings, we can deduce the original unmatched vertices (by guessing which of the two
edges incident to u), and thereby reconstruct M and M ′. This outlines the approach for
proving Lemma 9.

Proof. 1. We will construct a one-to-one map:

f1 : N (u, v)×
⋃

x,y:(u,y),(v,x)∈E

N (x, y)→ P ×P × b,

where b is a bit, i.e., b is 0/1.
Let L0 ∈ N (u, v) and L1 ∈ ∪x,y:(u,y),(v,x)∈EN (x, y). In L0 ⊕ L1 the four vertices

u, v, x, y each have degree one, and the remaining vertices have degree zero or two. Hence
these four vertices are connected by two disjoint paths. Now there are three possibilities:

15

• If the paths are u to x and v to y, they must both be even.

• If the paths are u to v and x to y, they must both be odd.

• The third possibility, u to y and v to x is ruled out since such paths start with
an L0 edge and end with an L1 edge and hence must be even length; on the other
hand, they connect vertices across the bipartition and hence must be of odd length.

Now, the edges (u, y) and (v, x) are in neither matching, and so (L0⊕L1)∪{(u, y), (v, x)}
contains an even cycle, say C, containing (u, y) and (v, x). We will partition the edges of
L0 ∪L1 ∪{(u, y), (v, x)} into two perfect matchings as follows. Let M0 contain the edges
of L0 outside of C and alternate edges of C starting with edge (u, y). M1 will contain
the remaining edges. Bit b is set to 0 if (x, v) ∈M0 and to 1 otherwise. This defines the
map f1.

Next, we show that f1 is one-to-one. Let M0 and M1 be two perfect matchings and
b be a bit. If u and v are not in one cycle in M0 ⊕M1 then (M0,M1, b) is not mapped
onto by f1. Otherwise, let C be the common cycle containing u and v. Let y be the
vertex matched to u in M0. If b = 0, denote by x the vertex that is matched to v in
M0; else denote by x the vertex that is matched to v in M1. Let L0 contain the edges
of M0 outside C and let it contain the near-perfect matching in C that leaves u and
v unmatched. Let L1 contain the edges of M1 outside C and let it contain the near-
perfect matching in C that leaves x and y unmatched. It is easy to see that f1(L0, L1)
= (M0,M1, b).

2. We will construct a one-to-one map:

f2 : N (u, v)×
⋃

x:(v,x)∈E

N (x, y)→ N (u, y)× P × b.

Let L0 ∈ N (u, v) and L1 ∈ ∪x:(v,x)∈EN (x, y). As before, u, v, x, y are connected by two
disjoint paths of the same parity in L0⊕L1 and (v, x) /∈ L0∪L1. Hence, L0∪L1∪{(v, x)}
contains an odd path from u to y, say P . Construct M0 ∈ N (u, y) by including all edges
of L0 not on P and alternate edges of P , leaving u, y unmatched. Let M1 ∈ P consist of
the remaining edges of L0 ∪ L1 ∪ {(v, x)}. Let b = 0 if (v, x) ∈ M0, and to 1 otherwise.
Clearly, path P appears in M0 ⊕M1, and as before, L0 and L1 can be retrieved from
(M0,M1, b).

3. We will construct a one-to-one map:

f3 : N (u, v)×
⋃

x,y:(u,y),(v,x)∈E

N (x, y, w, z)→ N (w, z)× P × b.

Let L0 ∈ N (u, v) and L1 ∈ ∪x,y:(u,y),(v,x)∈EN (x, y, w, z). Consider L0 ⊕ L1. There are
two cases. If there are two paths connecting the four vertices u, v, x, y (and a separate

16

path connecting w and z), then the mapping follows using the construction given in 1.
Otherwise, by parity considerations the only possibilities are:

• u to w and v to y even paths and x to z odd path

• u to x and v to z even paths and w to y odd path

• u to w and v to z even paths and x to y odd path

• u to v, x to z, and w to y odd paths

Now, L0 ∪ L1 ∪ {(u, y), (v, x)} contains an odd path, say P , from w to z. Now, the
mapping follows using the construction given in 2.

The following lemma is an extension of the previous lemma, which serves as a warm-
up. This lemma is used to bound the congestion.

Lemma 10. Let u, w ∈ V1, v, z ∈ V2 be distinct vertices. Then,

1. ∑
x∈V1,y∈V2

λ(u, y)λ(x, v)λ(N (u, v))λ(N (x, y)) ≤ 2λ(P)2.

2. ∑
x∈V1

λ(x, v)λ(N (u, v))λ(N (x, z)) ≤ 2λ(N (u, z))λ(P).

3. ∑
x∈V1,y∈V2

λ(u, y)λ(x, v)λ(N (u, v))λ(N (x, y, w, z)) ≤ 2λ(N (w, z))λ(P).

