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Abstract. The paper is concerned with the succinct axiomati-
zation and efficient deduction of non-change, within McCarthy
and Hayes’ Situation Calculus. The idea behind the proposed
approach is this: suppose that in a room containing a man, a
robot and a cat as the only potential agents, the only action
taken by the man within a certain time interval is to walk from
one place to another, while the robot’s only actions are to pick
up a box containing the (inactive) cat and carry it from its initial
place to another. We wish to prove that a certain object (such
as the cat, or the doormat) did not change color. We reason that
the only way it could have changed color is for the man or the
robot to have painted or dyed it. But since these are not among
the actions which actually occurred, the color of the object is
unchanged. Thus we need no frame axioms to the effect that
walking and carrying leave colors unchanged (which is in general
false in multi-agent worlds), and no default schema that proper-
ties change only when we can prove they do (which is in general
false in incompletely known worlds). Instead we use explanation-
closure axioms specifying all primitive actions which can produce
a given type of change within the setting of interest. A method
similar to this has been proposed by Andrew Haas for single-
agent, serial worlds. The contribution of the present paper lies in



showing (1) that such methods do indeed encode non-change suc-
cinctly, (2) are independently motivated, (3) can be used to justify
highly efficient methods of inferring non-change, specifically the
“sleeping dog” strategy of STRIPS, and (4) can be extended to
simple multiagent worlds with concurrent actions. An ultimate
limitation may lie in the lack of a uniform strategy for deciding
what fluents can be affected by what agents in a given domain.
In this respect probabilistic methods appear promising.

1 Introduction

“One feels that there should be some economical and principled
way of succinctly saying what changes an action makes, without
having to explicitly list all the things it doesn’t change as well;
yet there doesn’t seem to be any other way to do it. That is the
frame problem”.

— Pat Hayes (1987:125)

The frame problem originally surfaced within McCarthy’s Situation Cal-
culus (McCarthy 1968), when McCarthy and Hayes (1969) applied it to rea-
soning about goal achievement. To illustrate their approach, they considered
the problem of initiating a telephone conversation. They began by writing
down plausible axioms which seemed to characterize the preconditions and
effects of looking up a person’s telephone number and dialling that number.
However, they found that they were still unable to prove that the plan “look
up the number and dial it” would work, even if all the initial conditions
were right (i.e., that the caller had a telephone and a telephone book, that
the intended party was home, etc.). For example, the axioms provided no
assurance that looking up the number would not make the caller’s telephone
disappear, thus voiding a precondition for dialling.

At this point, McCarthy and Hayes made a move which set the stage for
all subsequent discussions of the frame problem, and proposals to solve it:
they augmented their axiom for the effects of looking up a phone number,
so that it asserted that the action does not make the caller’s possessions
disappear, and does not change the intended party’s location. These, of
course, are the sorts of axioms known as frame axioms.



They apparently viewed their strategy of specifying the relationships not
changed by an action as the only one available within the Situation Calculus
proper, though they deplored both its ad hoc character and the proliferation
of axioms to which it leads:

“If we had a number of actions to be performed in sequence we
would have quite a number of conditions to write down that cer-
tain actions do not change the values of certain fluents [properties
and relationships]. In fact with n actions and m fluents, we might
have to write down mn such conditions.”

One might add that these conditions are rather implausible in a world
with multiple agents (like the one we live in). For instance, there is no
assurance in real life that either the intended party, or all one’s possessions
will stay put while one is consulting a phone book.

Virtually all later discussions of the frame problem reiterate McCarthy
and Hayes’ line of reasoning, without questioning the need for frame axioms
of the type suggested by them, at least within the Situation Calculus and
perhaps within any classical logical framework. (See, for example, the preface
and articles in (Pylyshyn 1987) and (Brown 1987).)

Yet another sort of move is available, which entirely avoids frame axioms.
This is to introduce axioms about what actions are required to produce given
types of changes. This approach was proposed for a serial world by Andrew
Haas (1987). An example is the following axiom (where holding(R,x,s)
means that the robot is holding object « in situation s, Result(a, s) is the sit-
uation resulting from carrying out action a in situation s, and Putdown(R, x)
is the action of R putting down x, regarded as an abstract individual; as
usual, a “situation” is thought of as a possible “state of the universe”):!

(Vz, s, s")[[holding(R, x,s) N —holding(R,x,s') N s' = Result(a, s)]
— a = Putdown(R,z)];

i.e., if the robot ceases to hold an object x between situations s and ¢,
and situation s’ was obtained from situation s by act a, then a must have
been the act of putting down x. (For a more versatile robot, the right-hand

1T will consistently use lower-case identifiers for predicates and variables, and capitalized
identifiers for individual constants and functions.



side of the axiom might have allowed a = Drop(R, z), and perhaps one or
two other actions, as an alternative to a = Putdown(R,x).) Thus, given
that in a certain situation the robot holds some specific object B, and in
that situation performs some action other than Putdown(R, B), we can infer
from the contrapositive that the robot still holds B after that action.? I will
give details and argue the succinctness and other advantages of the approach
in section 2.

Haas termed his axioms “domain-specific frame axioms.” 1 will instead
call axioms which specify the actions needed to produce a given type of
change explanation-closure axioms. This reflects the fact that they supply
complete sets of possible explanations for given types of change. As such (I
will suggest) they are important in other areas of Al such as story under-
standing. It is true that the contrapositive of an axiom like the above predicts
a non-change, and in that sense resembles a “frame axiom.” However, it does
so on the basis of the non-occurrence, rather than the occurrence, of certain
specific actions, and it is clear that this is not what McCarthy and Hayes,
or any of the many commentators on the frame problem since then, meant
by frame axioms. As I will try to show, explanation closure axioms have
important advantages over (traditional) frame axioms.

In section 3, I will provide a more complete illustration of how primitive
actions in a serial world can be axiomatized using explanation closure. I
will include an illustration that confronts the problem of implicit effects. An
example of an implicit effect is the change in the location of the topmost
object in a stack, when the base of the stack is moved; though the effect is
causally direct, its detection may require any number of inference steps. I will
give examples of what can and cannot be inferred in this world, contrasting
this with the more usual approaches.

Despite the emphasis in the Hayes quote on succinctness, computational

2Similar proposals have been made by Lansky (1987), Georgeff (1987), and Morgenstern
(1988). Georgeff proposes axioms of form, “If fluent p is not independent of event e, then
e must be one of e, es, ..., e,”. However, Georgeft’s approach is non-functional and less
direct than Haas’, in its reliance on the notion of independence (which remains somewhat
unclear). Morgenstern’s persistence rules of form ”If such-and-such actions did not occur
at time j, then fluent p is unchanged at time j + 1”7 also depend on a non-functional view
of action; further, she takes these rules as being derivable from a closed world assumption
about causal rules (i.e., only changes provably caused by known actions actually occur),
and that is an assumption I wish to avoid.



efficiency is of obvious importance in reasoning about change and non-change.
In section 4, I will show that a default strategy which is essentially the “sleep-
ing dog” strategy of STRIPS is deductively sound when appropriately based
on explanation closure. This refutes a common assumption that monotonic
solutions to the frame problem are the slowest, and that the STRIPS strategy
lies somehow beyond the pale of ordinary logic.

In section 5, [ will briefly explore the potential of the Situation Calculus,
and the present approach to the frame problem, with respect to external
events, continuous change, action composition using sequencing, conditionals
and iteration, and most of all, concurrency. Note that the earlier inference
about persistence of holding depended on the assumption that actions cannot
be concurrent, so that performance of one action cannot produce changes
that require other actions. Extensions to worlds with concurrent actions are
possible using parallel composition of actions, along with a modified form
of Haas’ axioms and general axioms about the primitive parts of complex
actions.

An example of a composite action is (Costart( Walk(R,Lo,Ly), Walk(H,Ls,
L3)) which represents concurrent walks by R and H starting simultaneously
and finishing whenever both walks are done (not necessarily simultaneously).
Just as in the serial case, the Result function is interpreted as yielding the
unique new state which results if only the action specified by its first argu-
ment takes place. By maintaining this functional view of actions, we preserve
an important property of the original Situation Calculus (exploited by C.
Green, 1969): plans are terms, and can be extracted deductively from exis-
tence proofs. On the other hand, the approach may not be systematically
extensible to cases where reasoning about a given situation occurs against
the backdrop of a large world knowledge base. The difficulty lies in the lack
of uniform principles for identifying the relevant agents and the “boundaries”
of the given situation in a way that will make a functional view of action,
and explanation closure, consistent with the background knowledge.



2 Explanation closure: a simple illustration and pre-

liminary assessment

“A weapon has been used to crush a man’s skull and it is not
found at the scene of the crime. The only alternative is that it

has been carried away.”
— Isaac Asimov, The Naked Sun

Let us begin by going through the earlier example, adapted from Haas
(1987), in more detail. We are assuming a robot’s world in which the
robot can walk about, paint or dye objects, pick them up and put them
down or drop them, etc. He cannot perform any of these primitive actions
simultaneously.® The immediate consequences of actions are expressed by
effect axioms such as

Al. (Vz,y,s,s")][at(R,z,s) N\ s" = Result(Walk(R, z,y), s)]
— at(R,y,s)]

Note that the fluent literal at(R, x, s) functions as a (sufficient) precondition
for the success of Walk.

We assume that in the initial situation Sy, the robot is at location Ly
holding an object B:

at(R, Ly, Sy), holding(R, B, Sy)
We are interested in the situation S; resulting from R’s walking from Lg to
Lq:

S1 = Result(Walk(R, Ly, L), So)
Specifically, we wish to show that R is still holding B in S;:

GLl. holding(R, B, Sh)
The possible explanations for cessation of holding are that the robot put
down or dropped the object:

3 Primitive actions are immediately executable, requiring no further elaboration or de-
composition into lower-level actions (though they may require execution monitoring to see
whether, in fact, they run their course as expected). All practical planning systems seem
to recognize such a level of primitive actions, even though the choice of where to “draw
the line” is rather arbitrary.



A2. (Va,z,s,s")[[holding(R, x,s) N —holding(R,x,s') A s = Result(a,s)]
— a € {Putdown(R,x), Drop(R, x)}],

where a € {ay,---,a,} abbreviates a = a; V -+-V a = a,. To prove G1, we
assume its negation

—holding(R, B, S),
and use (A2) along with the initial conditions and the definition of S to
obtain

Walk(R, Ly, Ly) € {Putdown(R, B), Drop(R, B)}.
But syntactically distinct primitive actions are not the same:

A3 (Inequality schemas). If @ and /3 are distinct m-place and n-place func-
tion symbols (m,n > 1) representing primitive actions, then
(\V/.’El, o Tmy Yty '7yn) a(xl, T ;xm) #* ﬁ(yla e '7yn)= and
(vxb S T, Yty ';yn)[a(l‘la .. .,xm) 7§ a(yh .. .7ym) \Vi
(@1 =y1 A AT = Y.

