F;UAA g f111?. f’fz

ZICAL Tokyo, Aug. 20-23 1972

PROBLEMS WITH PARTS

Lenhart K. Schubert
Department of Computing Science
University of Alberta
Edmonton, Alberta T6G 2H1*

Abstract. Two problems in representing and using relationships among parts of objects are ana-
lysed, and partial solutions are proposed. The first is the problem of extracting information

fro= overlapping partitioning hierarchies. Contrary to a common assumption, "part -of" relation-
ships cannot be extracted from arbitrary sets of partitioning assertions by simple label-propa-
gation methods: the problem is in general ﬁ?—complete. However, if the lowest-level parts of all
entities under consideration are drawn from a common pool of pairwise disjoint "ultimate"™ parts,
then relatively simple, complete inference methods for deriving "part -of" and other relation-
ships can be supplied. The second problem is that of property inheritance, i.e., the transfer of
relztionships among parts of a generic cbject to corresponding parts of a successor of that object
in the type hierarchy. Earlier solutions are criticized and a new solution based on function tables

attached to concepts is proposed.

1, Intrcduction

¥uch of our knowledge of enduring relation-
ships {25 opposed to events) concerns relation-

ships z-cng parts of physical and abstract objects.

Yot part-whole relationships have until recently
recélvad scant attention in the AI literature,
comparszZ Ior example to generalization {IS~A)
relaticnships. Interest in parts structure has
been ccnfined almost exclusively to its role in
relaticnal models for computer vision (e.g.,
[1~51). Ecwever, the ability to reason about
parts was an important feature of Raphael's pro-
gram SIz[&). It was able to chain together both
particular and generic subpart relationships,

and to cecbine parts inference with subset in-
ferenc= to answer questions about (sets of) parts
of (sets of) individuals. The "slots" of Minsky's
frames [7] may facilitate the representation of
part-wihole relationships, among others, but do
not presuppose any particular thecry of such re-
lationships. To date, the most elaborate propo-
sals fsr representing and reasoning about parts
structure appear to be those of Philip Hayes
(8,93.

The work reported was done while the author
was on leave at Universitdt Karlsruhe, Institut
fir Informatik 1, W, Germany

778

The present paper addresses two problems in
the use of parts knowledge which people find tri-
vially easy but which have not been adequately
mechanized: the extraction of "part-of" relation-
ships (and disjointness relationships, etc.) from
overlapping parts hierarchies, and relation -
ship inheritance for parts of cbjects in a type
hierarchy.

Sec. 2 introduces a convenient representation
for sets of partitioning assertions, called
“parts graphs". Althoughbased or partitionings,
parts graphs can represent non-exhaustive and
overlapping decompositions of parts structure.

Sec. 3 notes that label-propagation methods
for extracting "part-of" (and other) relation-
ships from simple partitioning hierarchies do
not generalize to arbitrary parts graphs; the
problem is in general NP-complete. A restricted
type of parts graph, called "closed", is de-
fined, which reduces all parts of the top-level
object to a common set of pairwise disjoint ul-
timate (lowest-level) parts. For closed parts
graphs, efficient complete inference methods can
be supplied.

In Sec. 4 a relationship inheritance scheme
is proposed in which corresponding parts of con-
cepts in a type hierarchy are icentifiable by
the names of their Skolem functions. This over-
cones a difficulty with Hayes' (8,9]) property
inheritance scheme, without sacrificing any of
its advantages.



2, Parts graphs

~re follewing takes for granted a notion
of "part-of" which 1s at least a partial orde-
ring wish—the—awtenslen—psoporty (L all—pasts
for which there exists a unique empty part 8, a
dyadic "overlap” function [] (the largest entity
which is part of both arguments), an n-adic
"merge" functien U, n=2,3,... (the smallest
entity which has all of its arguments as parts),
and a &yadic "remairder" function ™~ (the part
of the first argument which is not part of the
second). These properties are stated formally
in--[10]. Bunt's [11] axiomatization of "part-
of" satisfies these constraints and leads to a
logically consistent generalization of Zermelo-
Fraenkel set theory. Thus the theories of “part-
of" and "subset-of" are closely related, and
much of what is saild here about the representa-

tion and use of parts knowledge also applies to
the recresentation and use of knowledge about set
inclusion relationships.