Proof. We will use the mappings f1, f2, f3 constructed in Lemma 9. Observe that since
mapping f1 constructs matchings M0 and M1 using precisely the edges of L0, L1 and the
edges (u, y), (v, x), it satisfies

λ(u, y)λ(x, v)λ(L0)λ(L1) = λ(M0)λ(M1).

Summing over all pairs of matchings in

N (u, v)×
⋃

x,y:(u,y),(v,x)∈E

N (x, y)

we get the first inequality. The other two inequalities follow in a similar way using
mappings f2 and f3.

17

6 Bounding Congestion: Proof of Theorem 8

We bound the congestion separately for transitions which move between near-perfect
matchings (Cases 2b and 2c), and transitions which move between a perfect and near-
perfect matching. Our goal for this section will be to prove for every transition T =
M →M ′, ∑

(I,F)∈Ω×P:
T∈γ(I,F)

w∗(I)w∗(F)
w∗(M)

= O(w∗(Ω)). (9)

At the end of the section we will prove that this easily implies the desired bound on the
congestion.

The following lemma converts into a more manageable form, the weighted sum of
I, F pairs which contain a transition of the first type.

Lemma 11. Let T = M →M ′ be a transition which moves between near-perfect match-
ings (i.e., Case 2b or 2c). Let M ∈ N (u, v),M ′ ∈ N (u, v′), u ∈ V1, v, v′ ∈ V2, and
M ′ = M \ (v′, x) ∪ (v, x) for some x ∈ V1. Then, the following hold:

1. ∑
(I,F)∈cpT

λ(I)λ(F) ≤
∑
y∈V2

λ(N (x, y))λ(u, y)λ(x, v)λ(M)

2. For all z ∈ V2, ∑
(I,F)∈cpu,z

T

λ(I)λ(F) ≤ λ(N (x, z))λ(v, x)λ(M)

3. For all w ∈ V1, w 6= u and z ∈ V2, z 6= v, v′,∑
(I,F)∈cpw,z

T

λ(I)λ(F) ≤
∑
y∈V2

λ(N (w, z, x, y))λ(u, y)λ(v, x)λ(M)

Proof. 1. We will first construct a one-to-one map

ηT : cpT →
⋃

x,y:(u,y),(v,x)∈E

N (x, y).

Let I, F ∈ P and (I, F) ∈ cpT . Let S be the set of cycles in I ⊕ F . Order the cycles
in S using the convention given in Section 4. Clearly, u, v, x lie on a common cycle, say
C ∈ S, in I⊕F . Since T lies on the canonical path from I to F , M has already corrected
cycles before C and not yet corrected cycles after C in S. Let y be a neighbor of u on C.
Define M ′′ ∈ N (x, y) to be the near-perfect matching that picks edges as follows: outside

18

C, it picks edges (I ∪ F)−M , and on C it picks the near perfect-matching leaving x, y
unmatched. Define ηT (I, F) = M ′′.

Clearly, (M ⊕ M ′′) ∪ {(u, v), (x, y)} consists of the cycles in S, and I and F can
be retrieved from M,M ′′ by considering the order defined on S. This proves that the
map constructed is one-to-one. Since the union of edges in I and F equals the edges in
M ∪M ′′ ∪ {(u, v), (x, y)},

λ(I)λ(F) = λ(M)λ(M ′′)λ(u, y)λ(x, v).

Summing over all (I, F) ∈ cpT we get the first inequality.

2. For all z ∈ V2, we will first construct a one-to-one map

ηu,z
T : cpu,z

T → N (x, z).

Let I ∈ N (u, z), F ∈ P and (I, F) ∈ cpu,z
T . Let S be the set of cycles and P be the

augmenting path from u to z in I ⊕F . Clearly, v, x lie on P . M has “corrected” part of
the path P and none of the cycles in S. It contains the edges of I from z to v and the
edges of F from x to u. Also, it contains the edges of I from the cycles in S, as well as
the edges in I ∩ F .

Construct matching M ′′ ∈ N (x, z) as follows. It contains the edges of F from the
cycles in S, the edges I ∩ F and (P − {(x, v)} −M). Define ηu,z

T (I, F) = M ′′. It is easy
to see that M ∪M ′′ = I ∪ F ∪ {(x, v)}. Therefore,

λ(I)λ(F) = λ(M)λ(M ′′)λ(x, v).

Furthermore, I, F can be retrieved from M,M ′′. Hence, summing over all (I, F) ∈ cpu,z
T

we get the second inequality.

3. For all w ∈ V1, w 6= u and z ∈ V2, z 6= v, v′, we will first construct a one-to-one
map

ηw,z
T : cpw,z

T →
⋃

y:u∼y

N (w, z, x, y).

