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Abstract

We characterize probabilities in Bayesian
networks in terms of algebraic expressions
called quasi-probabilities. = These are ar-
rived at by casting Bayesian networks as
noisy AND-OR-NOT networks, and view-
ing the subnetworks that lead to a node as
arguments for or against a node. Quasi-
probabilities are in a sense the “natural”
algebra of Bayesian networks: we can eas-
ily compute the marginal quasi-probability
of any node recursively, in a compact form;
and we can obtain the joint quasi-probability
of any set of nodes by multiplying their
marginals (using an idempotent product op-
erator). Quasi-probabilities are easily ma-
nipulated to improve the efficiency of prob-
abilistic inference. They also turn out to
be representable as square-wave pulse trains,
and joint and marginal distributions can be
computed by multiplication and complemen-
tation of pulse trains.

1 Introduction and preliminaries

The work reported here began as an attempt to in-
terpret Bayesian networks (henceforth BNs) as static
representations of arguments for or against the propo-
sitions denoted by the nodes. The hope was that such
a perspective would indicate how BN-style reasoning
could be “lifted” to first-order probabilistic reasoning.
Of course, there has been a sustained effort to amal-
gamate BN inference with first-order logic (e.g., Gold-
man & Charniak 1990, Wellman et al. 1992, Poole
1993, Haddawy 1994, Ngo & Haddawy 1996, Poole
1997, Jaeger 1997, Koller 1998, Cussens 1999, Kerst-
ing & de Raedt 2000, Pfeffer 2000, Pasula & Russell
2001, Poole 2003), but the proposed methods are typ-
ically limited to Horn logic (often function-free, and

often range-restricted) at least when reasoning proba-
bilistically, and BN-style inference is implemented by
explicit query-driven construction of BNs. What we
are seeking instead is a probabilistic logic whose infer-
ence methodology more closely resembles that of FOL:
facts and rules (in particular causal rules) should be
usable one at a time for forward and backward in-
ference. Probabilities or bounds on them would be
subject to revision (but convergent), with tacit use of
BN-like independence assumptions.

The results obtained so far fall short of that larger
goal, but they seem both theoretically interesting and
potentially useful. The interpretation of BNs as argu-
ment structures leads to a very natural algebraic char-
acterization of propositional probabilities in BNs. We
develop the basic properties of these algebraic “quasi-
probabilities” here, and also suggest various ways in
which they might be exploited for BN inference (e.g.,
diagnosis, plan projection, and SAT-solving). We will
also return briefly to the issue of first-order BN-like
inference at the end.

1.1 AND-OR-NOT Bayesian networks

We begin with the notion of a symbolically labelled,
noisy AND-OR-NOT Bayesian network (or an AND-
OR-NOT BN for short). Except for the roots, the
nodes of such a BN are interpreted as noisy AND,
OR, or NOT gates. A noisy AND node has 2 or more
parents, and we draw an arc across the incident links
to distinguish AND nodes from OR nodes. An AND
node can be true only if all its parents are true; and
the conditional probability that an AND node is true,
given that its parents are true, is signified by a label p
placed on the combined links from the parents to the
node. This label is either 1 or a distinct elementary
probability symbol. A noisy OR node is defined (as
usual) as being independently influenced by its par-
ents. Each parent, if true, has some probability p of
“causing” the OR node to be true, when all the other
parents are false; the label p, which may again be 1 or



a distinct elementary probability symbol, is placed on
the link from the parent. When multiple parents are
true, say those with link labels p1, pa, ..., pk, then the
(conditional) probability of truth of the OR node is

1 —(1—p)(1—p2).(1—pr)

We make the accountability assumption (Pearl 1988)
that an OR node is false whenever all its parents are
false.

We take all root nodes of an AND-OR-NOT BN as
having probability 1, for convenience. (Obviously, any
root R with nonunit probability r can be modelled
by adding a unit-probability root R’ and a single link
labelled r from R’ to R.) Finally, a noisy NOT node is
a single-parent node that is false whenever its parent
is true, and that has some probability p of being true
when its parent is false. The link from the parent is
drawn as an “inhibitory” link, with a small circle in
place of the arrowhead, and the label may again be 1
or a distinct elementary probability symbol. We also
use a compact notation that allows inhibitory links
to AND nodes and OR nodes. An AND node is true
with probability p (the joint link label) if its inhibitory
links come from false parents and its ordinary links
come from true parents (and is false otherwise). An
inhibitory link labelled p from a false parent to an OR
node affects that node exactly like an ordinary link
labelled p from a true parent. It is not hard to see
that inhibitory links to AND nodes and OR nodes can
be eliminated by introducing extra NOT nodes.