Peczle tend to conceptualize objects in terms

of pairwise disjoint, jointly exhaustive parts,
i.e., in terms of partitionings. For example,
the top level of a human parts hierarchy might
reasonzbly divide the human body x into a head
h, neck n, torso t, arms ata', and legs 1&l'.
Thus i< is natural to base computer representa-—
tions ¢f parts structure on a partioning rela-
tion P,! where (x P xi...xp] L£f

Arin Xy xj) =8} & [(U Kyeooky) = xl, 2
1€1<isz

Thus (7x) (Jhntaa'll*)(k humanl-
[fx P 4 n...1'Jefh headlaln neckls...&[l' legl.

It is important to notice that “part-of" is
expressible in terms of P. For example, (b part-
of al can be rewritten as [a P b ¢l, where c is
a previously unused constant denoting (~a b},
i.e., the (possibly empty) remainder of a with
respect to b. In general, arbitrary sets of
“"part-cf" assertions and disjointness assertions
can be converted to sets of partitioning
assertions. However, the conversion may intro-
duce parts wich are possibly empty, even if all
of the original parts are known to be nonempty.

leg. thne partitionings of Grossman [12) and “com-
plete splits" of Fahlman [13] for concept taxo-
nomies.

In the form of predicate calculus used here sen-
tential fcrmelas are in infix form and delimited
by square brackets (so that the second list ele-
ment is the predicator or operator) and function-
al expressions are in prefix form and delimited
by round brackets; e.g., (Vxy)[[x =(mother-of y)]
-+ [x femalell.

*ohere Yand N are mui‘ually distributive

779

Sets of partitioning assertions can be repre-
semted as “parts graphs" as illustrated in Fig.1.

system Support
| structure

P

1

2 {
shade Socket bulb ‘-‘CI' d switch

P,
cable Plug

Fig.1. Parts graph for a desk lamp. The nodes
marked "P" represent partitioning assertions
while the named nodes represent parts.

This shows two overlapping parts hierarchies for
a particular {(as opposed to generic) lamp, with
a "structural view" on the left and a "functio-
nal view"” on the right.

In the graphical representation, partitioning
assertions and particular parts are represented
as assertion nodes and constant nodes respecti-
vely. Assertion nodes are marked "P" and have
an incoming edge from the first argument of the
assertion and outgoing edges to the remaining
arguments., Such parts graphs are readily repre-
sented as semantic nets in the network formalism
of [14).

Hierarchies are distinguished from unrestricted
parts graphs by having exactly one downward edge
from each nonleaf parts nocde and a unique path
from the root to each parts node. As Fig.1 shows,
the available knowledge about an object need
not form a single hierarchy."Tangled” hierarchies
result when there are multiple views of the same

object, known overlap regions such as shoulders,

waist, or knees, or parts with unknown mutual
overlap.

3. Extracting information from parts graphs

A partitioning hierarchy has the important
advantage of allowing efficient inference of
part-of and disjointness relationships. In fact,
if a and b are any two nonempty parts appearing
in a hierarchy, then b is part of a iff a is an
ancestor of b, and 2 and b are disjoint iff
neither is an ancestor of the other,

For parts within a common subhierarchy of a

3Incidenta11y, these conditions can be checked in
constant time using a method based on left-to-
right numbering of the leaves, whereas the worst -
case complexity of label-propagation methods 1is
linear in the number of edges.




non-hierarchic parts graph the same methods can
be used. For example, in Fig.l the plug must be
part ¢f the electrlcal system since the latter
is an ancestor of the former in the "functional
view" of the lamp; the cord is disjoint from the
bulb sirce neither is an ancestor of the other
in the "structural view".