Let I ∈ N (w, z), F ∈ P and (I, F) ∈ cpw,z
T . Let S be the set of cycles and P be the

augmenting path from w to z in I ⊕ F . Clearly, u, v, x lie on a common cycle, say
C ∈ S, in I ⊕F . and M has already “corrected” P and so looks like F on P . Construct
M ′′ ∈ N (w, z, x, y) as follows. On P , it looks like I. Outside P ∪ C, it picks edges
(I∪F)−M , and on C it picks the near perfect-matching leaving x, y unmatched. Define
ηw,z

T (I, F) = M ′′. It is easy to see that M ∪M ′′ = I ∪ F ∪ {(u, y), (x, v)}. Therefore,

λ(I)λ(F) = λ(M)λ(M ′′)λ(u, y)λ(x, v).

Furthermore, I, F can be retrieved from M,M ′′. Hence, summing over all (I, F) ∈ cpw,z
T

we get the third inequality.

19

We now prove (9) for the first type of transitions. The proof applies Lemma 11 and
then Lemma 10. We break the statement of (9) into two cases depending on whether I
is a perfect matching or a near-perfect matching.

Lemma 12. For a transition T = M →M ′ which moves between near-perfect matchings
(i.e., Case 2b or 2c), the congestion from (I, F) ∈ P × P is bounded as∑

(I,F)∈cpT

w∗(I)w∗(F)
w∗(M)

≤ 2w∗(Ω)
n2

(10)

And, the congestion from (I, F) ∈ N2 × P is bounded as∑
w∈V1,z∈V2

∑
(I,F)∈cpw,z

T

w∗(I)w∗(F)
w∗(M)

≤ 3w∗(Ω) (11)

Proof. The transition T is sliding an edge, let x denote the pivot vertex, let M ∈
N (u, v),M ′ ∈ N (u, v′), u ∈ V1, v, v′ ∈ V2. Thus, M ′ = M \ (v′, x) ∪ (v, x) for some
x ∈ V1. The encodings from Lemma 11 will always contain x as a hole.

We begin with the proof of (10).∑
(I,F)∈cpT

w∗(I)w∗(F)
w∗(M)

=
∑

(I,F)∈cpT

λ(I)λ(F)
λ(N (u, v))
λ(M)λ(P)

≤
∑
y∈V2

λ(N (x, y))λ(u, y)λ(x, v)λ(N (u, v))
λ(P)

by Lemma 11

≤ 2λ(P) by Lemma 10

=
2w∗(Ω)
n2 + 1

This completes the proof of (10). We now prove (11) in two parts. This first bound
covers the congestion due to the first part of the canonical paths from a near-perfect
matching to a perfect matching – unwinding the augmenting path. The second bound
covers the second part of these canonical paths when we unwind the alternating cycle(s).
During the unwinding of the augmenting path, one of the holes of the transition is the
same as one of the holes of the initial near-perfect matching. This is what characterizes

20

the first versus the second part of the canonical path.∑
z∈V2

∑
(I,F)∈cpu,z

T

w∗(I)w∗(F)
w∗(M)

=
∑
z∈V2

∑
(I,F)∈cpu,z

T

λ(I)λ(F)
λ(N (u, v))

λ(M)λ(N (u, z))

≤
∑
z∈V2

λ(N (x, z))λ(v, x)λ(N (u, v))
λ(N (u, z))

by Lemma 11

≤
∑
z∈V2

2λ(P) by Lemma 10

=
2n

n2 + 1
w∗(Ω)

≤ w∗(Ω)

Finally, bounding the congestion from the unwinding of the alternating cycle(s) on
canonical paths from near-perfect matchings to perfect matchings,∑

w∈V1,z∈V2:
w 6=u

∑
(I,F)∈cpw,z

T

w∗(I)w∗(F)
w∗(M)

=
∑

w∈V1,z∈V2:
w 6=u

∑
(I,F)∈cpw,z

T

λ(I)λ(F)
λ(N (u, v))

λ(M)λ(N (w, z))

≤
∑

w∈V1,z∈V2:
w 6=u

∑
y∈V2

λ(N (w, z, x, y))λ(u, y)λ(v, x)λ(N (u, v))
λ(N (w, z))

by Lemma 11

≤
∑

w∈V1,z∈V2:
w 6=u

2λ(P) by Lemma 10

≤ 2w∗(Ω)

We now follow the same approach as Lemmas 11 and 12 to prove (9) for transitions
moving between a perfect and near-perfect matching. The proofs in this case are easier.

Lemma 13. For a transition T = M →M ′ which adds or subtracts an edge (i.e., Case
1 or 2a), let N denote the near-perfect matching of M and M ′. Then,∑

(I,F)∈cpT

λ(I)λ(F) ≤ λ(P)λ(u, v)λ(N).

21

And, for all w ∈ V1, z ∈ V2,∑
(I,F)∈cpw,z

T

λ(I)λ(F) ≤ λ(N (w, z))λ(u, v)λ(N).

Proof. Let P denote the perfect matching of M and M ′. Define η = ηw,z
T : cpw,z

T →
N (w, z) as

η(I, F) = I ∪ F \ P.