The quasi-probability characterization we develop be-
low for AND-OR-NOT BNs actually applies to all
boolean-valued BNs, since the latter are easily con-
verted to the former. This is illustrated for the case of
a 2-parent node in Fig. 1.

® (® P(C|AB)=p, P(C|AB)=g,
g P(C|AB)=r, P(C|AB)=s,

_— AND-nodes
(Exactly one will be true)

Figure1l. Mapping an arbitrary BN node
to an AND-OR-NOT network.

Note that we are introducing distinct atomic symbols
for each of the probability parameters (except those
= 0 or 1). The AND nodes have probability 1. The
transformation is easily generalized to nodes with in-
degree n. Essentially what we are doing is to convert a
conditional probability table of size 2™ into 2™ explicit
nodes. Of course, the elementary probability symbols

introduced by the transformation would ultimately be
instantiated to the given numerical values when we use
the BN for inference of numerical probabilities.

In preparation for the connection we will make be-
tween conventional representations of BN probabili-
ties and quasi-probabilities, we note the following re-
cursion equations for AND nodes and OR nodes (to-
gether with an arbitrary set of additional nodes) in an
arbitrary BN. Note that these characterizations of the
probability of truth make no reference to falsity of any
nodes.

Proposition 1 (P-recursion for AND). Let £ be a set
of nodes in a BN and let C' be a binary AND node
which is not in £ and has no descendants in £. Let
C’s parents be Ay, ..., A,, whose links to C are jointly
labelled r. Then

P(EC) = rP(EA;...Ay,).

Here P(EC) is the probability that all nodes in &
as well as the node C' are true, and analogously for

P(EA;..Ay).

Proposition 2 (P-recursion for OR). Let & be a set of
nodes in a BN and let D be an OR node which is not in
£ and has no descendants in £. Let the parents of D be
A1, ..., Ay (n > 1), whose links to D are respectively
labelled 71, ...,7,. Then

PED) = 3" odd()( [ ri)P(E{A}b—1).

beB, bi=1

where odd is a sign-function on bit-vectors b € B,, =
{by...bp|b1, ..., by, € {0,1}}\ {0...0}, such that for any
term 7, odd(b)T = 7 if >, b; is odd, and = —7 oth-

erwise.

The latter (less obvious) proposition can be proved by
induction on n, using a decomposition of a (k+ 1)-ary
OR node into a k-ary and a binary OR node in the
induction step.

1.2 From arguments to quasi-probabilities

At this point we take note of a curious “coincidence”
concerning probabilities in AND-OR-NOT BNs — one
that in fact led to the new characterization of proba-
bilities in such nets.

Consider the examples shown in Fig.2. In both net-
works, loops have been drawn around those portions
that can be viewed as (probabilistic) arguments for the
truth of the bottom node. In the BN on the left, we
can argue that A is true, hence B may be rendered
true, hence both C' and D may be rendered true, and
since E is an AND node, this may render E true. The
total probability of the argument is simply the prod-
uct of all the elementary probabilities it involves, i.e.,



pars.

P(F) = pars+qtu - (pgrs)«(qtu)

_ 2
P(E) = (pak(pr)s =p*ars - pares qtu - pgirety

Figure2. "Arguments' for the truth of nodes

However, if we take a more incremental view (argu-
ing in step-by-step logical fashion), we find that C has
probability pg and D has probability pr. If we then
try to take the final step by treating C' and D as in-
dependent, we naturally get the wrong result, p2qrs.
In fact, the interdependence of C' and D is evidenced
by the occurrence of p in both their probabilities — a
consequence of their common ancestry. But we can
“correct” for the error by collapsing higher powers of
p to p. In other words, we treat the multiplication op-
erator marked in the figure as “«” as idempotent (it is
analogous to logical A, e.g., pAGAPAT =DAgAT).

In the BN on the right, there are two possible argu-
ments for the truth of F, since F is a binary OR node.
In this case, we have indicated what would happen if
we treated the two arguments as independent. Since
their individual probabilities are clearly pgrs and qtu
respectively, we would arrive at the indicated noisy-
OR-like combination pgrs + qtu — (pgrs) = (gtu), and
again, by treating “«” as idempotent rather than ordi-
nary product, we can obtain the correct result in this
way. Algebraic probabilities like those just illustrated,
with an idempotent product operator, will shortly be
formalized as quasi-probabilities.