However, not all implicit part-of and dis-
jointnass relationships can be extracted in this
way. In Fig.1, the switch must be part of the
stand; in fact, the switch and support structure
must par-ition the stand, because the stand on
the ore hand and the switch plus support struc-
ture ca the other are the only nonoverlapping
parts of the two lamp hierarchies. Another
point wozth noting is that even without the

assertica [lanmp P stand top coxdl, it follows from

the grapa that “top” is part of the lamp, be-
cause all of its parts are.

One can devise additional inference methods
te har3'e these particular cases, but such stop-
gap ©Deasures are almost surely futile because
of the Zollowing result.

Theors= .. The problem of confirming [b part-of
E!' wrare a and b are nodes of a parts graph, is
NP-coDlste.

This is proved in [10] by mapping the unsatis-
fiabilitv problem of the propositional calculus
into & "part-of" problem for a parts graph, and
vice verza.

This suggests that additional constraints
shoulZ =e imposed on parts graphs so as to per-
mit eSsicient information extraction, while
still 2)lowing for overlap parts and multiple
views =7 the same part. Such constraints are
obtaines by reguiring parts graphs to be closed:
G is clzsed Liff any two of its parts nodes are
projectible into a common subhierarchy. R node
a is srciectible into a subhierarchy B if G con-
tains a subhierarchy rooted at a whose leaves
lie in 2. (Since a single parts node is a sub-
hierarchy, any parts node is trivially projecti-
ble i=t> any subhierarchy to which it belongs.
Hence 2nv two nodes of a subhierarchy H are pro-
jectitle into a common subhierarchy, viz.,H).

Fcr example, Lif the left and right views of
the lz—p in Fig.1 are called Hy, and Hp, then
"top" and "bulb" are projectible into Hy (be-
cause they belong to H )}, and "top" and "elec—
trical system" are projectible inte Hp (because
the leaves {lamp shade, socket, bulb} of a sub-
hierarchy rooted at "top", as well as "electri-
cal system", belong to Hy). However, neither
"stana" and "switch", nor "stand” and "support
structure” are projectible into any common sub-
hierarchy. Thus the graph is open, but could

780

easily be closed by addition of the assertion
[stand P switch support-structurel.

The notion of a closed graph becomes clearer
if parts graphs are required to be "fully con-
sistent” in the sense that none of the parts
they represent are necassarily empty. This rules
out graphs, for example, in which two disjoint
parts {distinct leaves of a single subhierarchy)
have a common descendant, or in which one "view"
of a part terminates in a proper subset of the
leaves of another "view" of that part.

It is proved in [10] that all leaf nodes
of a fully consistent, closed graph belong to a
single (not necessarily uwnique) main hierarchy
whose root represents the whole entity. All
nodes of the graph are projectible into this
main hierarchy. In such a graph, therefore, all
leaves are pairwise disjoint and each parts node
corresponds to 3 subset of the leaves. The graph
of Fig.l is now easily seen to be open, since
the leaf nodes "stand" and "switch", for example,
do not belong to any common subhierarchy.

Fig.2 shows a closed graph with a main hierar-
chy rooted at a, an overlap part b made up of
two parts occurring in the main hierarchy, and
two "views" of a part c.

° 7

A B

Fig. 2. A closed parts graph with an "overlap
part" b and two “"views" of a part ¢. The
darkened nodes represent the ultimate parts
of a.

Surprisingly, the syntactical restrictions
of closed graphs do not lead to any logical re-
strictions:

Theorem 2. For every parts graph there is a lo-

gically equivalent closed graph.

The proof and a procedure for constructing a
closed graph from a set of partitioning
assertions are given in [10). The sort of idea
involved is illustrated in Fig. 3. Admittedly, the
size of the equivalent closed graph may be ex-
ponential in the size of a given open graph.
However, this exponential growth is associated
with unknown and unrestricted overlap between
sets of parts, a situation which rarely, if



Fig. 3. An open graph and a logically
equivalent closed graph.

ever, occurs in our conception of real objects.