Appropriate instances of these schemas deny that a Walk is identifiable with a
Putdown or a Drop, and this contradiction establishes the desired conclusion
G1.

Note that the traditional approach would have used a set of frame axioms
including

(Va,z,y, 2, s, s")[[holding(R, x,s) N 8" = Result(Walk(R, z, z), s)]
— holding(R, , s')]

and similar ones for every other action which does not affect holding, in place
of (A2). Explanation closure axioms are more succinct than sets of such frame
axioms because there are typically few actions that change a given fluent, but
many fluents that are unaffected by a given action.? Besides, (as suggested
earlier) frame axioms do not generalize to worlds with concurrent actions.
For example, in a world in which a robot can simultaneously walk and drop
an object, there is no guarantee that an object held at the beginning of a
walk is still held at the end.

‘However, as Kowalski (1979: 135) showed, sets of frame axioms specifying all fluents
unaffected by a given action can be collapsed by reifying fluents and quantifying over them.



The preceding succinctness claim for explanation closure axioms is quite
vague. It is unlikely that it can be made fully precise, since it amounts to
a claim about the structure of “natural” theories of action for real-world
domains. A “natural” theory should be intuitively understandable, extensi-
ble, and effectively usable for inference. But such desiderata are hard, if not
impossible, to reduce to syntactic constraints.

Nevertheless, the claim can be made rather plausible, if formulated rela-
tive to the complexity of the axiomatization of effects. The following argu-
ment is an intuitive and empirical one, in its tacit appeal to the form which
effect axioms “naturally” take (in the sorts of axiomatizations familiar to Al
researchers). It assumes a primitive, serial world with “explicit effects”. In
the next section, I will attempt a slight generalization.

Succinctness Claim 1 (for explanation closure in a primitive, se-
rial world with explicit effects). In a natural axiomatization of a world
in terms of a set of fluents and a set of nonconcurrent primitive actions,
where the axioms specifying the effects of an action explicitly state which
fluents become true and which ones become false, it is possible to axiomatize
non-change using explanation closure axioms whose overall complexity is of
the same order as that of the effect axioms.

Argument. To see the intuition behind the claim, think of the effect ax-
ioms as conditionals of form “fluent p changes if action ay, or as,- -+, or a;
occurs” (this may require some slight syntactic rearrangements); e.g.,

— an object changes color if it is painted or dyed (with a new color);
(note that this statement may collapse two axioms, one for the effect
of painting and one for the effect of dyeing);

— an object ceases to be on another if the robot picks it up;

— the robot changes location if he takes a walk or pushes an object; (this
might again correspond to two effect axioms); etc.

Now, roughly speaking, the addition of explanation closure axioms is just a
matter of changing all the “if’s to “if and only if”s. At least this is so if
each of the effect axioms states all fluent changes engendered by the actions.



The addition of the “only if” axioms clearly will not increase the overall
complexity by more than a constant factor.

I hasten to add that this is an oversimplification. Explanation closure
does, in general, differ from a strict “biconditionalization” of the effect ax-
ioms — indeed, I am about to argue that this is an advantage it has over
circumscriptive or nonmonotonic approaches. Nevertheless, an explanation
closure axiom in a world with explicit effects typically supplies those actions
as alternative explanations of a change which produce that change according
to the effect axioms. O

One could further argue that such relative succinctness assures a storage
complexity well below O(mn), since the complexity of the effect axioms pre-
sumably lies below this. (If it did not, McCarthy and Hayes would hardly
have had grounds for complaining about the potential o(mn) complexity of
frame axioms!) Note also that if effect axioms do not involve unboundedly
many fluents for each action, their complexity should be O(n), and if a fluent
is not referenced in unboundedly many effect axioms, it should be O(m).?

Being succinct, the explanation closure approach offers a viable alterna-
tive to nonmonotonic and circumscriptive approaches. Unlike nonmonotonic
approaches, it does not jeopardize effective provability. Unlike circumscrip-
tion, it does not create subtle problems about what to circumscribe. As
Hanks and McDermott (1987) remark, finding the “right” circumscriptive
theory invariably hinges on already knowing the preferred model it should
deliver. I would suggest that explanation closure axioms are a natural way
to express our preferences directly, at least in simple worlds. (I argue below
for their naturalness).

Another crucial advantage of the approach is that it avoids overly strong
persistence inferences. This point was made briefly by Haas (1987), but

5Tt would be nice to be able to replace such tentative arguments with a hard-and-fast
theoretical argument to the effect that (a) the logical structure of causation is such that
for the “right” choice of formal terminology (i.e., the “right” fluents and actions), effect
axioms will not involve more than a few fluents on average; and perhaps even that (b)
there is an effective procedure allowing an agent interacting with the world to converge
toward such a “right” choice of terminology. Fodor (1987) seems to demand all this and
more of any genuine solution to the frame problem; however, most Al researchers take a
more practical view.



deserves detailed reiteration. Suppose, for example, that we want to allow for
the possibility that when the robot drops an object it might break, without
insisting that this will be the outcome. A natural way to approximate this
situation is to make the outcome dependent on how fragile the object is,
without assuming that we know whether it is fragile enough to break. So
the effect axiom might be:

Ad. (Vx, s, s")[[holding(R,z,s) N s' = Result(Drop((R,x), s)]
— [—holding(R, x, s") N [fragile(x, s) — broken(x, s')]]]

Although we won’t be able to infer breakage without knowledge of fragility,
we still want to assert that if an object breaks, it was dropped. This can be
straightforwardly expressed by the explanation closure axiom

A5. (Va,z, s, s")|[[-broken(x, s) A broken(z,s') A's' = Result(a, s)]
— a = Drop(R, z)]

Note that here (A5) cannot be derived from the corresponding effect axiom
(A4) by some systematic “biconditionalization”, or any other general prin-
ciple. It is essentially a domain fact. (In a more realistic world, we would
allow for some additional ways of breaking, such as being struck or crushed.)
So, given the particulars

—broken(C, Sy), holding(R, C, Sp) and S; = Result(Drop(R,C), Sp),
we can infer neither broken(C,S;) nor —broken(C,S;), and that is as it
should be.

By contrast, a circumscriptive approach that minimizes the amount of
“abnormality” engendered by an action (McCarthy 1984), or its causal effi-
cacy (Lifschitz 1987), would predict —broken(C, S;) and hence — fragile(C, Sp).
Similarly nonmonotonic methods (Reiter 1980) would sanction this unwar-
ranted inference. Moreover, if we are given the particulars

—broken(C, Sy), broken(C, Sy), and S = Result(A, Sy),
the explanation closure approach yields the reasonable conclusion A = Drop(R,
C), whereas circumscriptive and nonmonotonic approaches are silent about
A (given axiom (A4) but not (A5)).

Areas of uncertainty or ignorance like that concerning breakage are hard
to avoid in domain theories of practical magnitude. A familiar instance
of this is the “nezt-to” problem: it is hard to provide effect axioms which
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will supply all changes in next-to relations (without appeal to some overly
precise geometrical representation). Yet circumscriptive and nonmonotonic
approaches will treat the axioms as if they supplied all such changes, and
as a result sanction unwarranted persistence inferences. I will return to the
next-to problem in the next section, which contains a more elaborate “robot’s
world.”

Finally, I claim that encoding non-change via explanation closure axioms
is principled and natural, in the sense that there are reasons independent
of the frame problem for invoking them. One such reason is the observa-
tion that people can come up with small sets of plausible explanations for
changes of state almost instantaneously, at least in familiar domains. For
example, if the grass got wet, perhaps it rained, or the sprinkler was on, or
dew formed overnight, or some snow melted — and that just about covers
the most likely explanations. (Similarly consider, “How did the wall come
to be blue?”, “Why is the sun no longer shining?”, “How did John’s loca-
tion get changed from the ground floor to the 17th floor of his apartment
building?”, “How did John learn about the earthquake in Italy while having
breakfast alone in his New York apartment?”, “How did John gain possession
of the hamburger he is eating?”, “What is causing John’s nose to be runny?”,
etc.) Endowing machines with comparable abilities would seem to require
some quite direct encoding of the connection between various phenomena
and their immediate causes. Furthermore, research in natural language un-
derstanding has shown that the ability to infer actions that accomplish given
state changes is extremely important, and has led to postulation of knowledge
structures very similar to explanation-closure axioms. For example, Schank
and Abelson (1977:75) suggest that state changes deliberately brought about
by human agents are associated with sets of possible actions (in their terms,
sets of “plan boxes”) that achieve those state changes. They assume that if
a story leads to the inference that an agent will try to accomplish a state
change, the further inference is warranted that he will attempt one of the
associated actions. Clearly this involves a tacit closure assumption that a
deliberately caused state change is normally brought about by one of a fixed
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set of actions.b

To be sure, examples of “real-world” explanation closure are generally
subtler than (A2) or (A5). They vary in level of detail (scale or “grain
size”) and level of abstraction (see section 5), and most importantly, are
“defeasible” — the standard explanations occasionally do fail. However, my
primary concern here is with causally insulated, predictable worlds, free of
booby-trapped boxes and meteor strikes. Everything of interest that occurs
will be attributable to known agents. In such a setting, (non-defeasible)
explanation closure works remarkably well.

3 Explanation closure in a world with implicit effects

In case of holding, the cessation of this relation can be directly attributed to
a Putdown or Drop. Based on such examples, the “explicit effects” assump-
tion required direct axiomatic connections from actions to all affected fluents.
This requirement is hard to enforce in nontrivial worlds. For instance, sup-
pose that a robot is regarded as “carrying” its own integral parts, anything
“riding” in or on it, and anything those “riders”, in turn, are carrying (cf.
the “assemblies” of Haas, 1987). This is a useful notion, because an object
“carried” by another changes location with it. Now in axiomatizing actions
like Walk or Pickup, we do not want to explicitly specify all effects on ob-
jects carried (and left behind). Rather, we want these changes to follow from
axiomatic connections between holding, in, on, etc., and carrying.

The following partial theory of a world with implicit effects serves sev-
eral purposes. First, it shows that the explanation closure approach to the
frame problem extends readily to such worlds. (The new closure axioms are
(A16-A20).) Second, it provides a nontrivial setting for illustrating inference
based on explanation closure. Finally, it provides the background for further
discussion of the succinctness claim and the “next-to” problem.

A6. An object “carries” its integral parts, its riders, anything carried by

6The more recent work of Kautz and Allen(1986) also involves an idea that seems
closely related to explanation closure: observed, reported or inferred actions are explained
in terms of a set of a set of alternative, jointly ezhaustive higher-level actions (plans).
After several observations, it is often possible to deduce a unique top-level plan.
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its riders, and nothing else.”

(Vz,y, s)|[carries(z,y, s) <> [integral-part(y, x) V rider(y, x, s)V
(3z)[rider(z, x, s) A carries(z,y, s)]]]

A7. “Carries” is irreflexive (so that by A6 and A9, integral-part, rider, in,
on and holding are also irreflexive).