The mapping satisfies λ(I)λ(F) = λ(P)λ(η(I, F)). Note, λ(P) = λ(N)λ(u, v). Since the
mapping is one-to-one, summing over all N ′ ∈ N (w, z) proves the lemma for all w, z.
The proof is identical for cpT with the observation that when I ∈ P, we have I ∪ F \ P
is in P.

Lemma 14. For a transition T = M →M ′ which adds or subtracts an edge (i.e., Case
1 or 2a), the congestion from (I, F) ∈ Ω× P is bounded as∑

w,z

∑
(I,F)∈cpw,z

T

w∗(I)w∗(F)
w∗(M)

≤ w∗(Ω) (12)

∑
(I,F)∈cpT

w∗(I)w∗(F)
w∗(M)

≤ w∗(Ω)
n2

(13)

Proof. Let M ∈ N (u, v) and M ′ ∈ P, thus the transition adds the edge (u, v). The proof
for the transition which subtracts the edge will be analogous. The proof is a simplified
version of Lemma 12, since the encoding is simpler in this case (see Lemma 13 versus
Lemma 11).

Observe that for any x, y,

λ(x, y)λ(N (x, y)) ≤ λ(P) (14)

We begin with the proof of (12).∑
w,z

∑
(I,F)∈cpw,z

T

w∗(I)w∗(F)
w∗(M)

=
∑
w,z

∑
(I,F)∈cpw,z

T

λ(I)λ(F)
λ(N (u, v))

λ(M)λ(N (w, z))

≤
∑
w,z

λ(u, v)λ(N (u, v)) by Lemma 13

≤ w∗(Ω) by (14)

22

We now prove (13).∑
(I,F)∈cpT

w∗(I)w∗(F)
w∗(M)

=
∑

(I,F)∈cpT

λ(I)λ(F)
λ(N (u, v))
λ(M)λ(P)

≤ 2λ(u, v)λ(N (u, v)) by Lemma 13
≤ λ(P) by (14)

Proof of Theorem 8. Inequality (5) implies for any set of matchings S ⊂ Ω, the station-
ary distribution π(S) under w is within a factor 4 of the distribution under w∗. Therefore,
to prove Theorem 8 it suffices to consider the stationary distribution with respect to w∗.
In other words, we need to prove, for every transition T , ρ(T) = O(n) where, for M ∈ Ω,
π(M) = w∗(M)/w∗(Ω). Then for weights satisfying (5) the congestion increases by at
most a constant factor. Thus, we need to prove∑

(I,F)∈Ω×P:
T∈γ(I,F)

w∗(I)w∗(F)
w∗(M)P (M,M ′)

= O(nw∗(Ω)).

Recall that the transitions Mt → Mt+1 of our Markov chain are according to the
Metropolis filter. From Mt, a new matching N is proposed with probability 1/4n, and
then the proposed new matching is accepted with probability min{1, w∗(N)/w∗(Mt)}.
Hence, for the transition T = M →M ′,

w∗(M)P (M,M ′) =
1
4n

min{w∗(M), w∗(M ′)}.

Since the chain is reversible for every transition T = M → M ′, there is a reverse
transition T ′ = M ′ → M . To prove Theorem 8, it suffices to prove that for every
transition T = M →M ′, ∑

(I,F)∈Ω×P:
T∈γ(I,F)

w∗(I)w∗(F)
w∗(M)

= O(w∗(Ω)). (15)

Lemmas 12 and 14 imply (15) which completes the proof of the Theorem.

7 Phases in the Permanent Algorithm

In this section we show that the choice of λ̂ from the weight-estimating algorithm ensures
that (5) is satisfied in each phase. Recall that we can obtain a refined estimate of the

23

ideal weights in each phase, see (8). We need to guarantee that the weights of two
consecutive phases do not differ too much. Namely, if they are within a

√
2 factor of

each other, together with (8) we have (5) for the next phase. As we will see shortly, for
our choice of activities the ideal weights w∗(u, v) are a ratio of two polynomials of degree
≤ n evaluated at λ̂. This observation will allow us to use Lemma 3.

Definition 15. We say that a matching M ∈ P of a complete bipartite graph covers k
edges of a graph G if the size of M ∩ E(G) is k. Let

RG(x) =
n∑

k=0

pkx
n−k,

where pk is the number of matchings in P covering k edges of G.

Note that the ideal weights w∗, defined by (4), for activities given by (7) can be
expressed as follows

w∗
λ̂
(u, v) =

RG(λ̂)

RG\{u,v}(λ̂)
. (16)

First we observe that every R-polynomial has a positive low-degree coefficient. In
particular, the coefficient of either x0 or x1 is positive in each of the polynomials RG,
RG\{u,v}, for every u ∈ V1, v ∈ V2. This follows from the fact that G contains a
perfect matching. Let M be a perfect matching of G. The existence of M implies that
the absolute coefficient in RG is positive. Similarly, if (u, v) ∈ M , then the absolute
coefficient in RG\{u,v} is positive because M \{(u, v)} is a perfect matching in G\{u, v}.
If (u, v) 6∈ M , let u′, resp. v′ be the vertices matched to u and v in M , and let M ′ =
M ∪{(v′, u′)}\{(u, u′), (v, v′)}. Depending on (v′, u′) being an edge in G, the cardinality
of M ′ is either n− 1 or n− 2. Therefore either the coefficient of x0 or x1 in RG\{u,v} is
positive.