The fellowing methods are complete for ans-
wering questions of the form ?[b part-of al and
7{a disjoint-from bl in fully consistent, closed
graphs. Projecting a node a into a hierarchy H
means determining a set of nodes A = {al,...,am}
which lie in H and are the leaves of a subhierar-
chy with root a (if a already lies in H then
a = {ah.

Preliminary step: Project a and b into a common
subhierarchy H, obtaining respective projectiocns

A= {aj,...,ap} and B = {by,...B }.

To answer ?[b pert-of al: If every node with an
ancestor in B has an ancestor or descendant in A,
return "yes"; if some nodes with ancestors in B
have no ancestors and no descendants in A, and
the merge of these nodes is known to be non-
empty, return "no"; else return "unknown" (see
Fig.4)

To answer ?[la disjoint-from bl: If no a,€R has
an ancestor in B and no b,EB has an ancestor in
A, return "yes"; if some nodes in A have an an-
cestor in B and/or some nodes in B have an an-
cestor in A, and the merge of these nodes is

known to be nonempty, return "no”; else return

"upknown" (see Fig.5).
a
] ? 1:|1 !ﬂ
e : %57\
pl /1 g

/I\: S N % R
(a) & o ®)

Fig. 4. Answering7{b part-of al in a closed graph.
In {a) the answer is "yes" (Note that one part
of b has no ancestor in A, but is partitioned
into parts belonging to a). In (b} the answer
is "no" if the merge of the underlined nodes is
known to be nonempty, and "unknown"” otherwise.

781

a ﬁ) b (r b
. H ' H §
EALA 1 R P

I’I )b/\\q ’P \ P-"' #\) I\\
J'/E\;\(P A‘LK% é/\?of c/\b
(2) é"o v

Fig. 5. Answering ?{a disjoint-from bl in a closed
graph. In (a) the answer is "yes". In (b) the
answer is "no” if the merge of the underlined
nedes is known to be nonempty, and unknawn"
otherwise.

In {10] the completeness claim is made precise
and proved. It is assumed that the mexrge of a set
of nodes A = {ay,...,ay} is known to be nonempty
iff[(U ay...ay) ¥ ©) is a logical consequence of
the graph, the assumed properties of "part-of",
and a set of "nonemptiness assertions" of the form
[a § 8] about some of the nodes of the graph. It is
shown that the predicate “known to be nonempty" is
efficiently decidable when so defined. The given

question-answering methods are then shown to be im-

plementable in linear space-time relative to the

- number of edges of the closed graph. Heuristic

methods are discussed which can often give nearly

constant guestion-answering times for closed graphs.

Similar methods can be used to compute the
"disjolnt merge"™ of two parts, i.e., a set of dis-
joint parts whose merge equals the merge of the
given parts (retain elements of AUB which do neot
have ancestors in B), the overlap of two parts
(retain elements of A with ancestors in B and vice
versa), and other functions over tuples of parts.
Thus questions involving such functions could also
be answered.

Needless to say, reasoning about parts cannot
in general go very far on the basis of “"part-of”
predications or partitionings alone. In the case
of physical objects, for example, knowledge about
the mode of connection and relative position of
parts is indispensable. But the fact r:mains that
people cananswer questions such as "Is a toe part
of a leg?" or "Is a spark plug part of an automo-
bile engine?" with consummate ease. The proposed
methods may help to equlp machines with comparable
abilities.

One serious limitation of the proposals is that
they do not allow for disfjunctive parts xelation-
ships {even "alternative viewpoints" are logically
conjoined). A second is that only the structure of
particular objects has been considered, whereas
nuch human parts knowledge is generic. A third

.

et

i L BT

[




is that no provision has been made for avoiding
individ:z2! mention of multiple parts of the same
type, such as a centipede's legs or a human being's
neurons.

In [0} some extensions to generic graphs and
graphs containing representations of sets of parts
are skezzhed. The chief problem with generic graphs
is that they are dispersed over {(possibly over-
lapping) type hierarchies. For example, only ele-
phant-scecific partitioning assertions, such as
those subdividing the proboscis, would be associ-
ated dlrectly with the concept of an elephant.