(Vz,y, s)[carries(z,y, s) — —carries(y, x, s)]
A8. An object carried by another is at the same place as its carrier.
(V2,y, 2, 5)[[carries(z, y, 5) A at(z, 2, )] - at(y, 2, 5)]
A9. An object is a rider on another iff it is in, on, or held by it.
(Y, y, 5)[rider(y, 3, 5) < [in(y,,5) V on(y, 7, 5) V holding(z, y, 5)]
A10. “n” corresponds to one or more nested iny’s.
(Vz, z,s)[in(z, z,s) <> [ing(x, 2,5) V (Fy)[in(x,y, s) A ing(y, 2, 5)]]]
All. Paint has the expected effect, if the robot is next to a paintbrush,
paint of the right hue, and the object to be painted, and isn’t holding
anything.
(Vz,b, ¢, p, s,s")|[[next-to(R, x, s) A\ next-to(R, b, s) A next-to(R, p, s)A
brush(b) A paint(p) A hue(p, )\ =(Jy)holding(R, y, s)\

s' = Result(Paint(R, x,c),s)] — color(x,c,s)]

A12. Dye has the expected effect — much like (A11).

A13. Putdown has the expected effect, if the robot is holding the object.
(To illustrate less direct effects, effects on in and on are also included.)

"Nonintegral parts, such as a computer remotely controlling a robot, need not be carried

by it.

13



(Vz,y, s, s)[[holding(R, x,s) A\ s' = Result(Putdown(R, x), x)]
—=holding(R, z, s") A [above(z,y, s) —
[[container(y) A smaller(xz,y) — in(z,y,s")] A
[—container(y) V —smaller(x,y) — on(z,y, s')]]]]

Al4. Pickup has the expected effect on holding, if the robot is next to the
object and the object is liftable.®

(Vz, s, s")[[next-to(R, x, s) Aliftable(x) A =(3z)holding(R, z, )\
s' = Result(Pickup(R, x),s)] — holding(R, x, s")]

A15. As in the case of (A13), we might have included additional effects of
Pickup in (A14). Alternatively, we can state additional effects sepa-
rately, as in the following axiom about (successful) Pickups being able
to undo carries relations:

(Vz,y, s, s")[[next-to(R, x,s) Aliftable(x) A =(3z)holding(R, z, s)A
s" = Result(Pickup(R, x), s)]
— [[carries(y, z, s) A —carries(y, R, s)| — —carries(y, x, s')]]

A16. If an object ceases to be of some color y, it was painted or dyed with
some color z.

(Va,x,y, s, s')[[color(x,y, s) A —color(z,y,s") N s" = Result(a, s)]
— (J2)a € {Paint(R, z, z), Dye(R, x, z)}]

A17. A change from not holding an object to holding it requires a Pickup
action.

(Va,x,y, s, s")[[-holding(x,y, s) A holding(x,y,s") A s' = Result(a, s)]
— a = Pickup(z,y)]

A18. If an object ceases to be in a container, then the robot must have
picked up the object, or picked up something in the container carrying
the object.

8liftable is here treated as independent of the agent and the given situation (e.g.,
whether there are “riders” on the object), but could easily be made dependent on them.
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(Va,x,y, s, s")[[in(z,y,s) A min(z,y,s") A s' = Result(a, s)]
— [a = Pickup(R, x)V
(32)[a = Pickup(R, 2) Nin(z,y, s) A carry(z, , s)]]]

A19. If an object x comes to be in a container, then the robot must have
put down or dropped an object z it was holding above the container,
where 2 is smaller than the container, and either ¢s x or was carrying
it:

(Va,z,y, s, s")[[-in(z,y, s) Nin(z,y,s") A s" = Result(a, s)]
— (32)[[z = = V carries(z, z, s)] A holding(R, z,s) A
above(z,y, s) A\ smaller(z,y) A
la = Putdown(R, z) V a = Drop(R, 2)]]]

A20. If an object ceases to be at a location, then the robot took a Walk
to some place, and either the robot is that object, or was carrying that
object.

(Va,x,y, s, s")|[[at(x,y, s) A —at(z,y,s") A s' = Result(a, s)]
— (F2)[a = Walk(R,y,z) N[R =z V carries(R, z, s)|]

This partial axiomatization lacks axioms for on and nezt-to, explanations
for color or at becoming true, etc. While further axioms would be needed
in any practical application, it is significant that even a partial axiomatiza-
tion allows many reasonable conclusions about change and non-change to be
drawn, as the following examples show (see also section 4). The problem of
unwarranted persistence inferences, which attends circumscriptive and non-
monotonic closure of incomplete theories, does not arise (at least not within
settings with fully specified actions; limitations are discussed in section 5).

The following example describes initial conditions in the robot’s world in
which the robot is at location Ly, and is next to a blue box B containing
a cup C (and perhaps other objects). In addition, there is a doormat D at
location L;, which is distinct from L. The problem is to show that if the
robot picks up the box and walks to a location L, the location of the cup is
changed but not the color of the box or the location of the doormat. (The
descriptions “box”, “cup”, and “doormat” are not actually encoded in the
premises, but are used for mnemonic reasons.)
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Proposition 1. Given axioms (A1-A20), along with initial con-
ditions
at(R, Ly, Sy), next-to(R, B, Sy), inyg(C, B, Sy), liftable(B),
color(B, Blue, Sy), at(D, Ly, Sy), Ly # Ly,
—(3z2)holding(R, z, Sp)
and plan
Sy = Result(Pickup(R, B), Sp),
Sy = Result(Walk(R, Ly, Ls), S1)
then
(a) color(B, Blue, Ss), (b) at(D, Ly, S,), (¢) at(C, Ly, Ss).

Proof sketch.
(a): If the color of box B were not blue in situation Sj, then by (A16) the
Pickup action which led to the situation would have had to equal a Paint or

Dye action, which is impossible by (A3). Similarly we infer the persistence
of B’s color through the Walk.

(b): We assume that the doormat does not stay at L;. Then by explanation
closure for cessation of at (A20), the robot walked from L; to some location
and either is D or carried D. But this is impossible, because the Pickup was
no Walk, and the Walk was from Ly, which differs from L;. (Besides, the
robot is not D, and didn’t carry D, because the locations of D and the robot
in situation Sy are distinct.)

(c): To prove the cup ends up at Lo, we first show that the robot ends up
there, by (Al). Next, we show he ends up holding the box B, since the
Pickup in the first step succeeds by (A14) and the holding persists through
the Walk (by explanation axiom (A2) for cessation of holding, and the in-
equality schemas). Hence, we deduce by (A8) that the box ends up at Ly (via
the rider and carries relations, (A5) and (A6)). Next we infer by (A10) that
since cup C' is ing the box, it is ¢n it, and that this relation persists through
the Pickup and the Walk, using explanation axiom (A18) for cessation of in.
(The former inference requires use of irreflexivity for in (A6, A7, A9), to rule
out the possibility that in picking up the box, the robot lifted the cup out of
the box along with the box!) Finally, with the box at Ly and the cup in it,
we infer by (A8) that the cup is at Lo (via the rider and carries relations). O

So non-change, as well as change, can be straightforwardly deduced in
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our robot’s world, without appeal to nonstandard methods. As well, it is
relevant to consider what sorts of things cannot be inferred in this world.
Suppose, for instance, we add an assumption that there is a video camera at
the robot’s location at the outset, i.e., at(V C, Ly, Sp). We can deduce neither
at(VC, Ly, Sy) nor its negation, and that is as we would want. After all, the
camera may or may not be attached to (or carried by) the robot.

Is the succinctness claim still tenable in such worlds with implicit effects?
[ submit that it is, although the evidence, even more than before, must be
sought in examples (such as the one just presented) and in our intuitions
about “natural” axiomatic theories.

Succinctness Claim 2 (for explanation closure in a primitive, serial
world with implicit effects). In a natural axiomatization of an intuitively
comprehensible dynamic world in terms of a set of situational fluents and
a set of (nonconcurrent) primitive actions, it is possible to axiomatize non-
change using explanation closure axioms whose overall complexity is of the
same order as that of the effect axioms plus the axioms relating primary
fluents (those explicitly connected to actions) to secondary ones.

Argument. In this case, “biconditionalizing” effect axioms of form “fluent
p changes if action ay, or as, -, or a; occurs” will provide explanation clo-
sure axioms for the primary fluents only (in approximate form). Do we also
need closure axioms for secondary fluents? The preceding example suggests
that secondary fluents will often have definitions in terms of primary ones
(see carries and rider in (A6) and (A9)). Changes in such fluents are fully
determined by — as well as explained by — changes in the relevant primary
fluents. For example, if an object ceases to be a rider on another, we can
infer from (A9) that if it was previously in, on or held by the other object,
that relationship ceased; hence we can infer what action (or possible actions)
must have occurred. So it appears that separate closure axioms will often be
redundant for secondary fluents.

But even where such axioms turn out to be necessary or convenient, the
overall complexity of closure should not exceed that of other axioms. After
all, for each secondary fluent at least one axiom must already be present
which introduces that fluent and relates it to others. As long as explanation
closure axioms do not get arbitrarily more complicated than these relational
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ones, the succinctness claim remains true.

Examples suggest they will not get arbitrarily more complicated. For
instance, although explanation closure axioms are theoretically redundant
for the carries and rider fluents of our illustration, it is convenient to have
them. For explaining how a carries relation comes about for the robot and
an object x, and how it ceases, we might say:

A21. (Ya,x,s,s")|[[-carries(R, z, s) A carries(R, z,s") A s' = Result(a, s)]
— (Fy)[ly =z V carries(y, x)] A a = Pickup(R,y)]]

A22. (Va,x, s, s")|[carries(R, z, s) A —carries(R, x, s') A s’ = Result(a, s)]
— (y)[ly = x V carries(y, x)|A
l[a = Putdown(R,y)V a = Drop(R,y)l||

These are no more complicated than the closure axioms suggested for primary
fluents like holding and in.

Indeed, it seems unlikely that a natural set of concepts for describing an
intuttively comprehensible domain would include fluents whose changes, even
under ordinary conditions, cannot be explained (at any level) in terms of a
few simple alternative causes. In other words, it seems to me that having
simple explanation and prediction rules for a dynamic world is what makes
it intuitively comprehensible. O

Finally, let us return to the next-to problem, whose relevance to practical
robot problem solving makes it a touchstone for putative solutions to the
frame problem. Essentially the problem is that neither persistence nor change
of next-to relations can be reliably inferred for all pairs of objects. For
example, suppose that our robot’s world contains two adjacent windows W1,
Wy and (for whatever reason) the robot is interested in the goal

(Is)next-to(R, W1, s) A —next-to(R, Wy, s).