Now we are ready to apply Lemma 3. Let c =
√

2, γ = n!, D = 1, s = n, Q1 = RG

and the polynomials Q2, . . . , Qn2+1 are the RG\{u,v} polynomials for u ∈ V1, v ∈ V2.
Let λ̂0, . . . , λ̂` be the sequence obtained from the algorithm in Section 2.3. Notice, that
we obtain the same sequence in the algorithm for estimating weights of the permanent.
Then

RG(λ̂k) ≥ RG(λ̂k+1) ≥ RG(λ̂k)/
√

2, and
RG\{u,v}(λ̂k) ≥ RG\{u,v}(λ̂k+1) ≥ RG\{u,v}(λ̂k)/

√
2 for every u, v.

(17)

To shorten the notation, we will use wk to denote wλ̂k
. Equations (16) and (17)

imply the w∗
k and w∗

k+1 are within a constant factor. Moreover if the weight-estimating
algorithm does not fail, i. e., the wk satisfy (8), then wk and wk+1 are within a constant
factor as well.

24

The following corollaries are used in Section 8 for approximating the permanent once
a good approximation of the ideal weights is obtained.

Corollary 16. For every u, v,

1√
2
w∗

k+1(u, v) ≤ w∗
k(u, v) ≤

√
2w∗

k+1(u, v). (18)

If the wk satisfy (8) then for every u, v,

1
2
√

2
wk+1(u, v) ≤ wk(u, v) ≤ 2

√
2wk+1(u, v). (19)

Note that
wk(Ω) = RG(λ̂k) +

∑
u,v

RG\{u,v}(λ̂k)wk(u, v).

Corollary 16 and (17) imply the following result.

Corollary 17. If the weight-estimating algorithm does not fail then

wk(Ω)
2
√

2
≤ wk+1(Ω) ≤ 2

√
2wk(Ω).

Let M ∈ Ω be a matching. Note that λ̂k+1 ≤ λ̂k and hence λk+1(M) ≤ λk(M).
For M ∈ P we have wk+1(M) ≤ wk(M). If M ∈ N (u, v) then, assuming that the
weight-estimating algorithm did not fail we have wk+1(M) = wk+1(u, v)λk+1(M) ≤
2
√

2wk(u, v)λk(M) = 2
√

2wk(M). Hence we have the following observation.

Corollary 18. Assume that the weight-estimating algorithm does not fail. Then for any
matching M ∈ Ω

wk+1(M) ≤ 2
√

2wk(M).

8 Reduction from Counting to Sampling

In this section we show how to approximate the permanent of a matrix once we have
good approximations of the ideal weights. For simplicity we consider the case of 0/1
matrix. The argument follows the argument of Section 5 from [8].

We want to estimate the number of perfect matchings |PG| in a bipartite graph G.
Let λ̂0 = 1 > λ̂1 > · · · > λ̂` = 1/n!, ` = O(n log2 n) be the sequence of λ̂ used in
the weight-estimating algorithm. Assume that the algorithm did not fail, i. e., the hole
weights w0, . . . , w` computed by the algorithm are within a factor of

√
2 from the ideal

weights w∗
0, . . . , w

∗
` . Recall that w0(Ω) = n!(n2+1). We can express |PG| as a telescoping

product:

25

|PG| =
|PG|

w`(Ω)
w`(Ω)

w`−1(Ω)
w`−1(Ω)
w`−2(Ω)

. . .
w1(Ω)
w0(Ω)

w0(Ω) = n!(n2 + 1)α∗
∏

0≤k<`

αk, (20)

where α∗ = |PG|/w`(Ω) and αk = wk+1(Ω)/wk(Ω). Note that corollary 17 implies
αk = Θ(1). The quantity w`(Ω) is within a constant factor of (n2 + 1)|PG| and hence
α∗ = Θ(1/n2).