In fact it turns out that the probability of truth of any
set of nodes £ of an AND-OR BN can be expressed as

N*
PE)=1-[]0-p),

i=1

where p1, ..., py are the probabilities of the N distinct
arguments for the truth of £, expressed as products of
elementary probabilities. Crucially, the iterated prod-
uct on the right is based on the “x” operator, as indi-
cated by the superscript. The notion of an argument
for the truth of a node can also be extended to AND-
OR-NOT BNs, by simultaneously defining the notion
of an argument for the falsity of a node, but we set
this aside.!

IThe latter notion is not so simple, since for example
a single-parent OR node can be false either because the
parent is false, or because the influence of the parent failed
to have an effect, though the parent is true.

Although we make no explicit use of argument sub-
networks in what follows, the informal observations
we have made about combining probabilities of nodes
or node sets as if they were independent, while using
an idempotent product operator, provides the intuitive
basis for our formal development.

2 Quasi-probabilities (QPs) and BN
probabilities

We define quasi-probabilities below. They are much
like ordinary algebraic expressions based on +, unary
and binary —, and - (arithmetic product), except that
“x” takes the place of “”. We will term “«” the
weak product operator since it forms no powers of ele-
mentary probabilities. The prefix “quas?’ is intended
to suggest that quasi-probabilities cannot be directly
evaluated numerically, as long as some identical ele-
mentary probabilities occur on both sides of a weak
product operator.

Definition (abbreviated). The class of quasi-probabil-
ities (QPs) based on a set @ = {q1, ¢2, ...} of elemen-
tary probabilities (which we can always identify for our
purposes with the labels of a particular BN) consists
of the following expressions:

(a) 0, 1, or py1ps...px, where k > 1 and the p; are
distinct elementary probabilities;

(b) any expression (1 — 7) where 7 is a QP;

(c) any expression (71 * T2), where 71,75 are QPs;
(weak product);

(d) any expression 7[o] obtained from a QP T[p],
where [p] indicates an occurrence of a subexpres-
sion p somewhere in 7 and 7[o] is the result of
replacing that occurrence by o, and p and o are
related in one of 14 ways:

(i) (product reduction) if p is (p1...pk * q1.-.Ge),
where the p; and ¢; are elementary prob-
abilities, then ¢ = ri...r;,, where all r;
(1 < i < m) are distinct and {ry,...,rm}t =
{pla "'7pk} U {ql; ey QE},

(ii) (+— introduction) if p is of form (p; — p2)
then o = (p1 + (—p2));

(iii-xiv) the following informal enumeration of the
remaining allowable substitutions (used be-
cause of space limitations) should allow their
formal reconstruction: commutativity and
associativity of * and + (e.g., if p is of form
(p1 * p2) then o = (p2 * p1); *-distribution
over +; extraction of unary — out of a prod-
uct, its distribution over +, and — — elimina-
tion; and simplification of (p1 — p1), (0* p1),
(04 p1) and (1 % py) as expected (e.g., if p is
of form (p; — p1) then o = 0).



Definition. Two QPs o, 7 are equivalent, written as
o ~ 7, if they can be reduced to identical expres-
sions using the reduction operations in (d), along with
permutation of elementary probabilities occurring in
subexpressions that are simple QPs.?

Note that by definition every QP is equivalent to
one involving only 1— (subtraction from 1) and .
However, this form (which might be called negation-
conjunction form, because of the close correspondence
of 1— to negation and * to conjunction) is insufficiently
flexible for making the link to numerical BN probabil-
ities. For example, the QP [1 — p(1 — ¢)] * (1 — qr)
can be numerically evaluated in the equivalent form
1—gr—p(1—gq), where no atom occurs in both factors
of a product, but no such “decomposed” form exists
that involves only 1— and x.

We streamline our notation in the usual way by drop-
ping brackets where no ambiguity can result, under the
operator precedence ordering * > — > +, and the as-
sumption that extended sums and products are to be
read left-associatively. As already indicated, we use

*
[] for the iterated application of the weak product
*

operator * (and we take [[ # = 0).

Some noteworthy and useful properties of QPs are pro-
vided by the following three lemmas.

Lemma 1 (expansion lemma). If pq, ..., p, are QPs,
then
n

=Ta=r =Y odd) [T s
bi=1

i=1 beB,

where odd is defined as in Proposition 2. This can
be proved by induction on n, and does not depend
on the “product reduction” (idempotency) properties
of %, only on the properties it shares with ordinary
multiplication.