Most of the remaining partitioning assertions,
such as that dividing the body into head, neck,
torso, tz2il, and limbs would be associated with
higher-level cencepts, such as that of a legged
animal. Assuming that the fragments form a closed
graph when brought together at corresponding nodes,
the guestion-answering methods of this section can
be adag:2@ to generic graphs. The main requirement
is the availability of methods for identifying
correspending nodes. This problem is discussed in
a more ceneral context in the next section.

The iatroduction of nodes representing sets of
parts irto parts graphs complicates both their
syntax znd use. Additional partitioning relations
are nesizd{e.qg., for partitioning an object into
a set of parts, and for partitioning the sets
themselvzs), and methods must be provided to deal
with more complicated questions, such as "Is
every leg part of some body segment?” Nevertheless,

to allcw Zor sets of parts, and linear or subli-
near mezhods can be provided for answering seve-
ral tyo:zs of questions for such graphs.

4. Progerty inheritance

w=2n one describes a type of objeck, such
as a rckin, in some representation system, one
would like many of its anatomical characteristics
to be "inharited" from the description of a super-
ordinats concept; for example, the position of the
beak on the head or of the wings on the body should
transfer smoothly from "bird" to "robin".

Hayes [3,9) has discussed two alternative net-
work meznods for facilitating property and re-
lations=ips inheritance from parts of more general
to parts oI less general kinds of objects. The
£irst =szncd involves connecting corresponding
parts with "binders" which then serve as inheri-
tance r2ths. The second method actually uses the
same ncias for corresponding parts of the two
kinds ¢ objects; however, the "depictions"4

4Essentizlly, a *depiction" is a list of assertions
which are specific to a particular (kind cf) ob-
ject, accessible via the name of that object.

782

for the two kind%of objects provide access to
different sets of propositions about the parts.
The latter proposal was adopted and given a logi-
cal interpretation in terms of shared variables
in [15). However, a serious flaw has become appa-
rent in this scheme. The telescoping of nodes,
carried all the way down to the level of instan-
ces, assigns all instances of a concept to a sin-
gle node, and similarly for corresponding parts
of those instances. As a result, relationships
between distinct instances or parts of distinct
instances, such as "Polly's beak is larger than
Tweety's" cannot be stated. Even abova the level
of instances, the sharing of nodes prevents ex-
pression of relational propositions such as "The
African elephant has larger ears than the Indian
elephant®, "Seagulls recognize each other by the
colouration of their eyelids", “Dogs hate cats"
{assuning "dog" and “cat" have a common superor-
dinate concept), "No two dollar bills have the
same serial number", etc.

The key to a logically respectable alternative
which avoids these difficulties lies in the use
of functions. For example, suppose that h is the
Skolen function determined by the statement "Every
higher animal has a head". Suppose further that
the head of the universally quantified robin y
has been identified with the value (h y} and si-
milarly, that the head of the universally gquanti-
fied bird x has been identified :ith the value
{h x). If other corresponding parts have been si-
milarly linked via their functional names, it is
clear that parts relationships can be trasferred
from parts of the bird to parts of the robin as
easily as the corresponding universally gquantified
variables can be matched and the function values
dependent on those variables located.

Locating values of functions can be made effi-
cient by attaching a "function table" to each node,
in which known values (nodes) of functions appli-
cable to that node are indexed by function name.
This scheme resembles Hayes' "binder" scheme, but
the correspondence between a part of a subordi-
nate concept and a part of a superordinate con-
cept several levels above it are establishedina
single, trivial matching operation, instead of a
geries of binder traversals. Some complicaticns
are described in [0], including these arising
from the presence of nodes representing sets of
parts, and from the application of a function at
different levels of a parts hierarchy (e.g.,
application of a "heart-of" function at the level
of the whole animal and at the level of the ani-
mal's chest).