Let Xk ∼ wk denote a random matching chosen from the distribution defined by wk,
i. e., the probability of a matching M is wk(M)/wk(Ω). Let Yk = wk+1(Xk)/wk(Xk).
Then Yk is an unbiased estimator for αk:

E (Yk) = EXk∼wk

(
wk+1(Xk)
wk(Xk)

)
=
∑
M∈Ω

wk(M)
wk(Ω)

wk+1(M)
wk(M)

=
wk+1(Ω)
wk(Ω)

= αk. (21)

For k = ` let Y` = 1X`∈PG
, where 1M∈PG

is the indicator function which takes value 1 if
M is a perfect matching of G, and 0 otherwise. Then Y` is an unbiased estimator for α∗:

E (Y`) = EX`∼w`
(1Xk∈PG

) =
∑
M∈Ω

w`(M)
w`(Ω)

1M∈PG
=
|PG|

w`(Ω)
= α∗. (22)

Corollary 18 implies that 0 ≤ Yk ≤ 2
√

2 and hence Var (Yk) = O(1). Thus the mean
Y k of Θ(`ε−2) samples of Yk has Var

(
Y k

)
= O(ε2/`). Therefore

E
(
Y

2
k

)
E
(
Y k

)2 = 1 +
Var

(
Y k

)
E
(
Y k

)2 = 1 + O(ε2/`),

since E
(
Y k

)
= E (Yk) = Θ(1).

Let Z =
∏`−1

k=0 Y k. We have

E
(
Z2
)

E (Z)2
= (1 + O(ε2/`))` = 1 + O(ε2),

and hence Var (Z)/(E (Z))2 = O(ε2). Thus by the Chebychev inequality Z is within a
factor 1± ε/6 from E (Z) =

∏`−1
k=0 αk with probability ≥ 11/12 for appropriately chosen

constants within the O notation.
Even though we cannot sample from wk exactly, it suffices to sample the Xk (and

hence Yk) from a distribution within variation distance O(ε/`) from wk. The expectation
of Z will be within factor 1±ε/6 from

∏`−1
k=0 αk and the above variance argument remains

unchanged.

26

Similarly to estimate α∗ it is enough to take the mean of O(n2ε−2) values of Y` with
X` from a distribution within variation distance O(ε) from w`. The result is an estimate
of α∗ within a factor of 1± ε/3 with probability at least 11/12.

Therefore, n!(n2 + 1)
∏`

k=0 Xk estimates |PG| within a factor of 1 ± ε with prob-
ability ≥ 5/6. The total running time of the reduction from counting to sampling is
O(`2/ε2n4 log n) = O(n6 log5 nε−2). See [8] for details.

9 Non-negative Matrices

A slight modification of our algorithm can be used to compute the permanent of a
matrix A = (ai,j)n×n with non-negative entries ai,j . Suppose per(A) > 0. (The question
per(A) = 0 can be decided in deterministic polynomial time by finding the maximum
matching in the corresponding weighted bipartite graph. The permanent is positive
if and only if there exists a matching of nonzero weight.) Let amax = maxi,j ai,j and
amin = mini,j:ai,j>0 ai,j . As before, we will have a uniform activity λ̂ which will decrease
from 1 to a value close to 0. The activity of an edge (u, v) is a function of x:

λu,v(x) =
au,v + x(amax − au,v)

amin

The activities and weights of matchings (of the underlying complete bipartite graph) are
defined analogously to the 0/1 case. Now the R-polynomials are:

RA(x) =
∑

M∈P

∏
(u,v)∈M

λu,v(x)

Notice that for the 0/1 case we get the RG polynomial. The weights are

w(u, v) =
RA(λ̂)

RA\{u,v}(λ̂)
,

where A\{u, v} is the (n−1)×(n−1) matrix obtained from A by removing the u-th row
and the v-th column. Since an

min ≤ per(A) ≤ an
maxn! we get that R(1) = per(A)/an

min ≤
(amax/amin)nn!. Moreover, since for au,v > 0 the activity λu,v(x) ≥ 1 for x = 0, the
absolute coefficient of RG is at least 1. By an argument analogous to the 0/1 case, either
the absolute coefficient or the coefficient of the linear term will be ≥ 1 in every RA\{u,v}.
Therefore, as before, we may use Lemma 2 and Lemma 3 to get the following algorithm
for estimating the weights (recall that S = O(n2(log n + log η−1)) and T = O(n4 log n)).

Algorithm for approximating ideal weights of non-negative matrices:

Initialize λ̂ := 1 and i := n.

27

Initialize w(u, v)← namax/amin for all (u, v) ∈ V1 × V2.
While λ̂ > (amin/amax)n/n! do:

Take S samples from MC with parameters λ, w, using a warm start simulation
(i. e., inital matchings for the simulation are the final matchings from
the previous simulation). We use T steps of the MC per sample,
except for the first sample which needs O(Tn log n) steps.

Use the samples to obtain estimates w′(u, v) satisfying
condition (8), for all u, v, with high probability.

Set λ̂ = 2−1/(2i)λ̂.
If i > 2 and λ̂ < ((amax/amin)n(n− 1)!)−1/(i−1),

Set λ̂ := ((amax/amin)n(n− 1)!)−1/(i−1) and decrement i by 1.
If λ̂ < (amin/amax)n/n!, set λ̂ := (amin/amax)n/n!.
Set w(u, v) := w′(u, v) for all u ∈ V1, v ∈ V2.