QPs are idempotent by definition at the level of el-
ementary probabilities (see defining property (d)(i)),
but actually turn out to be uniformly idempotent:

Lemma 2 (idempotency). For any QP 7, 7% 7 ~ 7.

This property of QPs (which can be proved by induc-
tion on the complexity of 7) is the key to their useful-
ness in characterizing probabilities in BNs.

Lemma 3 allows radical simplification of certain kinds
of products.

Lemma 3 (decoupling). Where p and p1, ..., p, are

2QPs form a semiring with +, %, 0, and 1. We do not
have closure under +, but note that we have closure under
1— (viewed as unary). * is idempotent by definition at the
level of elementary probabilities, but as will be seen, turns
out to be fully idempotent.

QPs,
"1-prp)=1—px[1-T] (1= 0.

n n
=1 i=1

(3

The proof is by induction on n and use of idempotency.

We now define the QP of a set of nodes in an AND-
OR-NOT BN, with the goal of showing that this QP is
correct, i.e., equivalent to the probability entailed by
the definition of such BNs. Essentially the definition is
by analogy with the AND-recursion and OR-recursion
equations of Propositions 1 and 2 — and indeed these
are the key (along with idempotency and other prop-
erties of QPs) to establishing correctness.

Definition. Given an AND-OR-NOT BN, the quasi-
probability of truth, P*(£), of a nonempty set of nodes
& of the BN is defined as follows:

o If £ is a set of roots, then P*(&) = 1.

o If £ = {C}, where C is a node with parents
Ay, ..., Ay, then P*(C) is determined as follows,
depending on the node type:

AND: P*(C) = p x P*(Aq,..., A,), where p is the
joint label of the links into C;

OR: P*(C)=1-— ﬁ*(l —p; * P*(Ai)), where p;

i=1
is the label of the link from A; to C, for 1 <
1 < ng
NOT: P*(C) = px(1—P*(A1)), where p is the label
of the (inhibitory) link from A; to C.

e Otherwise, for £ = {C1,...,Cp} (n > 1), P*(€) =
[ Pc).
i=1

P*(€) is well-defined since the definition determines it
uniquely (in terms of elementary probabilities in the
BN) apart from the ordering of weak product oper-
ations, but this ordering is immaterial in view of the
commutativity of *. The following is our central result.

Theorem 1. For any set of nodes £ of an AND-OR-
NOT BN (with & # 0), P*(&) ~ P(E).

Proof sketch. The proof uses induction on the maxi-
mal topological index among nodes of £, in a topolog-
ical sort of the network, and separately considers the
cases of a root node (which is the basis), AND node,
OR node, and NOT node. We will show the induction
step for AND and some glimpses of the induction step
for OR.

Let C be an AND node with parents A4, ..., A,,, whose
links to C' are jointly labelled r. Then



P*(EC) ~ P*(&)xP*(C) ~ P*(& )*r* P*(A;...A,)
~rxP*(EAy. Ay) ~rxP(EA;...Ay)
~rP(EA;...A,) = P(EC).

The first line uses the definition of P*; the second
does as well, and also uses the commutativity of “x”,
Lemma 2 (idempotency — required since some of the
A; may occur in &), and the induction assumption;
and the third line uses the fact that r does not occur
in P(£A;...A,,), and Proposition 1 (last step).

Let C be an OR node with parents A1, ..., A,, whose
links to C' are respectively labelled rq,...,7,. Then
some steps of the induction argument are as follows.

P*(EC) ~ P*(&)* P*(C) by definition
~ P*(S)*[l—H*(l—ri*P*(Ai))] by def2
~ 3" [odd(®)( T ri) * P (€4 A lb; = 1})]

beBy bi=1
~ 3" [odd()( [T r:) P(E{Ailb: = 1})]
beB, bi=1

= P(EC) by Proposition 4 (P-recursion for OR).

The third line is obtained by use of Lemma 1 (ex-
pansion), then commutativity of “x”, then the defini-
tion of P*, and then Lemma 2 (idempotency). The
fourth line is obtained by the induction assumption,
and the fact that the r; are distinct and do not occur
in P(E{A;|b; = 1}). We omit the induction step for
NOT nodes, which is straightforward. O

It is now easy to see as well how we can compute the
probability of any combination of truth values of a
subset of nodes of an AND-OR-NOT Bayes net, in
terms of QPs:

Corollary 1. Let {Ay,...,A,} (n > 1) be any subset
of nodes of an AND-OR-NOT BN and consider any
bit-vector b € B,,. Then

P({Ai}p,=1{Ai}p,=0) =
(TI Prean)« (T a - Pr(an)
b;=1 b; =0

This is easily proved by imagining each node A; with
b; = 0 to have an inhibitory link, with label 1, to a
fictitious NOT node.