Suppose also that the robot has a Go-next-to action, which is capable of
taking him next to either window. (Assume for this discussion that Go-next-
to replaces Walk, though it wouldn’t be hard to allow for both.) But if he
walks next to Wy, will he be next to W57 Perhaps so, if the execution routines
choose a place between the windows, and perhaps not, if they choose a place
next to W; but on the far side from W5. In such a case we do not want the
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robot to think he can achieve the above goal by starting at a place not next
to Wy, and going next to Wi, with the conviction that —next-to(R, Wy, Sp)
will persist. Rather, he might decide the problem is not amenable to reliable
solution, or he might know some facts which will allow him to overcome the
problem (e.g., he might just happen to know that if he goes next to the left
portion of a window’s frame, he will be next to the window but not next to
any windows or doors to its right).”

Similarly, it would be risky to assume (as STRIPS-style robots typically
do) that when the robot walks, it ceases to be nezt-to whatever stationary
objects it was next-to at the start. After all, it may only have travelled a

short distance, or along a trajectory parallel to an object (e.g., alongside a
table).

One possible way of dealing with the next-to problem is to rely on an
exact geometrical model (e.g., one which divides up the floor space into tiles,
and deduces next-to or —mext-to from which tiles are occupied). For this
to permit the construction of reliable plans involving next-to, however, we
have to insist that all actions available to the robot precisely and predictably
determine his location. But this is just not a tenable assumption in a realistic,
reasonably complex world.

Now the challenge is this: how do we avoid unsound persistence and
change inferences, such as those above, while still obtaining those that are
sound? For instance, we do want to infer that the robot’s next-to relations
don’t change, say when he picks up, puts down, or paints an object (un-
der a “horizontal” interpretation of nezt-to); and we do want to infer that
nonmoving objects maintain their nezt-to and —next-to relations.

This challenge, ostensibly a very serious one for nonmonotonic and cir-
cumscriptive approaches, is easily met by explanation closure. For instance,
we can state that next-to(R, x, s') becomes true only if the robot goes newt-to
an object y (possibly x itself) which is not remote from = (where, say, remote
means beyond four times the maximum distance for being next-to):

A23. (Va,z,s,s")|[[-next-to(R, x, s) A next-to(R, x,s") N\ ' = Result(a, s)]
— (Jy)[a = Go-next-to(R,y) A ~remote(z,y, s)||

9 Anyone inclined to think the robot ought to just make some default assumption, such
as that he’ll not be next to W,, should imagine a situation in which W) has its blinds
drawn but W5 does not, and the robot is aware of a sniper across the street, bent on his
destruction!
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This does not require exhaustive knowledge of what’s remote from what, but
if we do happen to know that the object the robot went to is remote from x,
we can exclude x from the set of objects the robot may now be next to. Note
that the axiom also permits inference of persistence of —next-to(R, z, s) if the
robot did something other than a Go-next-to. Similarly we can add closure
axioms for next-to(R, x, s) becoming false, and for next-to(x,y, s) becoming
true or false for objects x, y other than the robot. (They will be much like
the at-closure axiom, (A20).) These will capture just the persistences that
are intuitively warranted by our conception of nezt-to.

The next section describes a practical and deductively sound way in which
explanation closure axioms can be translated into efficient, STRIPS-like per-
sistence inference methods.

4 STRIPS revisited: explanation closure meets the

sleeping dog

The practical problem of efficiently inferring change and non-change has been
discussed by many writers on the frame problem (B. Raphael, 1971, being an
early example). Ideally, we would like to match the constant-time inference of
non-change achieved by STRIPS-like systems (Fikes & Nilsson 1971). These
employ the “sleeping dog” strategy: fluents referenced by the add-lists and
delete-lists of operators are updated, and the rest are assumed to remain
unchanged.

The idea in the following is to emulate STRIPS within the Situation
Calculus by working out certain effects of plan steps, and inferring persistence
via default rules. The default rules treat the “most recent” values of fluents
as still correct in the current situation. One novelty is that explanation
closure axioms are used to guard against overly strong persistence inferences
(by flagging certain fluents as “questionable”). The default inferences are
deductively sound (and in special cases, complete) relative to a domain theory
which includes the explanation closure axioms.

[ will first illustrate these techniques for a specific set of fluents in a slightly
curtailed version of the previous “robot’s world.” In this case no flagging of
fluents is needed, and the rules are not only sound, but also complete for
fluents of form (—)holding(R, 3,0), relative to any “certifiable” plan — one
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whose steps have provably true preconditions. Further, they permit constant-
time persistence inference when suitably implemented.

[ will then abstract from this example, and provide a general method for
using explanation closure axioms as “sentries” which watch for actions that
may change a given fluent. This enables flagging fluents so as to pave the
way for sound (but not in general complete) default inferences.

In order to look up the “most recent” value of a fluent one needs to have
worked out the relevant values at each step of a plan. Consequently, any
formal claims about such strategies must rely on some formalized notion of
the updating process.

In the holding example, this is accomplished by defining an initial “world”
(theory) Dy and a succession of augmented worlds Dy, Ds,---, where each
D; incorporates D; 1, a new plan step, and some logical consequences of the
step. In practice, one would expect each D; to be derived by some “forward
inference” process from D;_; and the ¢th plan step. In the example, the
forward inferences have been judiciously chosen to provide explicit precon-
ditions for any subsequent Pickup, Putdown, or Drop step, and formulas of
the right sort for making sound and complete persistence inferences.

Our domain axioms will essentially be (A2) - (A19). By leaving out the
Walk-axiom (A1) and explanation axiom for changes in at, (A20), we have
changed the robot from a rover to a stationary manipulator. This allows us
to avoid next-to reasoning; in fact, we can drop the situation argument from
next-to, so that nert-to(R, x) is permanently true, or permanently false, for
any object z.

As another practical measure we invoke the “unique names assumption”;
i.e., all constants of our theory are drawn from a set Names, where these
are interpreted (much as in the case of action names) as having distinct
denotations. This could be expressed by axiom schema « # 3, where «,
are distinct names.

An initial world description Dy consists of (A2)-(A19) (with next-to changed
as discussed) along with —(3z)holding(R, x,Sy), any number of additional
formulas which can be consistently added, and all instances of [iftable(f)
and next-to(R, 3) entailed by the rest of Dy for constants 5 occurring in Dy.
A plan is a set of formulas

S; = Result(a, S;—1) , i=1,--+- N,
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where each « € {Pickup(R, ), Putdown(R, ), Drop(R, 3), Paint(R, [3,7),
Dye(R, 3,v)} for some 5 € Names and Sy,---,Sy are constants distinct
from each other and from all constants occurring in Dy. The augmented
descriptions relative to such a plan are given (for 1 <i < N) by

1. for S; = Result(Pickup(R, ), S; 1), [ € Names, and
{next-to(R, B), liftable(), —(Iz)holding(R, z,S; 1)} C D; 1,

let D;=D; 1 U{S; = Result(Pickup(R, [3),S; 1), holding(R, 3, S;)};

2. for S; = Result(Putdown(R, 3),S; 1), f € Names, and
holding(R, 8, S; 1) € D; 1,

let D;=D; 1 U{S; = Result(Putdown(R, ), S;_1), ~holding(R, 3, S;),
—(3z2)holding(R, z, S;) };

3. same as (2), with Drop replacing Putdown;

4. for a a Paint or Dye action (whose effects can be left implicit, since
only holding relations are to be inferred by default),

let Di:Di—l U {Sz = Result(a, Si—l)}-

Note that in essence, each of (1) - (3) “checks” the preconditions of the
action, and adds appropriate postconditions (effects). These follow logically
from D;_; together with the new step. For instance in (2), =holding(R, 3, S;)
is added as a logical consequence of the effect axiom (A13) for Putdown.
—(3z)holding(R, z, S;) is also a consequence, though not an obvious one: it
follows from the presence of —~(3z)holding(R, z, Sp) in Dy (and hence D;) and
from the explanation axiom (A17) for holding becoming true (an inductive
proof is required). It would not ordinarily be found by forward inference,
but is included to secure completeness in the “sleeping-dog” proposition to
follow.

Evidently, D; does not exist if the preconditions of some step aren’t prov-
able. However, D; exists whenever the preconditions for Pickup, Putdown,
or Drop actions are provable (because (4) is indifferent to the preconditions
of Paint and Dye steps). I will term such plans certifiable (relative to Dy).

As a final preliminary we note the following way of applying explanation
closure axioms to multistep plans (expressed as Result-equations):
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Serial Plan Lemma. Given an explanation closure axiom

(Va’axla Ty T, S, SI)[[W(:ED T, T, S) A ﬁ(xla Ty T, S,) A
s' = Result(a,s)] — ¢(a)],

where 7 is a negated or unnegated predicate and 7 its complement and p(a)
a formula containing a, and a plan

S; = Result(ay, S;—1), i=1,--- N,
such that w(r,---,7%,Sy) and 7(7y, -+, 7k, Sn) hold (where 7,---, 7 are
terms), we can conclude that for some i (1 <i < N), o).

Proof. Obviously (7, -, 7, S;—1) and T(7, - - -, Tk, S;) must hold for some
1, allowing application of the closure axiom. O

Sleeping-dog proposition for holding. Let Dy be a theory (i.e., domain
theory and certifiable plan) as defined above. Then the following default
rules are sound and complete for conclusions of form holding(R, 3, Si) and
—holding(R, /3, Sk), where f € Names and 0 < k < N:

holding(R, 3, S;) —holding(R, /3, S;) —(32)holding(R, z, S;)
holding(R, 3,S;) ~ —holding(R,B3,S;) =~ —holding(R, 5, Si)

where i is the largest integer < k such that at least one of holding(R, 3, S;),
—holding(R, 3, S;), and =(3z)holding(R, z, S;) € Dj.

Proof.

Soundness: We need to show that if i (as defined) exists for a given § €
Names, then Dy, entails whichever conclusions are given by the default rules.
Suppose otherwise, i.e., there are (3, ¢ satisfying the premises for which a
default rule gives a conclusion whose negation follows from Dy, or neither
the conclusion nor its negation follows from Dj. Consider the case where
holding(R, 3, S;) € Dy and Dy, = =holding(R, 3, Sk). Then by (A2) (expla-
nation for holding becoming false) and the Serial Plan Lemma, there was
a step S; = Result(c, Sj_1) with a € {Putdown(R, ), Drop(R, )} and
i < j < k. By the unique-names assumption and inequality schemas (A3),
this step must appear in Dy in precisely this form, i.e., as jth step of the
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plan. But then by (2) and (3), —holding(R, §,S;) € Dy, contrary to the
definition of 7. Next consider the case where —holding(R, 3,S;) € Dy and
Dyt holding(R, 3, Sk). Then a contradiction is derived just as before, using
(A17) (explanation for holding becoming true) and (1). Third, consider the
case where —=(32)holding(R, z,S;) € Dy and Dy = holding(R, 3, S)). Then
the contradiction follows just as in the previous case, except for use of the
fact that —(3z)holding(R, z, S;) F —holding(R, 53, S;).