Output the final weights w(u, v).

The correctness of the algorithm follows from Lemma 3 for parameters s = n,
γ = (amax/amin)nn!, D = 1, and c =

√
2. By Lemma 2, we need O(n log n(log n +

log(amax/amin))) different values of λ̂. Therefore the running time of the algorithm is
O(ST (n log n(log n + log amax

amin
))) = O(n7 log3 n(log n + log amax

amin
)).

As discussed in [8], this can be converted to a strongly polynomial time algorithm for
approximating the permanent by first applying the algorithm of Linial, Samorodnitsky
and Wigderson [12], which converts our input matrix into a nearly doubly stochastic
matrix. See Section 7 of [8] for details.

10 Discussion

With the improvement in running time of the approximation algorithm for the per-
manent, computing permanents of n × n matrices with n ≈ 100 now appears feasible.
Further improvement in running time is an important open problem.

Some avenues for improvement are the following. We expect that the mixing time of
the underlying chain is better that O(n4). Some slack in the analysis is in the application
of the new inequalities to bound the congestion. In their application we simply use a
sum over y, whereas the inequalities hold for a sum over x and y as stated in Lemma 10.
Another direction is the number of samples needed per phase. It is possible that fewer
samples are needed at each intermediate activity for estimating the ideal weights w∗.
Perhaps the w∗ satisfy relations which allow for fewer samples to infer them.

28

References

[1] I. Bezáková, N. Bhatnagar, and E. Vigoda, Sampling Binary Contingency Tables
with a Greedy Start. To appear in Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2006.

[2] A. Z. Broder, How hard is it to marry at random? (On the approximation of
the permanent). In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), 1986, 50–58. Erratum in Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, 1988, p. 551.

[3] R. Bubley and M. Dyer, Path coupling: A technique for. proving rapid mixing in
Markov chains. In Proceedings of the 38th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 223–231, 1997.

[4] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains.
Annals of Applied Probability, 1: 36–61, 1991.

[5] T. Hayes, E. Vigoda, A Non-Markovian Coupling for Randomly Sampling Colorings.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 618–627, 2003.

[6] M. Jerrum, A Very Simple Algorithm for Estimating the Number of k-Colorings of
a Low-Degree Graph. Random Struct. Algorithms, 7(2):157–166, 1995.

[7] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM Journal on Com-
puting, 18:1149–1178, 1989.

[8] M.R. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation al-
gorithm for the permanent of a matrix with non-negative entries. Journal of the
Association for Computing Machinery, 51(4):671-697, 2004.

[9] A. Kalai and S. Vempala, Simulated Annealing for Convex Optimization, Preprint,
2004.

[10] P. W. Kasteleyn, The statistics of dimers on a lattice, I., The number of dimer
arrangements on a quadratic lattice, Physica, 27:1664-1672, 1961.

[11] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by Simulated
Annealing, Science, 220:671-680, 1983.

[12] N. Linial, A. Samorodnitsky and A. Wigderson, A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents, Combinatorica 20: 545–
568, 2000.

29

[13] L. Lovász and S. Vempala, Simulated Annealing in Convex Bodies and an O∗(n4)
Volume Algorithm. In Proceedings of the 44th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 650–659, 2003.

[14] P. McCullagh, On prediction and density estimation, Preprint, 2004.

[15] H. Pasula, S.J. Russell, M. Ostland, Y. Ritov, Tracking Many Objects with Many
Sensors, Sixteenth International Joint Conference on Artificial Intelligence (IJCAI),
1160–1171, 1999.

[16] A. Sinclair, Improved bounds for mixing rates of Markov chains and multicommodity
flow, Combinatorics, Probability and Computing, 1:351–370, 1992.

[17] L. G. Valiant, The complexity of computing the permanent, Theoretical Computer
Science, 8:189–201, 1979.

APPENDIX

11 A Lower Bound of the Number of k-colorings

We will use ab to denote a!/(a− b)!. Let G be a graph and for each vertex i of G let Li

be a list of colors. A valid list-coloring of G is a coloring such that each i has a color
from Li, and no two neighbors have the same color.

Lemma 19. Let G be a graph with n vertices. Let dj be the number of vertices of degree
j in G. Let s be an integer, s ≥ 1. Let L1, . . . , Ln be sets such that |Li| ≥ s + deg i for
each vertex i of G. Let Ω be the set of valid list-colorings of G. Then

|Ω| ≥
n∏

j=0

c
dj

j ,

where cj = ((s + j)j+1)1/(j+1).

Proof. We will use induction on d0 + · · · + dk. Let v be the vertex of minimum degree
`. We have |Lv| ≥ ` + s. Let j1, . . . , j` be the degrees of the neighbors of v. Note that
ji ≥ ` for i = 1, . . . , `.