Finally we note that the joint probability of any set
of nodes can be obtained simply as the weak prod-

uct of their marginals (we might call this “quasi-
independence” of all nodes):
Corollary 2. For any set of nodes & = {C4,...,Cp}

of an AND-OR-NOT BN,

Thus a conditional probability P(A;...A,|Cy...Ch),
where the 4; and C; are nodes (or negations of nodes),
is given by the conditioning formula

(C) P(A;..A,|Cy...Cp) ~
P*(Ay) x...x P*(Ay,) * P*(Ch) *
P*(Cy) * ... x P*(Cy)

It will become apparent from the discussion in the fol-
lowing section at what point the division indicated by
the horizontal bar can be carried out.

% P*(Cy)

3 Calculating with QPs

Computational properties of the new characterization
are largely a matter for further research, so the discus-
sion here is necessarily preliminary. We integrate some
comments on related work with this discussion. We
briefly consider, in turn, optimization of exact proba-
bility calculations in BNs, and a novel computational
approach based on square wave pulse trains.

3.1 Optimization of exact probability
calculations

Deriving numerical values from QPs requires that
we first confine occurrences of any term 7 (contain-
ing atomic elements other than 0 and 1) to at most
one factor of any weak product. For example, while
(I—p)*(1—q) can be rewritten as (1—p)(1—gq) and di-
rectly evaluated, (1—p)+*(1—pg) cannot, since p occurs
in both factors. Splitting this into (1 —p) — (1 —p) *pq
shows that it is equivalent to (1 —p), since (1 —p)*p ~
0.3

In general, *-elimination from a QP should be per-
formed so as to limit growth of the expression as much
as possible. Of course, we have to reckon with ex-
ponential growth in the worst case, since BN infer-
ence (and even approximation) is NP-hard (Cooper
1990, Dagum & Luby 1993). But, depending on the
structure of the network, we can often radically limit
the growth of the transformed QP. Note for instance
that for an AND-OR-NOT polytree, the marginal QP
of any node allows immediate replacement of all *-
occurrences by ordinary product. (Conditioning com-
plicates matters, but remains polynomial-time.*)

3However, note that in the conditioning formula (C)
we may be able to divide out certain QPs without full *-
elimination, viz., any subset of the P*(C}) terms sharing
no elementary probabilities with other such terms or the
P*(A;) terms.

‘Every P*(X) or (1—P*(X)) factored into the numera-
tor of (C) will either share no elementary probabilities with



The following are several rules that we can employ in
x-elimination. We will say that two QPs (or subexpres-
sions of QPs) are unrelated if none of the elementary
probabilities that occur in one (other than perhaps 0
or 1) occur in the other.

1. (Book-keeping) We can rewrite a weak product of
form o7, where o and 7 are unrelated, as o7.
Though we could leave the “«” in place, this rule
keeps track of the fact that the elementary prob-

abilities in o don’t occur elsewhere.

2. (Resolution) We can rewrite a weak product of
form o*7 as o*7[1/0], where [1/0] indicates the
substitution of 1 for all occurrences of ¢ in 7. This
useful equivalence is the direct result of idempo-
tency. By writing (1— o) in place of o, we also see
that (1 — o)1 can be rewritten as (1 — o)*7[0/0].

3. (Decoupling) We can apply Lemma 3 to rewrite a
product of form

(L—pxp1)*..x(1—p*p,) as
T=px[l—=(1—=p1)*x..x(1—py)l}

We also have an ordering rule for distributing “x
over sums/ differences, but omit it for brevity. We
have found these rules to be effective in various ex-
amples but have not yet developed them into an al-
gorithm (say, of the “greedy” variety). We would ex-
pect that the optimizations that could be obtained by
such an algorithm would be similar to those obtainable
by combinatorial optimization methods based on net-
work structure (e.g., Lauritzen & Spiegelhalter 1988,
Shachter et al. 1990, Jensen & Jensen 1994, Li &
D’Ambrosio 1994).

As a simple illustration of some of the rules, let us re-
turn to the right-hand network in Fig. 2, and compute
P(B|F) using (C). Applying the recursive definition
of QPs to node F, we obtain (with implicit use of rule
(1)

P*(F) ~ [1-(1-sP*(D))* (1 —uP*(E))]
[1—(1—rsP*(B)*P*(C))* (1 —utP*(C))]
[1— (1= pgrs) = (1 — qtu)].