Now suppose [3, ¢ are such that neither the conclusion of the applicable
default rule, nor its negation, follows from D,. Consider the case where
holding(R, 3,S;) € Dy. Since Dy t# holding(R, 3,Sy), we can consistently
form D}, = D U{—=holding(R, (3, Sk)}. Then in this theory we can prove that
there was a step S; = Result(w, S;_1) with o € {Putdown(R, ), Drop(R, )}
and i < j < k, and that this step must appear explicitly in Dj, and hence
in Dy, by exactly the same line of argument as before (i.e., using the Serial
Plan Lemma, unique names, and (A3)); thus we arrive at a contradiction
as before. We can derive contradictions from the remaining two cases (for
—holding(R, 3, S;) or =(3z)holding(R, z,S;) € Dy) in an exactly analogous
manner.

Completeness: Assume first that Dy, F holding(R, 3, Si) for some 8 € Names.
We need to show that i exists as defined and holding(R, 3,S;) € Dy (so
that default inference yields holding(R, 3, S;)).!"® By the premises of the
proposition, =(3z)holding(R, z, Sy) € Dy, so i certainly exists. Now suppose
holding(R, 3, S;) ¢ D;. Then (by the definition of i) either —holding(R, 5, S;)
€ D; or =(3z)holding(R, z,S;) € D;. In either case, by (A17) there is a step
S; = Result(Pickup(R, 3),S;_1) for some j (i < j < k) and this must be
explicitly in Dy by the unique-names assumption and inequality schemas.
By (1), applied to D;, this contradicts the definition of 7. Second, assume
that Dy F —holding(R, 3,S;) for some [ € Names; we show i exists as de-
fined and either —holding(R, /3, S;) € Dy or =(3z)holding(R, z,S;) € Dy, (so
that default inference yields —holding(R, 3, Sk)). The denial of this disjunc-
tion leads to holding(R, §,S;) € Dy, and a contradiction follows as before. O

These default rules clearly give us a fast method of inferring non-change
for holding (or —holding), when we are working out the effects of a plan

100f course, if i happens to be k, the "default inference” gives nothing new.
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step-by-step. In fact, we can ensure the inferences will be made in constant
time (on average). We store the initial and inferred instances of literals of
form holding(R, 3,0), —holding(R, (,0), —(3z)holding(R, z,0), where 3, o
€ Names, in a common hash table with complex key (holding, (). (We
include holding as part of the key for generality, i.e., for cases where other
fluents are “tracked” as well.) Note that o (the situation constant) is ignored
in the key, so that as we progress through the plan, a list of entries will be
formed for each key in chronological order. The literal needed for default
inference will always be at the front of the list, allowing constant-time access.

So this provides a detailed and concrete example of efficient, STRIPS-
like inference in the Situation Calculus, with the additional advantage of
soundness and completeness (for a certain class of formulas) relative to the
underlying domain theory. Moreover, the structure of the soundness and
completeness proofs suggests that such proofs will be possible for many flu-
ents in many applications.

Nevertheless, such default propositions are not entirely trivial to formu-
late (in particular, with regard to what “effect inferences” should be included
in the D;) and to prove. We would much prefer to have a general methodology
for exploiting closure axioms for STRIPS-like default inferences.

Now it turns out that the main source of difficulty in formulating and
proving sleeping-dog propositions is the goal of completeness, i.e., having
the default rules cover all persistence inferences of a certain form. But it is
acceptable, and ultimately necessary, to relax this constraint. It is accept-
able because losing a few of the fast persistence inferences need not seriously
degrade average performance. It is ultimately necessary in an unrestricted
first-order theory because the forward inferences (from actions to resultant
changes) needed to support subsequent default inferences may become arbi-
trarily hard. Clearly deducing change by forward inferencing is worthwhile
only to the extent that its costs do not exceed the resultant savings in de-
ducing non-change. It is unclear how to trade these off in general, so I will
leave the issue open in the following, concentrating instead on the issue of
soundness.

As soon as we consider incomplete inference of change, the risk of overly
strong persistence inference arises: if at some point a change in a fluent
occurred, but we failed to infer and register it, our default rules might mis-
takenly give us the old, outdated value as the current one. Fortunately,
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explanation closure axioms can be used to safeguard against such errors.
Roughly the idea is to set them up as “sentries” on fluents, and “trigger”
them when an action that may account for a change in those fluents occurs.
Brief attempts to prove change or non-change are then made, and where
both fail, the fluent is flagged as “questionable.” This flagging blocks un-
sound default inferences. Since the flagging is essentially confined to “old”
fluent literals referenced by explanation closure axioms and not subsequently
updated using effect axioms, the total computational effort arguably remains
modest.

In more detail, we begin with an initial world description Dy, including
fluent formulas describing initial situation Sy. 1 will write an unspecified
fluent formula for a particular situation S; resulting from the ith step of a
plan as ¢(S;). S; is understood to be the only constant situational argument
occurring in ¢(S;). ¢(Sk) is the result of uniformly substituting Sy for S;.
?(S;) is the negation of ¢(S;) (with double negations eliminated). 7¢(.S;) is
©(S;) prefixed with “?” after removal of the negation, if any. We also define
the essential fluents as some algorithmically recognizable class of fluent for-
mulas for whose changes we have explanation closure axioms. For instance,
these might be all formulas of form (=)7 (54, - - -, Bk, Si), where 7 is a primary
fluent predicate (used in the axiomatization of the direct effects of actions),
and [y, -, B are constants. We now apply the following procedure. (The
role of explanation closure axioms as “sentries” in step (4) is left implicit for
the moment.)

Plan Tracking Procedure. We take account of the steps of a given plan
Sy = Result(ag, Sk—1), k = 1,---, N, expanding Dy_; to Dy for each k as
follows. Note that for £ > 1, D;_; may contain “questioned” fluents.

1. Initialize Dy, to Dj_;
2. Add Sy = Result(ag, Sk_1) to Dy

3. Apply effect axioms to this plan step in an algorithmically bounded
way, adding new fluents ¢(Sk) to Di. Some implicit effects may be
deduced as well, as long as the computation is guaranteed to terminate.
Preconditions of effect axioms at situation Si_; may be verified in part
by default rules, to be described.
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4. Determine a subset V of the “visible” essential fluents. A fluent formula
©(S;) (0 <i < k) is visible if none of p(S;), B(S;), 7¢(S;) are present
for any j > ¢ (these would “conceal” ¢(S;)). V must include any
visible, essential ¢(S;) for which ¢(Sk) is not provable (i.e., for which
Dy U {S; = Result(cj,Sj_1) | 7 =1,---,k} I/ ¢(Sk)). (Note that we
must have ¢ < k.) In other words, it must include the essential fluents
whose persistence has not been proved, or cannot be proved. (This can
be guaranteed by including all visible essential fluents, but this would
defeat our purposes; more on this later.)

5. For each ¢(S;) € V, initiate concurrent proof attempts for ¢(Sy) and
?(Sk), basing the former on relevant explanation closure axioms and
the latter on relevant effect axioms. Again, conditions at situation
Sk—1 may be established with the aid of default rules. Terminate the
computations by some algorithmic bound T'(p(Sk), D). If the proof
of p(Sk) succeeded, proceed to the next element of V (i.e., p(S;) need
not be concealed). If the proof $(Sk) succeeded, add B(Sk) to Dy. If
both attempts failed, add ?¢(Sk) to Dy.

Having tracked a plan to step N, we would attempt to prove the goals
of the plan, in the same manner as we prove preconditions in step (3). Of
course, in a bounded proof attempt in unrestricted Situation Calculus, step
(3) and the goal proof attempt may both terminate before a target formula
is confirmed, even though it may be provable in principle. However, in the
event of failed precondition or goal proofs we might well use some systematic
way of increasing the computational effort in steps (3) and (5) (and the final
goal proof). If our underlying proof procedures are complete, this will ensure
that we will eventually prove the preconditions and goals, if indeed they are
provable.

All this presupposes that the procedure as stated is deductively sound.
This hinges entirely on the soundness of the default rules employed in steps
(3) and (5). We now turn to these.

Default Lemma. For each k € {i,---, N}, at the end of step (5) of the
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Plan Tracking Procedure, the following default rule
©(S5i)

©(Sk)
is sound for any essential fluent formula ¢(S;) visible in Dy, i.e., Dy U
{S; = Result(aj, Sj_1) | j=1,---,k} F ©(Sk).

Proof. By induction on k. The proposition is true for £ = 0, since then
all visible formulas are € Dy. Assume it is true for all & < k' — 1 (k' > 0).
Then the first &' — 1 cycles through steps (1)-(5) clearly add only logical con-
sequences of Dy U {S; = Result(c;,S;—1) | j=1,---,k" =1} to Dy _; (aside
from questioned fluents). At the £'th cycle, the use of default rules in steps
(3) and (5) to derive essential fluents ¢ (Sk 1) is also sound by hypothesis. In
step (5), by the definition of V every essential fluent (.S;) such that ¢(Sk) is
not deducible is concealed. Hence no such ¢(Sy/) can be unsoundly obtained
by default rules after step (4). O

Soundness is a minimal requirement if the plan tracking procedure is
to provide an interesting alternative to STRIPS-like or other nonmonotonic
methods. The other requirement is efficiency. How does the efficiency of the
procedure compare to that of STRIPS-like methods? And does the use of the
default rule provide gains over ordinary proofs based on explanation closure,
like that of Proposition 17

I don’t think either of these imprecise questions can be made precise with-
out confining oneself to some specific domain. That is an exercise we have
already gone through (in the sleeping-dog proposition for holding), so my an-
swers will not aspire to theoremhood. It appears that plan tracking can be
roughly constant-time per plan step in STRIPS. This assumes that true pre-
conditions can be confirmed in constant time on average (i.e., preconditions
do not depend on “deeply implicit” effects), and that the fluents matched by
add-list and delete-list patterns do not become arbitrarily numerous. How
close does the plan tracking procedure come to this level of efficiency?

Steps (1)-(3) closely resemble precondition and effect computations for
STRIPS operators, and so can reasonably be expected to be of comparably
low complexity. This assumes that essential fluents correspond closely to
fluents that would be referenced in STRIPS operators. It also assumes that
default determination of precondition fluents will usually succeed in step (3)
when it succeeds via the STRIPS (persistence) assumption; and that depends
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on steps (4) and (5), so let us turn to these.

The key question is whether in step (4), Vis an easily found, small subset
of the visible, essential fluents. If V does not become arbitrarily large (even
when the number of essential fluents “tracked” becomes arbitrarily large) or
arbitrarily hard to find, then step (5) will also have bounded complexity —
provided that the bound 7' is sufficiently tight. Furthermore, if V remains
small, then there will be few failures in step (3) to infer essential precondition
fluents by default.