By the induction hypothesis

|Ω| ≥ (` + s)

 n∏
j=0

c
dj

j

 1
c`

(∏̀
i=1

cji−1

cji

)
≥ (` + s)

 n∏
j=0

c
dj

j

 1
c`

(
c`−1

c`

)`

=
n∏

j=0

c
dj

j , (23)

30

where in the second inequality we used the inequality cj/cj+1 ≥ cj−1/cj , which we prove
next.

Let T = (s + j)j+1. We want to show

T 2/(j+1) ≥
(

T

s + j

)1/j

(T (s + j + 1))1/(j+2) .

After raising both sides to −j(j +1)(j +2)/2 and multiplying by T (j+1
2)+(j+2

2) we obtain
an equivalent inequality

T ≤ (s + j)(
j+2
2)

(s + j + 1)(
j+1
2)

. (24)

Using the inequality between arithmetic and geometric mean(
(s + j)j+1(s + j + 1)(

j+1
2)
)1/(j+2

2)
≤ s + j,

which implies (24). Therefore c2
j ≥ cj+1cj−1 and hence the induction step (23) is proved.

For k-colorings we obtain the following result.

Corollary 20. Let G be a graph with n vertices and maximum degree ∆. Let k > ∆.
Let Ω be the set of valid k-colorings of G. Then

|Ω| ≥
(
k∆+1

)n/(∆+1) ≥
(

k −∆
(

1− 1
e

))n

.

Proof. Let s = k −∆. The first inequality follows from Lemma 19 with the Li = [k].
The second inequality is equivalent to

(s + ∆)∆+1 ≥ (s + ∆/e)∆+1 . (25)

The inequality (25) is true for ∆ = 0 and hence from now on we assume ∆ ≥ 1.
We first show that (25) holds with strict inequality for s = 1. We want to show

n! > (1+(n−1)/e)n. The inequality n! >
√

2πn(n/e)n implies that it is enough to show
2πn ≥ ((n+ e−1)/n)2n, which (using 1+x ≤ ex) is implied by 2πn ≥ e2(e−1). Hence we
proved (25) for s = 1 and n ≥ 5. For n ≤ 4 and s = 1 the (strict version of) inequality
(25) is easily verified by hand.

Let f(s,∆) =
∑∆

i=0 ln s+i
s+∆/e . Inequality (25) is equivalent to f(s,∆) ≥ 0. From

previous paragraph we have
f(1,∆) > 0. (26)

31

We also have
lim

s→∞
f(s,∆) = 0. (27)

Note that

f ′(s,∆) =
∂f

∂s
(s,∆) =

1
s + ∆/e

∆∑
i=0

∆/e− i

s + i
.

From ∆(∆ + 1)/e < ∆(∆ + 1)/2 it follows that for every ∆ there exists s∆ such that

f ′(s,∆) < 0 for all s > s∆. (28)

Let g(s,∆, y) =
∑∆

i=0
y−i
s+i . We have g(s,∆, y) = 0 iff

y = y∆(s) =

(
∆∑

i=0

i

s + i

)
/

(
∆∑

i=0

1
s + i

)
.

We will show that y∆(s) is an increasing function of s. This will imply that the equation
∆/e = y∆(s) has at most one solution for any fixed ∆. Note that f ′(s,∆) = g(s,∆,∆/e).
Hence we will obtain that f ′(s,∆) = 0 has at most one solution for any fixed ∆. This
together with (26), (27), (28) implies f(s,∆) ≥ 0.

It remains to show
(∂y∆/∂s)(s) > 0. (29)

The sign of (∂y∆/∂s)(s) is the same as the sign of

h(s,∆) :=

(
∆∑

i=0

i

s + i

)(
∆∑

i=0

1
(s + i)2

)
−

(
∆∑

i=0

1
s + i

)(
∆∑

i=0

i

(s + i)2

)
.

For ∆ = 0 we have h(s,∆) = 0. To show (29) it is enough to show that for ∆ ≥ 1 the
following quantity is positive.

h′(s,∆) := h(s,∆)− h(s,∆− 1) =
1

s + ∆

(
∆∑

i=0

∆− i

(s + i)2

)
+

1
(s + ∆)2

(
∆∑

i=0

i−∆
s + i

)
.

For ∆ = 0 we have (s + ∆)2h′(s,∆) = 0. To show h′(s,∆) > 0 for ∆ ≥ 1 it is enough to
show that for ∆ ≥ 1 the following quantity is positive

h′′(s,∆) := (s + ∆)2h′(s,∆)− (s + ∆− 1)2h′(s,∆− 1) =
∆−1∑
i=0

2∆− 2i− 1
(s + i)2

.

We have that h′′(s,∆) is a sum of positive numbers and hence h′′(s,∆) > 0 for ∆ ≥ 1.
This implies h′(s,∆) > 0 for ∆ > 0 and this in turn implies h(s,∆) > 0 for ∆ ≥ 1. We
just proved (29) which was the only thing remaining to be proved.

32