Any system for representing parts correspon-
dences explicitly, whether it is based on shared
nodes, binders, or functional indexing, presuppo-
ses a method of establishing these correspondences
in the first place. Hand-coding such corresponden-




ces ought to be a temporary expedient, to be re-
placed eventually by a method of inferring and
representing them on the basis of arbitrary sets
of parts relatjionships such as might be obtaineéd
from natural language input. To see the problem
and an approach to a solution, suppose that a na-
tural language system is told for the first time
that "aA bird has a tail”. The system cannot assume
that "tall® is translatable as a logical function;
for this would lead to the unwarranted (and false)
conclusion that "a bird with two tails" is a con-
tradiction in terms. A plausible translation is
(vx) (3y) [{x birdl - [[y tail) & [y part-of x]1l.
At the same time, a conjecture that y is normally
the only tail should be stored, since the wording
would more likely have been "at least onetail",
"one or more talls”, or something to that effect,
had that been the interpretation intended by the
inforrant., Skolemization of y gives

(vx) ilx bird] » {[(t x) tail]l & ((t x) part-of xIJI.

If told subsequently that "A magpie has a long
tail”, how could the system identify "a...tail”
with t applied to the universal “"magpie" variable
insteed of creating a new Skolem function? It
would st least have to check for a possible re-
ferent of "a...tail" among the parts of concepts
supercrdinate to "magpie”. After finding such a
part a: "bird", and verifying that this is pro-
bably the only part of a bird satisfying the pre-
dicate "tail", it could transfer the name of the
Skolem function into the new context, at least
tentatively,

In general, a wider search of prior instantia-
tions of "tail" would be required since the first
occurrance need not have been at the superconcept
leve), but might instead have been at the subcon-
cept level, or in connection with a concept which
is neither a superconcept nor a subconcept of
"magpi=" (e.g., "dog")}. If an occurranceof "tail"
is found for a subconcept of “"magpie", then the
name cZ the corresponding Skolem function can be
transferred to the "magpie" context, provided
that tke newly mentioned "tail” is likely to be
the magpie's only “tail® (in which case it is
also the subconcept's only "tail"). If an occur-
rence ¢f "tail” is found for a concept such as
"dog”, then again the Skolem function can be trans-
ferreé to the “magpie” context provided that both
the magpie's tail and the dog's tail are likely
to be unigue (this policy prevents later naming
conflicts at the level of common superconcepts of
"magpiz" and "dog").

This approach is also workable for compcund
identiZying descriptions. For example, the infox-
matjion that a perch has a spiny fin on its back
might be rendered as

{¥x) (3v} [[x perch]l » [[y fin] & [y part-of xl]
&e{y joins{back-of x)] & [y spinylll.
If a part can be found for the superconcept “fish"

783

whichuniquely satisfies "is a fim, is part of the
fish, and joins the back of the fish", then its
Skolem function name can be used in the Skolemiza-
tion of the perch's fin y. Much the same as be-
fore can be said about occurrences of parts satis-
fying the description in question but belonging to
subconcepts or unrelated concepts.

All this presupposes a method for locating parts
satisfying given descriptions, i.e. associative
accessing. This topic cannot be covered here;
Bayes' assocliative accessing methods are easily
modified for use with semantic nets in which cor-
responding nodes are linked via their Skolem fune-
tion names, rather than being telescoped or con-
nected with binders,

5. Concluding discussion

The seemingly trivial problem of extracting
parts relationships from sets of partitioning
assertions was seen to be guite difficult. The
suggested methods for “closed graphs” provide a
partial solution.

Effective property inheritance requires effec-
tive ways of establishing node correspondences. A
method of establishing correspondences through
names of Skolem functions was suggested which
overcomes a difficulty with Hayes' node-sharing
method.

Many problems in generalizing the proposed
methods remain to be solved, such as that of
providing detailed inference algorithms for ex-
tracting “"part-of" relationships from fragmented
generic parts graphs, or for establishing node
correspondences on the basis of composed func-
tions such as(f (h x))). Moreover, several im-
portant problems with parts have not been touched
on here, such as the problem of inferring the
mode of connection and relative position of parts
of physical objects, the problem of determining
the number of parts of a given type of a given
object (counting the known instances only provi-
des a lower bound on that number), and the problem
of accessing parts associatively on the basis of
compound descriptions (Hayes considered unitary
descriptions only). )

In view ot the centrality of parts relation-
ships in human thought, these are important areas
for future research.