The first observation about the size of V is that it is sometimes 0. That
was the point of the sleeping-dog proposition for holding. Essentially this
was made possible by the biconditional nature of the combined effect and ex-
planation axioms: holding begins iff the robot (successfully) picks something
up, and ceases iff he (successfully) puts down or drops something.

But exploiting this fact required a definition of Dy, D5, - - - tailored to the
domain. How is D to be determined in general? The answer is to be sought
in the explanation closure axioms. V' consists of essential fluents which may
have changed as a result of the last plan step, but have not been proved to do
so. But if we have an explanation closure axiom for such a fluent, we know
that the only way it could have changed is through the occurrence of one of
the actions specified in the explanation. This immediately rules out all the
essential fluents for which the known types of explanations for change do not
match the action which occurred. This should eliminate the great majority
of candidates.

Knowing that only a fraction of the visible essential fluents are candidates
for Vis no immediate guarantee that we can avoid sifting through them all.
however, if we accept the action inequality schemas (3) and the unique-names
assumption (so that “action instances that don’t look the same denote dis-
tinct actions”), we can use the following sort of indexing scheme to compile
V effortlessly. (i) We store (names of) explanation closure axioms in a static
table with the type of fluent whose change they explain as key. (ii) We also
store them in another static table with the types of actions they invoke as
explanations as keys (with separate storage under each alternative explana-
tion). (iii) Finally, we maintain a dynamic table which for each explanation
closure axiom contains a list of those visible, essential fluents whose change, if
it occurs, would be explained by the axiom. (These are the fluents for which
the axiom serves as “sentry”.) When a new essential fluent is asserted, we
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delete any fluent in table (iii) concealed by the new fluent (using back point-
ers from the fluents to the table). We look up the closure axiom relevant to
the fluent in table (i), and hence store the fluent in table (iii). We can then
implement step (4) of the plan tracking procedure by indexing into table (ii)
for the new action ay; we thus find the relevant “sentries” (closure axioms
involving explanations which the new action instantiates), and hence retrieve
the visible essential fluents potentially affected by the action from table (iii)
(where we can restrict attention to those ¢(S;) with ¢ < k, as indicated in
step (4)). This makes plausible the claim that STRIPS-like efficiency can be
achieved, while retaining soundness.

A brief return to the next-to problem may help to clarify the differences
between the inferences made by a STRIPS-like approach and those made
by the present procedure. Let us treat fluents of form (—)next-to(R, 5, «)
(where  and o are constants) as essential. We already have (A23) as possible
explanation closure axiom for next-to becoming true, to which we might add:

A24. (Ya,x, s, s')|[[next-to( R, z, s) A -next-to(R, x,s") A s’ = Result(a, s)]
— (Jy)[a = Go-next-to(R,y) N —next-to(x,y, s)|]

Also, the effect axiom is

A25. (Va,z,s, s")|[[-next-to(R, x,s) A s’ = Result(Go-next-to(R, ), s)]
— next-to(R, x, s')]

We take (A3) and (A23) - (A25) as our only general axioms here, and assume
initial situation Sy such that

—next-to(R, W1, Sy), —next-to(R, Wy, Sy), remote(Door, Wi, Sy),
—next-to(R, Door, Sy), next-to(Wy, Wy, Sy)

Now we track the effect of “plan” S) = Result(Go-next-to(R, W), S).
Applying effect axiom (A25):

next-to(R, Wi, Sh)
At this point, next-to( R, W1, S1), -next-to(R, W, Sp), and —next-to( R, Door,
Sp) are visible, essential fluents. (next-to(W;, Wy, Sp) is not essential as we
have supplied no explanation closure axioms that apply; W; # R by the
unique-names assumption.) The first is not in V' (see step (4) of procedure)
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since it is a current fluent (i = k). —newt-to(R, W, Sp) leads to concurrent
proof attempts for next-to(R, W5, S1) and —mext-to(R, W3, S1), the former
via effect axiom (A25) (which fails), and the latter via explanation axiom
(A23). One way the proof strategy might proceed is by assuming next-
to(R, W3, S1) and attempting to derive a contradiction from (A23). This
yields

(Fy)[Go-next-to(R, W1) = Go-next-to(R,y) A —remote(Ws,y, Sp)]-

By inequality schemas (A3), W, =y, so

—remote(Ws,, Wi, Sp).

This does not lead to contradiction; so since both proof attempts failed, the
questioned fluent ?next-to(R, W, S1) is posted.

Similarly —next-to(R, Door, Sp) leads to concurrent proof attempts for
next-to(R, Door, Sy) and —next-to(R, Door, S1). The former fails. The latter
may again be attempted by assuming next-to(R, Door,S;) and trying to
derive a contradiction from (A23). This yields

(Fy)[Go-next-to(R, W) = Go-next-to(R,y) A ~remote(Door, y, Sp)].

By schemas (A3), Wi =y, so

—remote(Door, W1, Sy),
contrary to a given fact. Since persistence of the robot’s not being next to the
door has thus been confirmed, nothing further is done: —next-to(R, Door, Sy)
will stay visible in world description D; and will thus be available for default
inference of —next-to(R, Door, St).

Of course, since the example only recognizes one type of essential flu-
ent, and this is the one affected by the assumed action, it cannot serve to
illustrate the claim that only a small fraction of the visible essential fluents
will typically fall into subset V. What it does illustrate is the distinction
the approach makes between warranted and unwarranted persistence infer-
ences — it correctly recognizes the persistence of —next-to(R, Door, Sy), and
correctly “questions” the persistence of —next-to(R, Wy, Sy). STRIPS-like,
circumscriptive, and nonmonotonic approaches would fail to make this dis-
tinction.

This still leaves the question of whether the Plan Tracking Procedure,
with its reliance on default inference, provides significant gains over proofs
in the goal-directed style of Proposition 1.

Here the answer appears to be “not necessarily” — only in special cases.
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Consider how one might try to argue the affirmative. One might, for instance,
point to tasks such as letter carrying. Repetitive tasks of this type may well
be of considerable interest in robotic domains. Now one might argue that a
nondefault approach would have to prove after each delivery that the mail bag
is still at hand, and the undelivered letters still in it. But such an argument
would be erroneous. A goal-directed approach that performs inferences as
needed would ignore the question of where the letters are until it was time to
deliver the letter x to address y. At this point the reasoner would note that
x was in the bag at the outset, that only “delivering z” can change this fact,
that this action did not occur, and hence that z is still in the bag. If actions
are suitably indexed (e.g., via keys like (Deliver, Letter41)), this inference
process is a constant-time one, and hence cannot be significantly worse (in
terms of order of complexity) than the default method.

Still, the default method has the advantage that in cases like the above
even less work (viz., a look-up) is needed; in other words, the constant is
smaller. Also, the greater explicitness of world descriptions in the default-
based approach may facilitate “mental perception” processes, such as recog-
nition of opportunities and threats. For instance, a robot planning to change
a lightbulb and to hang up a calendar might “observe himself” passing close
to the tool shelf in imagining his excursion to the basement to fetch a bulb.
This might prompt him to obtain a hammer and nail on the same trip.
“Observing” his proximity to the tool shelf requires maintenance of an up-
to-date world model, one which reflects both change (his own location) and
persistence (the tool shelf location). The STRIPS-inspired Plan Tracking
Procedure seems well-suited to this kind of mental perception; for instance,
one can imagine using “demons” which watch for opportune circumstances
(relative to current goals). It would be harder to trigger such demons if the
circumstances of interest could only be brought to light through persistence
inference, however efficiently.

9 Possible extensions and probable limitations
Its supposed impotence vis-a-vis the frame problem is not the only deficiency
commonly attributed to the Situation Calculus. It is also alleged to rule

out concurrent actions, an independently changing world (external events),
continuous change, nonprimitive and hierarchically structured actions, and
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other complex actions such as conditional and iterative ones.

While this range of topics is too broad for detailed consideration here, I
will attempt a brief exculpation, with emphasis on the issue of concurrency.
However, an interesting weakness that does emerge is that there is a kind
of tension between the predicative language of propositional fluents, and the
functional language of actions and Result. The former provides a simple
means for describing change in any desired aspect of the world. The latter
is in principle compatible with a broadly changing world, but is useful only
to the extent that one adopts a localized view centered around one or a few
agents. In particular, the rest of the world poses a hazard to the consistency
of the functional view. So the overall picture is that the Situation Calculus is
in principle much more expressive than generally assumed, but is hampered
in practise by the “parochialism” of the Result function.

To see that the Situation Calculus does not rule out external events and
agencies, think of the situations S’ = Result(A, S) as being the result of A
and situation S (rather than just the result of A in situation S). In other
words, S may be a dynamic situation, which is headed for change no matter
what actions are initiated in it. This view allows for any sort of deterministic
external change we care to describe, such as that the sun will have risen by
8:00 o’clock on any day, no matter what:

(Va,d, s, s")[[day(d) A contains(d, s) A contains(d, s")A
—risen(Sun,s) A Clock-time(s') > 8 A s' = Result(a, s)]
— risen(Sun, s')|

We can even accommodate animate agencies of change, as in the arrival of
buses at a bus stop. Here we might use a Wait-for-bus action whose “result”
— thanks to the transit agency and drivers — is the presence of a bus.

However, external agencies of change do become a problem if they alter
criterial fluents (those on which planned actions and goals depend) unpre-
dictably. In such a case both effect axioms and explanation closure axioms
may be invalidated. For example, if traffic on the bus route may jam, or the
drivers may strike, then being at the bus stop with the fare at hand is no
longer a sufficient condition for success of Wait-for-bus. (In other words, we
encounter the qualification problem.) Similarly, if the money in my pocket
may be arbitrarily lost or stolen, I cannot assert an axiom that its depletion
requires an expenditure. Thus, I will be unable to prove the financial pre-
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conditions for boarding the bus. It would not help to include loss and theft
among the possible explanations for depletion of funds, since the occurrence
of these events cannot be ruled out on the grounds that some other event
occurred, such as Wait-for-bus (or to put it differently, they weren’t part of
the plan).

This inability to deal effectively with a larger, more capricious world
was implicit even in the earlier, sharply delimited robot’s world: the closure
axioms used there have highly implausible consequences if applied to the
world at large. For instance, (A20), the closure axiom for cessation of at,
together with a simple action like S} = Result(Pickup(R, B), Sy) and the
inequality schemas (A3), entails that

—(3x,y) [at(z,y,So) A —at(x,y, St)],

i.e., nothing moved (horizontally) between Sy and S;. While this is a rea-
sonable conclusion within a restricted robot’s world, it is not reasonable in
a world where numerous external agencies are active concurrently with the
agent of interest. One way of achieving greater realism would be to place
restrictions on the variables of the closure axioms. For instance, we might
say that when any one of a certain set of objects (nondiminutive ones within
the setting of interest) ceases to be at a location, then the robot walked, and
is that object or carried it. However, it is unclear in general how to formu-
late such variable restrictions in a principled, uniform manner. Even agents
physically remote from an object may be able to affect it (cf. Georgeft 1987).