By rule 3 applied to g in the two factors above,

P*(F) =~ 1—{1—¢q[l = (1—prs)(1 —tu)]}
~ ¢q[1 = (1 —prs)(1 —tu)].

R

—~

This provides the denominator in (C). The numerator
is then

P*(B)* P*(F) ~ pxq[l—(1—prs)(1—tu)]

~ pa[l — (1 —rs)(1 — tu)),
other factors, or where it does, the shared occurrences are
again embedded in terms of form P*(X) or (1 — P*(X));

likewise for the denominator. Thus rules (1) & (2) in this
subsection allow immediate simplification.

by rule (2) applied to p and the QP to the right of the
“x”. Thus (C) yields (dividing out the q)

p[l — (1 —rs)(1 — tu)]
(1= (1 —prs)(1 —tu)]’

which may now be evaluated numerically.

P(B|F) =

To provide a slightly more complex illustration that
also serves to introduce an application domain in-
teresting in its own right, we consider SAT-solving.
A more or less self-explanatory example is shown in
Fig.3. The QP of the formulas in the figure can be
written and reduced as follows. (Use of rule (1) is

implicit.)
The bottom node represents the formulas
{~pVaVr, p, ~qV~sVt, ~t, ~rVtV~u, ~rvVu}.
If s is added, the formulas become unsatisfiable
Figure3. Deciding satisfiability
PF) ~ [1-p(l—-q)A—=r)lxpx[l—qgs(l—1)]x
I=t)*«1—r(l—-t)u]*[1—rl—u)
~ p(I=1)[1 -1 —=q)(1—r)]*(1—gs)=x

(1—ru)*[1—7r(1l—u)
by (2), applied to p and (1 —t)
pI =1 —(1—q)(1—r)]*(L—gs)=*
{1—7r[1—(1—wu)*u]}
by (3) applied to the last 2 factors
p(L=t)1 =1 =g)(L—r)]*(1—gs)x
(1 —7)since ux (1 —u)=0 by (2)
~ p(l—t)(1-7r)[1-(1—g)]*(1—gs) by (2)
p(1 =) (L =7)g*(1—qgs)

pg(l —t)(1—=r)(1—s) by (2)

Since the final product contains only isolated occur-
rences of each of the variables, it is not identically 0
and hence the set of formulas is satisfiable. Further, a
satisfying assignment (in fact the only one) is one that
assigns truth to p and ¢ and falsity to r, s, and ¢. If we
had added, e.g., s to the set of formulas (as indicated
in the figure), the final product would have come to
pq(1 —t)(1 —r)s* (1 — s), which is identically 0.

Evidently, what we have here is a (sketchy) decision
procedure for SAT, and it will be interesting to inves-
tigate how it relates to other procedures such as DPLL
(Davis et al. 1962) and the DNNF-based method of
(Darwiche 2001). (One salient point is that our “reso-

12
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12



lution” rule (2) is related to the 1-literal rule and res-
olution rule in DPLL, and to “conditioning” in Dar-
wiche’s method.) The example also more generally
suggests a view of reasoning as manipulating symbolic
propositional probabilities, a point to which we will
return in the concluding discussion.

Readers familiar with Poole’s probabilistic Horn ab-
duction (PHA) (Poole 1993) may suspect a close con-
nection between QPs and sets of explanationsin PHA,
since explanations seem related to argument subnet-
works such as those in Fig. 2. However, the connection
turns out to be rather indirect in general. In PHA, the
parameters p, q, 7, ... would be treated as probabilities
of choice variables (root nodes), say P, @, R, ... respec-
tively. Explanations are irredundant, mutually exclu-
sive sets of choices that entail the data (node values)
to be explained. In the left-hand network of Fig. 2,
the unique explanation of the truth of E (in Poole’s
notation) would be [P, Q, R, S], with probability pgrs.
While in this case the correspondence to the (unique)
argument for the truth of F is close, in the right-
hand network we have six explanations for the truth
of F: [P,Q,R,S,T,U|, [P,Q,R,S,T|, [P,Q,T,U],
[P,R,Q,T,U], [P,R,S,Q,T,U],and [P,Q, R, S,T,U].
Hence the probability of E is calculated as pgrst(1 —
u)+pgrs(1—t)+(1—p)gtu+p(l—r)gtu+pr(l—s)gtu+
pqrstu. Naturally, this can be viewed as a QP equiv-
alent to the one obtained by our recursive definition,
viz., 1 — (1 —pqrs) * (1 —qtu) (if it could not, either the
QP calculus or PHA would be incorrect!) But what
distinguishes QP representations is their compactness
(in general, conversion of the marginal QP of a BN
node to a set of explanations is exponentially com-
plex), and the opportunities the QP algebra offers for
probability calculation by algebraic manipulation.