Acknowledgements

Alan Covington and Randy Rawson contributed to
this paper through discussions and their work on
a semantic net system. Pat Hayes®' careful refe-
reeing provided much useful guidance. The re-
search was supported by an Alexander von Humboldt
Fellowship and by Operating Grant No. AB818 of the
National Research Council of Canada.

IRTTTYRY




(1)

£zl

3]

(4}

[5]

(61

(73

(8]l

(9l

[16)

€111

References

Clzwes, M,B. (1969). “"Transformaticnal gram-
=ars and the organization of pictures", in
Grasselli, A., Automatic Interpretation and
Classification of Images, Acad. Press, New
York, pp. 43-77.

winston, P. (1970). "Learning structural
cescriptions from examples”, Ph.D. Thesis,
MIT, TR-76, Cambridge, MA.

Guzz=an, A. {1971). "Analysis of curved line
érawings using context and global informa-
tica", Mach, Intell. 6, Meltzer, B. & Michie,
2. {eds.), American Elsevier, New York,
325-375.

Barrow, H.G., Ambler, A.P., & Burstall, R.M.
(i272). "Some techniques for recognizing
structures in pictures", in Watanabe, S.
{22.}, Frontiers of Pattern Recognition,
scaZemic Press, New York, pp. 1-29.

%2-sff, 8. (1972}, “Pattern cognition and
the organization of information", in Wata-
raze, S. (ed.), Frontiers of Pattern Reco-
chi<ion, Academic Press, New York, pp. 193-
Z2Z.

Ju
Lt

nasl, B. (1968). "SIR: A computer pro-

o for semantic information retrieval“,

“insky, M.L. (ed.), Semantic Information

cessing, MIT Press, Cambridge, MA,
33-134.

H
w

T

"oe )
U it
+« ¥

)
'U

dinsky, M. (1975). "A framework for represen-
2ing knowledge", in Winston, P. (ed.), The
Ezvzhology of Computer Vision, McGraw-Hill,
New York.

Sayss, Philip J. (1977a). "On semantic nets,
franss and associations", Proc. 5th Int.
Joint Conf. on Artificial Intelligence, MIT,
Ca=bridge, MA, RAug. 22-25, pp. 99-107.

Zayes, Philip J. (1977b). “Some association
- tzsed techniques for lexical disambigus-
cicn by machine", TR25, Comp. Sci. Dept.,
Uaiversity of Rochester, Rochester, N. Y.

Schubert, L.K. (1979). "Representing and
dsing knowledge about parts", in prepara-
ticn as Computing Sclence Tech. Note, Uni-
varsity of Alberta, Edmonton, Alberta.

3une, H.C. (1978). "A formal semantic analy-
sis of mass terms and amount terms", Amster-
da= Papers on Formal Grammar, Vol. 2 (Proc.
273 Amsterdam Symp. on Motague Grammar &
Related Topics, Amsterdam, Jan. 2-13, 1978).

784

f12}

f13]

(14]

f1s]

Grossman, R.W. (1976). “Some data-base appli-
cations of comtraint expressions, LCS TR-
158, MIT Lab. for Computer Science, MIT,
Cambridge, MA.

FPahlman, S5.E. (1977). "A system for repre-
senting and using real-world knowledge”,
AI-TR-450, AI Lab., MIT, Cambridge, MA.

Schubert, L.K. (19768). ®“Extending the ex-
pressive power of semantic networks",
AI Journal 7, pp. 163-198.

Schubert, L.K., Goebel, R. & Cercone, N,
(1979}. "The representation and organi-
zation of a semantic net for comprehen-
sion and inference® in Findler, N.V¥, (ed.),
Associative Nets - The Representr“ion and
Use of Knowledge by Computers, Bcademic
Prass; Preliminary version: Techn. Rep.
TR78~1, Dept. of Computer Science, Univer-
sity of Alberta, Edmonton, Alberta.