Despite these limitations, the fact remains that the Situation Calculus in
principle admits external events.

Before moving on the the next supposed deficiency of the Situation Cal-
culus, let us recall that it subsumes first-order logic. As such it allows the
formation of complex action terms from simpler ones. This compositional
potential has generally been overlooked (but see Kowalski 1986, Kowalski
and Sergot 1986, and Morgenstern 1987). All of my remaining suggestions
hinge on modifying or combining actions by means of functions.

In the standard “robot’s world” examples (including the ones herein)
change occurs in quantum jumps. However, in formalizations based on the
Situation Calculus, this is not due to a limitation of the formalism (in contrast
with STRIPS, for instance), but only to tradition. We can readily attain a
continuous view of what goes on during an action, using a function such as
Trunc(a,t) for “cutting short” action a after ¢ seconds, if it would otherwise
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have taken longer. The properties of truncated actions can be axiomatized
using a Tme function on situations which is real-valued and one-to-one on
any set of situations constituting a “possible history of the universe” (cf.,
McDermott 1982, Allen 1984). Trunc allows us to say, for example, that
at all situations s” during Walk(R, z,y) starting in situation s and ending
in s', the fluent formula moving-toward(R,y, s") holds. Moreover, a slight
generalization of explanation closure axioms allows us to extend persistence
reasoning to ongoing actions. For example, we can modify (A2) appropriately
by stating that the only primitive actions whose initial segments can lead to
cessation of holding are Putdown and Drop.

Another simple use to which functions on actions can be put is to form
sequences of actions. (McCarthy and Hayes modelled sequencing and other
control regimes by inserting expressions of the Situation Calculus into Algol
programs, rather than attempting composition within the Situation Calcu-
lus). In particular, we can employ a binary Seq function with the obvious
definition

(Va, b, s) Result(Seq(a,b),s) = Result(b, Result(a, s)).

Axioms to distinguish primitive from composite actions are easily formulated,
using predicates prim and comp. Another slight amendment of explanation
closure axioms will then preserve their utility: in axioms like (A16) - (A24),
we include the qualification prim(a) in the antecedent.

Now what makes sequences of actions interesting is the possibility of
using them as “macros” (larger-scale actions) in plan reasoning. For this to
be profitable, however, both effect axioms and explanation closure axioms
need to be formulated at the level of composite actions. Both turn out to
be possible, at least within limits. For effect axioms, we can use “lemmas”
about their net effect based on effects of constituent primitive actions. For
explanation closure, where there are just two levels (prim and comp) of
stratification, we can use entirely separate closure axioms at the comp level,
with actions qualified as comp(a) in the antecedent. For instance, suppose
we have defined Move-object as a 3-step macro (involving Pickup, Walk,
and Putdown), along with “stationary” macros like Empty-into, Open-blind,
Unlock, and so on. Then we can state that if an object changes location via
a comp action, the action must be a Move-object (and the relocated object
must be the argument, or carried by it, or is the robot, or something the
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robot was already carrying at the start).

Generalizing beyond two levels of stratification is certainly desirable but
at this point an open problem. We need to move from the two predicates
prim and comp toward a general taxonomy of actions, allowing for both
composition (constructing larger-scale actions out of smaller-scale ones) and
abstraction (classifying a given set of actions as being of the same abstract
type). As an example of abstraction, running, walking, crawling and hop-
ping (by humans) can all be classified as types of unmechanized travel, where
the latter is in turn subsumed under (mechanized and unmechanized) travel.
Preliminary research suggests that persistence reasoning based on explana-
tion closure axioms carries over to this setting, with the requirement that
“action inequality reasoning” based on schemas (A3) be replaced by “action
exclusion reasoning” (e.g., the incompatibility of running and walking).

One possible weakness of the Situation Calculus that emerges from a
consideration of action abstraction is its somewhat counterintuitive distinc-
tion between “deterministic actions” — those (reified) actions which lead to
a unique successor state via Result — and abstract actions — those describ-
able only by predicates over (reified) actions. This flaw apparently cannot
be remedied without substantial reformulation of the calculus (e.g., in terms
of a result-relation over actions and pairs of situations) or without losing
the advantage of having plans expressed as terms, allowing their deductive
extraction in the manner of Green.

Conditional actions and iteration can also be introduced with the aid
of composition functions such as If (test,action) and W hile(test, action).
The details would take us too far afield, but three things are worth pointing
out. First, preconditions for conditional actions must take account of the
agent’s knowledge about the truth of test, to avoid an assumption of omni-
science and the risk of paradox; consider, for instance, If( Goldbach-conjecture,
Say-yes(R)) or If Committed-to-saying-yes(R), Say-no(R)) (cf., Manna and
Waldinger 1987, Morgenstern 1987). Second, tests are reified propositions
about situations and as such appear to call for duplicating the entire logic
within its functional notation, including quantifiers and connectives (e.g.,
consider “test whether there is a blue cup in every box”). This is feasible
(McCarthy 1979), but to my mind not very attractive. The third point is
that at least if we limit ourselves to “tests” which fit into our taxonomy of ac-
tions (e.g., prim and comp in simple cases), explanation closure can be used
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to prove persistence through conditionals and loops — though naturally both
change and nonchange inference can become quite complicated in proofs by
cases or by induction.

Finally, T will consider concurrency at somewhat greater length. As be-
fore, the key is action composition, in this case by parallel combinators. I
will restrict myself to one for the moment, Costart(a, a) which is the action
consisting of simultaneously started actions a;, as, and which terminates as
soon as both are done (not necessarily at the same time). a; and ay need
not be independent of each other, i.e., the effect of each may depend upon
the co-occurrence of the other (as, for example, in cooperative lifting and
carrying of a sofa). However, I will not concern myself with reasoning about
interdependent actions here.

It is important to understand the intuitive interpretation of the expression

Result(Costart(ay, az), s).

Just as in the case of Result(a, s), this is the resultant situation when only
the action specified by the first argument (in this case, Costart(ay, as)) takes
place. This incidently does not preclude external change any more than in
the serial case. The notation simply says that the concurrent actions a; and
as are the only ones carried out by the agents of interest — those who from
our chosen perspective generate the space of possible future histories (while
any other sources of change can only be accommodated predictively).

The following example will serve to illustrate reasoning about persistence
(and change) in a world with concurrent actions. In a room containing a
man, a robot and a cat as the only potential agents, the only actions are
that the man walks from one place to another, while the robot picks up a
box containing the (inactive) cat and walks to another place. So the initial
conditions (in part) and the plan are as follows:

at(R, Ly, Sy), next-to(R, B, Sy), ing(C, B,Sy), liftable(B),
color(C, Ginger, Sy), at(H, Ly, Sp), —(3z)holding(R, z, Sy)

Hplan = Walk(H, Ly, L3)

Rplan = Seq(Pickup(R, B), Walk(R, Ly, Ls))
Plan = Costart(Hplan, Rplan)

S3 = Result(Plan, Sp)

Our goal is to show that the cat retains its ginger color:
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(a) color(C, Ginger, Ss)
Since we will need to reason about the primitive parts of composite actions,
we will use the following postulates.

A25. Walk, Pickup, etc. are primitive: for . an n-place function €
{Walk, Pickup, Paint, ...},

(Vay, -, xy,) prim(a(zy, - -, x,))

A26. A primitive part of two concurrent actions is a primitive part of one
or the other.

(Va,y, 2)[prim-part(xz, Costart(y, z))
— [prim-part(z,y) V prim-part(z, z)]|

A27. Similarly for sequences of actions

(VJI, Y, z)[prim—paTt(:r, Seq(y, Z))
— [prim-part(z,y) V prim-part(z, z)||

A28. A primitive part of a primitive action is identical with it.
(Va,y)[[prim-part(x,y) A prim(y)] = = = y]

To prove color persistence, we will use the following variant of closure
axiom (A16):

A29. If an object ceases to be of color v in the course of a plan, that plan
contains a primitive part which is the action of painting or dyeing the
object some color w.

(Vp,y,v, s, s")[[color(y,v,s) A —color(y,v,s") A\ s' = Result(p, s)]
- (3377 a, U))[CL S {Pamt(:r, Y, UJ), Dye(x, Y, U})}/\
prim-part(a, p)]]

We can now prove our goal (a) by assuming it is false and applying (A29)
with ¢’ and p instantiated to Sz and Plan respectively. We infer that for some
agent x, x painted or dyed the cat and this action is a primitive part of Plan.
Then this action is also a primitive part of Hplan or Rplan by (A26). Hence
it is a primitive part of Walk(H, Ly, L3), Pickup(R, B), or Walk(R, Ly, Ls)
by (A27). By (A25) and (A28) the painting or dyeing action is identical with
one of these three actions, contrary to the inequality schemas.
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This proof (and its axiomatic basis) is very simple, and that is the primary
point of the illustration. However, we would also like to confirm that change
can be inferred in such a setting, based on reasonable success criteria for the
concurrent actions involved. As in the case of serial worlds, this is a little
harder than inferring persistence.

For actions which have their usual preconditions satisfied, I will take spa-
tiotemporal disjointness of their “projected paths” as a sufficient condition
for their successful concurrent execution.!' Path(a, s) can be thought of as
a time-varying spatial region, namely the region which the agent of action a
and all the objects it “carries” is expected to occupy from Time(s) onward,
if a is the only action initiated in situation s or beyond. Projected paths
are assumed to be adhered to in the performance of an action as long as any
actions concurrent with it are independent of it.

To state these assumptions formally, we need to think of situations (and
time) as changing continuously throughout actions, and to provide a way
of referring to portions of plans preceding or following some intermediate
situation at which a component action ends. For the preceding portion, we
define Costart,(p, q) as the action which consists of running p to completion
while running ¢ concurrently, cutting it off if it has not yet finished when p
is done. (As in the case of Trunc, this does not necessarily entail an actual
cutoff, but just that Result applied to this action will return the situation
at the point where p finishes.) We will later define Remainder(p, g, s) as the
“left-over” portion of p.'?

Let us prove that the cat ends up in the same final location as the robot;
ie.,

(b) at(C, Lo, Ss3)
introducing further axioms as needed. We begin by showing that R’s Pickup
succeeds. The modified effect axiom for Pickup is

A30. (Ya,z,y,p,s,s)|[next-to(z,y,s) A liftable(y) A =(3z)holding(z, z, s)
A a = Pickup(xz,y) N compatible(a,p) A

HGpatiotemporal disjointness is a special case of disjoint “resource” use, if one conceives
of resources broadly as including occupiable regions of space. Disjoint resource use is often
a sufficient condition for compatibility of concurrent actions, though not a necessary one.