Finally, we note that among combinatorial optimiza-
tion approaches to BN inference, Darwiche’s differ-
ential approach (Darwiche 2003) seems particularly
closely related to one based on QPs. In fact, Dar-
wiche’s general polynomial for a BN, for any instan-
tiation of its “indicator” variables fixing the values of
some subset of nodes, yields a polynomial for the joint
probability of those values.® The difference from the
QP of those same values is that Darwiche’s polynomi-
als are by definition in a fully expanded form, essen-
tially a sum over instantiations of the complete joint
p.f. of the BN. But Darwiche builds an arithmetic cir-
cuit for his general polynomial, embedding the circuit
in a join tree to optimize its computational properties.
He then obtains joint probabilities by differentiation
and evaluation of the arithmetic circuit. From this

®Darwiche notes that Russell et al. (1995) and Castillo
et al. (1996, 1997) previously observed that such probabil-
ities are polynomials linear in each network parameter.

perspective, our rules for x-elimination listed above
can perhaps be viewed as ways to derive an efficient
arithmetic circuit for a particular joint probability.

3.2 DPulse trains and QPs

One intriguing possibility for computing probabilities
in BNs arises from the following simple observations
about square-wave pulse trains, where the height of a
wave at any time is 0 or 1.

First of all, note that the point-by-point product of a
pulse train o with itself is o; in other words, such pulse
trains are idempotent under point-by-point product.
Other analogies to QPs are also immediately apparent;
for example, o-(1—0) = 0, (where 1 and 0 denote uni-
form “waves” of height 1 and 0 respectively, and “” de-
notes the point-by-point product). Furthermore, the
point-by-point product of two “uncorrelated” square-
wave pulse trains has an area (per unit distance along
the horizontal axis) that is the product of the areas un-
der the two pulse trains. Given any pulse train with
fixed pulse spacing d and pulse width w < d, we can
ensure that it is not correlated with other pulse trains
by randomizing the position of each pulse over an in-
terval +d /2. To prevent the pulse from encroaching on
its neighbors, we use “wrap-around” within its length-
d local domain.®

Thus square-wave trains can be used to represent al-
gebraic QPs, while at the same time encoding a nu-
merical probability, via their area. Probabilities in
BNs can therefore be computed by assigning unre-
lated pulse trains with appropriate areas to all elemen-
tary probabilities, and then performing point-by-point
multiplications and complementations in a root-to-leaf
sweep that assigns pulse train representations to the
marginals of all nodes. For example, a pulse train en-
coding of the right-hand network in Fig.2 would be-
gin with an assignment of unrelated pulse trains to the
parameters p, ¢, 7, ..., with fractional areas equal to the
numerical values of these parameters. The pulse train
representations of the marginals for all non-root nodes
would then be computed in the following sequence
(where we now think of p,q,r, ..., P*(B), P*(C), etc.,
as pulse trains): P*(B):=p; P*(C):=q; P*(D):=r-
P*(B) - P*(C); P*(E):=t- P*(C); and P*(F):=1—
(1-s-P*(D))- (1 —u-P*(E)). Conditioning in ac-
cord with formula (C) can then be done in general
with some additional multiplications and complemen-
tations and a division. In our example, P(B|F') would
be computed by computing the product pulse train
P*(B)- P*(F), and dividing its area by the area of the
pulse train for P*(F).

The catch (to be expected for an NP-hard problem!)

5This technique was suggested by Tom Weingarten.



is that pulse train length may have to be exponential
in the size of the BN to obtain a fixed accuracy. We
are currently investigating anytime methods based on
pulse trains, employing approximations based on suc-
cessively longer pulse trains, in conjunction with tech-
niques for gaining accuracy at reduced expense.

4 Discussion

We hope to have established QPs as an inherently in-
teresting and potentially useful characterization of BN
probabilities. The most noteworthy feature is the sim-
ple way in which representations of joint probabilities
can be computed as weak products. Besides the com-
putational approaches sketched above, various further
techniques and potential applications based on QPs
readily suggest themselves, and we conclude by men-
tioning some of these possibilities.