2In the same vein, one can delay, vacuously extend, and truncate actions, using
a vacuous action Passtime(t) in Seq(Passtime(t), p), Costart(Passtime(t), p), and
Costart, (Passtime(t), p).
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s' = Result(Costart,(a,p), s)]
— holding(z,y, s')]

This illustrates the generalization of effect axioms to worlds with concurrent
actions. Note that the result of the action is considered in the context of an
arbitrary concurrent plan p.

To apply this axiom to the robot’s Pickup action in the context of the
man’s Walk, we need to establish the compatibility of the two actions. To
minimize geometrical complexities, let us assume that we are able to calculate
“action corridors” for Pickup(R, B) and Walk(H, Ly, L) independently of
the situation in which they are attempted, except for being given the location
of R in the Pickup (i.e., Ly). This is plausible if corridors are “generously”
defined so as to allow for “elbow room” and as large a collection of objects
as R or H are capable of carrying. (In practice the corridors might be
generalized cylinders based on the geometry of the room and the agents,
plus clearance.) By definition the projected path of any Pickup feasible in
isolation will be confined to the Corridor for that Pickup, and similarly for
the projected path of a Walk:

A3l. (Va,u,x,y, s)|[at(x,u,s) A next-to(x,y,s) A liftable(y) A
—(3z)holding(x, z,s) A a = Pickup(z,y)]
— confined-to(Path(a, s), Corridor(a,u))]
(Va,z,y, 2, s)|[at(z,y,s) N a=Walk(z,y, z)]
— confined-to(Path(a,s), Corridor(a,y)]

Call the relevant action corridors Corridor-R-Pickup and Corridor-H-Walk,
and assume they are disjoint regions of space:

A32. Corridor(Pickup(R, B), Ly) = Corridor-R-Pickup
Corridor(Walk(H, Ly, L3), Ly) = Corridor-H-W alk
disjoint(Corridor-R-Pickup, Corridor-H-W alk)

Clearly the antecedents in (A31) are satisfied by a« = Pickup(R, B) and a =
Walk(H, Ly, L3) respectively, and so we can conclude with the aid of (A32)
that their projected paths are confined to the above-mentioned corridors.
This finally puts us in a position to infer their compatibility, using

A33. (Yay, ag, ¢y, Co, s)[[con fined-to(Path(ay, s),c1) A
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con fined-to( Path(asy, s),c2) A disjoint(cy, c3)]
— compatible(ay, as, s)]

The conclusion is compatible( Pickup(R, B), Walk(H, Ly, L3), Sp), and so
we can instantiate (A30) and conclude that the Pickup succeeds, i.e., holding (
R, B, S1), where S; = Result(Costart,(Pickup(R, B), Walk(H, Ly, L3)), Sp).

To show that the robot’s Walk, initiated right after the Pickup, succeeds,
we begin by defining Remainder(p, ¢, s) as a function which returns the part
of p “left over” if Coostart,(q,p) is executed in situation s; i.e.,

A34. (Vp,q, s) Result(Costart(p,q), s) =
Result(Seq(Costart,(q,p), Remainder(p,q,s)), s)

(A suitable null element can be used when nothing is left over.) The reason for
having a situation argument in the Remainder function is that the part of p
left over when ¢ finishes in general depends on initial conditions. In addition,
a Tail function will serve to return the remainder of a path, starting at a
specified time. Then a required axiom about conformity between actual and
projected paths, in the case of compatible concurrent actions, can be stated
as follows:

A35. (Vp, q,r, so, s)[[compatible(p, q, so) A = Remainder(p, q, so) A
s = Result(Costart,(q,p), so)]
— [Path(r,s) = Tail(Path(p, s), Time(s))]]

This says that if a plan p has been partially executed concurrently with
another compatible plan till the latter was done, then the projected path for
the remainder of p is unchanged from the original projection (apart from the
absence of the initial path segment already completed). Thus we can use the
previously inferred compatibility of R’s Pickup and H’s Walk to calculate
the projected remainder of H’s Walk, namely,
Tail(Path(Walk(H, Lo, L3), Sp), Time(S)).

We assume that a situation reached from another via an action is temporally
later, so this “tail” path will be a part of the complete Walk-path. Since the
latter is confined to Corridor-H-Walk, it is clear (without going into further
detail) that the former is also. So, assuming

A36. Corridor(Walk(R, Ly, Ls), L) = Corridor-R-Walk
disjoint(Corridor-R-Walk, Corridor-H-Walk),
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we can confirm the preconditions for R’s Walk, in

A37. (Ya,x,y, z,p, s, s )[[at(z,y,s) N a=Walk(x,y,z) A
compatible(a,p) N s' = Result(Costart,(a,p), s)]
— at(z, z,5")]

At least, we will be able to confirm those preconditions if we can derive the
persistence of the robot’s location during the Pickup, i.e., at(R, Ly, S;). But
this follows easily from a closure axiom for change in at similar to (A29) and
the primitive-part axioms (A26) and (A28).

It then remains to track the location of the cat as it gets picked up and
moved along with the box. This need not detain us, since it is completely
analogous to the proof of Proposition 1(c). (Of course, all additional effect
axioms and explanation axioms need to allow for concurrent plans in the
manner of (A29), (A30) and (A37). Also, some axioms are needed for re-
lating alternative ways of decomposing composite plans in terms of Costart,
Costart,, Seq, and Remainder.) O

Clearly, the main complication in tracking change has been the estab-
lishment of compatibility between concurrent actions. This was done by the
rather crude device of assuming that action paths are confined to disjoint
“corridors”. Even that was a little tedious, suggesting (unsurprisingly) that
the Situation Calculus is not well-suited to reasoning about detailed geomet-
rical and kinematic relationships — at least not without supplementation by
specialized data structures and algorithms.

My main objective, however, has been to demonstrate the ease of proving
non-change, using explanation closure in a world with concurrent actions.
Generalization of STRIPS-like plan tracking methods to worlds with concur-
rent actions remains an open problem. However, I see no serious obstacle to
doing so at least in cases where the chronological ordering of the start and
end points of the set of concurrent actions can be inferred, and concurrent
actions are independent of each other.

Finally, a few words are in order on McCarthy and Hayes’ telephone
problem, with which I started. In a sense, this is simpler than my robot-
and-the-cat problem, since it involves no concurrency (look up the number
and then dial it) and hence requires no action-compatibility reasoning. If
we are prepared to posit such “primitive” actions as Lookup-number (z,y),
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Dial-number (z,y), Carry-off (z,y), and Leave-home (x), providing effect
and closure axioms in terms of these actions for fluents like know-number
(x,y,s), has (z,y,s), at-home (z,s), and in-conversation (x,y,s), we will
have no trouble with the problem.

However, the same caveats apply as in the discussion of external agen-
cies of change at the beginning of this section. If we are not careful about
the way we qualify success conditions for actions, or variable restrictions in
explanation closure axioms, our axioms will be patently false in the world at
large. This is certainly something to be avoided in a general “commonsense
reasoner,” yet we do not at this point have a general, principled method of
doing so.

I believe that the most promising research avenue in dealing with this
difficulty lies in the application of probabilistic methods such as those of
Pear](1988), Bacchus(1988), Kyburg(1988), Dean & Kanazawa(1988), and
Weber(1989). These methods allow one to give expression to the “statistical”
aspect of our experience and knowledge of the world. For instance, people
know that a penny left on the sidewalk is much more likely to stay put for
a day than a dollar bill, that a car parked at night on a residential street
will stay in place much longer on average than one parked on a weekday
at a supermarket, and so on. In part, this knowledge is due to direct or
linguistically transmitted observation, and in part it derives from related
knowledge about why, and how often, people or other agents do the things
which account for change. The dollar bill illustrates both aspects: we have
a pretty good idea from direct observation about the density of pedestrian
traffic on various kinds of streets at various times, and we also know that few
people would fail to notice a dollar bill on the sidewalk, and having noticed
it, fail to retrieve it. As well, we know about winds and their effects. Such
“statistical” knowledge is absolutely indispensable in coping with a complex
and more or less capricious world. It may even constitute the bulk of our
general knowledge.

The role of this knowledge with respect to the frame problem is that it
provides a stable, yet pliable base on which we can superimpose our episodic
knowledge. Since this base merely supplies statistical priors, it yields to the
pressure of event reports that run against the odds, replacing probable per-
sistence with known change. Effect axioms and explanation closure axioms
would be recast probabilistically in such a representation, and supplemented
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with direct empirical probabilities for various kinds of change (or conversely,
persistence). If we regard the success of an action as a mere likelihood, given
that the major preconditions are met, we avoid a futile quest for perfectly re-
liable preconditions. If we regard certain actions capable of effecting change
as merely improbable, rather than as assuredly absent, we avoid unfounded
beliefs about the lack of change in the world at large, and about the inevitable
success of our plans.

Of course, the nonmonotonic theorists can reasonably claim to be striving
toward just this kind of resilient, yet amendable knowledge base. There is,
however, a fundamental difference between probabilistic and nonmonotonic
methods of inferring persistence. According to the former, McCarthy and
Hayes’ phone stays put, in the absence of information to the contrary, because
we know perfectly well that phones very rarely get moved (and indeed, we
know why they don’t). According to the latter, it stays put in the absence
of information to the contrary simply because there is no information to the
contrary. The former is sensitive to the statistical facts of the world (such as
that the phone is much less likely to depart than the intended party at the
other end), while the latter is turned entirely inwards.

6 Conclusions

I have provided evidence that explanation closure axioms provide a succinct
encoding of nonchange in serial worlds with fully specified actions, and a basis
for STRIPS-like, but monotonic inference of change and nonchange in such
worlds. As such, they are certainly preferable to frame axioms; they also offer
advantages over circumscriptive and nonmonotonic approaches, in that they
relate nonchange to intuitively transparent explanations for change, retain
an effective proof theory, and avoid unwarranted persistence inferences.

Furthermore, unlike frame axioms, explanation closure axioms generalize
to worlds with concurrent actions. I led up to an illustration of this claim by
enumerating some generally unknown capabilities of the Situation Calculus
with respect to external events, continuous change, and composite actions, all
of which seem compatible with explanation closure. Throughout, I adhered
to the original Result-formalism, so as to retain the treatment of plans as
terms, and hence the possibility of extracting plans from proofs.
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Limitations of the Situation Calculus I noted along the way were the
tediousness of reasoning about simple spatiotemporal relationships (without
special methods), an unequal treatment of primitive (concrete) and abstract
actions, and most importantly, the parochial view of the world enforced by
the Result-formalism. It works well only for domains in which the actions
capable of effecting salient change are fully and reliably known. I suggested
that probabilistic methods offer the best hope of overcoming this limitation.

Directions for further research are generalizations of the results (espe-
cially the “sleeping dog” strategy) to more complex theories of the world
(with external events, continuous change, higher-level actions, and concur-
rency), investigation of planning (as opposed to mere “plan tracking”) using
deductive or other methods, and the study of all of these issues within a
probabilistic framework.
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