One possibility is to exploit the fact that in many
Bayesian networks, many of the probabilities are small.
For example, in a network of diseases and findings in-
tended to enable diagnosis, the prior probabilities of
the diseases are generally very small, and the proba-
bility of findings that are atypical for a disease (condi-
tioned on the presence of that disease) are also small.
Keeping in mind that QPs encode polynomials in the
elementary probabilities, we should be able to formu-
late progressive approximation methods that initially
neglect higher-order terms in the x-elimination pro-
cess. We have found this quite feasible in hand-worked
examples.

We are also exploring methods of “boosting” certain
small probabilities as a means of gaining accuracy at
low cost in certain domains, such as diagnosis. For
example, suppose that we are trying to determine the
posterior probability P(D|E;...E,) for some disease
with low prior probability P(D) = p. Then since we
know that the numerator and denominator in condi-
tioning formula (C) are both linear in p, we can write
P(D|E;...Ey,) as (c1+c2p)/(ca+cap). So theoretically
if we can find values for the numerator and denom-
inator in (C) for any two values of p, we can solve
for ¢1,c¢o,c3,¢4 and hence compute P(D|E;...E,,) for
any value of p. Arguably, using two high values of
p (e.g., .5 and 1) will yield more accurate values of
the constants, and hence of P(D|E;...E,,), than work-
ing directly with a small value of p. This method can
also be extended to pairs of diseases (using 4 pairs of
boosted probabilities), triples (using 8 pairs), etc.

Another natural application would be projection in
probabilistic planning, i.e., determining the probabil-
ity that a particular plan (or plan segment) will have
certain desired effects. This lends itself naturally to
a BN approach (Wellman 1990). What is particularly

attractive about the use of QPs here is that they are
inherently “cumulative”, in a way that is well-adapted
to the incremental way in which plans are built up; i.e.,
the QP of an anticipated effect reflects the assumptions
(probabilistic “choices”, in the sense of Poole (1997))
that have contributed to its derivation. As new argu-
ments (e.g., plan segments to achieve preconditions of
actions) are added, the QP of an effect can be updated
(via weak products and complementations) to reflect
the assumptions in these new arguments as well.

Finally, let us return briefly to the quest for a first-
order probability logic in which BN-like inference is
performed in a rule-based manner, rather than by ex-
plicit BN construction. In principle, the cumulativity
of QPs should enable this style of inference. But can
we “lift” QP calculations to quantified predicate logic?
Our start would be Poole’s approach (cited above),
wherein the uncertainty of quantified noisy rules is
modelled via independent choice variables. (Note that
the elementary probabilities in an AND-OR-NOT BN
could all be attached to separate root nodes, mirror-
ing Poole’s perspective.) However, we also wish to
assign QPs to arbitrary quantified and logically com-
pound formulas, something not admitted in Poole’s
Horn logic framework (in contrast with logics that do
not rely on tacit BN-like independence assumptions
— see Halpern, 2003). This seems entirely feasible.
As was seen in the SAT example, assigning QPs to
logical compounds is just a special case of assigning
them to noisy versions of those compounds. And V, 3-
quantification can be handled by analogy with A and

V respectively, i.e., P*(Vz¢) = HzP* (¢), and P*(3z¢)

*
= [1-][,(1 = P*(¢))], where the products range over
assignments of domain elements to x.

Of course, we may ask where the P*(¢) come from.
There seem to be two cases: either P*(¢) (for a given
assignment to z) is determined by the QPs of other
propositions that comprise it or influence it; or it is
itself elementary (a choice variable). In principle we
can treat any set of logically independent propositions
(even complex ones) as elementary. We could use
names such as py(z) for them (note the dependence on
the free variables of ¢), and use them as elements of
the generalized QP algebra. Now, we may have partial
knowledge about the numerical values of these py(z),
but a general logic should be tolerant of ignorance —
even in BNs, we may only have bounds on root proba-
bilities and conditional probabilities. So the task will
be to develop ways of computing numerical bounds on
QPs, where these QPs are themselves evolving dynam-
ically as more and more knowledge is brought to bear.

But we note that (as in the SAT example) logical
truths (falsehoods) will receive QP ~ 1 (0) without any



knowledge of numerical probabilities. For example,
consider the contradictory sentences VxR(z), ~R(A).
Their joint QP is HZP*(R(;U))*[I—P*(R(A))], and this
is easily seen to be 0 by our “resolution” rule (2). This
raises the prospect of uniformly performing all reason-
ing, both probabilistic and deductive, by manipulation
of algebraic probabilities.
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