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Abstra
t. The paper is 
on
erned with the su

in
t axiomati-

zation and eÆ
ient dedu
tion of non-
hange, within M
Carthy

and Hayes' Situation Cal
ulus. The idea behind the proposed

approa
h is this: suppose that in a room 
ontaining a man, a

robot and a 
at as the only potential agents, the only a
tion

taken by the man within a 
ertain time interval is to walk from

one pla
e to another, while the robot's only a
tions are to pi
k

up a box 
ontaining the (ina
tive) 
at and 
arry it from its initial

pla
e to another. We wish to prove that a 
ertain obje
t (su
h

as the 
at, or the doormat) did not 
hange 
olor. We reason that

the only way it 
ould have 
hanged 
olor is for the man or the

robot to have painted or dyed it. But sin
e these are not among

the a
tions whi
h a
tually o

urred, the 
olor of the obje
t is

un
hanged. Thus we need no frame axioms to the e�e
t that

walking and 
arrying leave 
olors un
hanged (whi
h is in general

false in multi-agent worlds), and no default s
hema that proper-

ties 
hange only when we 
an prove they do (whi
h is in general

false in in
ompletely known worlds). Instead we use explanation-


losure axioms spe
ifying all primitive a
tions whi
h 
an produ
e

a given type of 
hange within the setting of interest. A method

similar to this has been proposed by Andrew Haas for single-

agent, serial worlds. The 
ontribution of the present paper lies in
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showing (1) that su
h methods do indeed en
ode non-
hange su
-


in
tly, (2) are independently motivated, (3) 
an be used to justify

highly eÆ
ient methods of inferring non-
hange, spe
i�
ally the

\sleeping dog" strategy of STRIPS, and (4) 
an be extended to

simple multiagent worlds with 
on
urrent a
tions. An ultimate

limitation may lie in the la
k of a uniform strategy for de
iding

what 
uents 
an be a�e
ted by what agents in a given domain.

In this respe
t probabilisti
 methods appear promising.

1 Introdu
tion

\One feels that there should be some e
onomi
al and prin
ipled

way of su

in
tly saying what 
hanges an a
tion makes, without

having to expli
itly list all the things it doesn't 
hange as well;

yet there doesn't seem to be any other way to do it. That is the

frame problem".

{ Pat Hayes (1987:125)

The frame problem originally surfa
ed within M
Carthy's Situation Cal-


ulus (M
Carthy 1968), when M
Carthy and Hayes (1969) applied it to rea-

soning about goal a
hievement. To illustrate their approa
h, they 
onsidered

the problem of initiating a telephone 
onversation. They began by writing

down plausible axioms whi
h seemed to 
hara
terize the pre
onditions and

e�e
ts of looking up a person's telephone number and dialling that number.

However, they found that they were still unable to prove that the plan \look

up the number and dial it" would work, even if all the initial 
onditions

were right (i.e., that the 
aller had a telephone and a telephone book, that

the intended party was home, et
.). For example, the axioms provided no

assuran
e that looking up the number would not make the 
aller's telephone

disappear, thus voiding a pre
ondition for dialling.

At this point, M
Carthy and Hayes made a move whi
h set the stage for

all subsequent dis
ussions of the frame problem, and proposals to solve it:

they augmented their axiom for the e�e
ts of looking up a phone number,

so that it asserted that the a
tion does not make the 
aller's possessions

disappear, and does not 
hange the intended party's lo
ation. These, of


ourse, are the sorts of axioms known as frame axioms.
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They apparently viewed their strategy of spe
ifying the relationships not


hanged by an a
tion as the only one available within the Situation Cal
ulus

proper, though they deplored both its ad ho
 
hara
ter and the proliferation

of axioms to whi
h it leads:

\If we had a number of a
tions to be performed in sequen
e we

would have quite a number of 
onditions to write down that 
er-

tain a
tions do not 
hange the values of 
ertain 
uents [properties

and relationships℄. In fa
t with n a
tions and m 
uents, we might

have to write down mn su
h 
onditions."

One might add that these 
onditions are rather implausible in a world

with multiple agents (like the one we live in). For instan
e, there is no

assuran
e in real life that either the intended party, or all one's possessions

will stay put while one is 
onsulting a phone book.

Virtually all later dis
ussions of the frame problem reiterate M
Carthy

and Hayes' line of reasoning, without questioning the need for frame axioms

of the type suggested by them, at least within the Situation Cal
ulus and

perhaps within any 
lassi
al logi
al framework. (See, for example, the prefa
e

and arti
les in (Pylyshyn 1987) and (Brown 1987).)

Yet another sort of move is available, whi
h entirely avoids frame axioms.

This is to introdu
e axioms about what a
tions are required to produ
e given

types of 
hanges. This approa
h was proposed for a serial world by Andrew

Haas (1987). An example is the following axiom (where holding(R; x; s)

means that the robot is holding obje
t x in situation s, Result(a; s) is the sit-

uation resulting from 
arrying out a
tion a in situation s, and Putdown(R; x)

is the a
tion of R putting down x, regarded as an abstra
t individual; as

usual, a \situation" is thought of as a possible \state of the universe"):

1

(8x; s; s

0

)[[holding(R; x; s) ^ :holding(R; x; s

0

) ^ s

0

= Result(a; s)℄

! a = Putdown(R; x)℄;

i.e., if the robot 
eases to hold an obje
t x between situations s and s

0

,

and situation s

0

was obtained from situation s by a
t a, then a must have

been the a
t of putting down x. (For a more versatile robot, the right-hand

1

I will 
onsistently use lower-
ase identi�ers for predi
ates and variables, and 
apitalized

identi�ers for individual 
onstants and fun
tions.
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side of the axiom might have allowed a = Drop(R; x), and perhaps one or

two other a
tions, as an alternative to a = Putdown(R; x).) Thus, given

that in a 
ertain situation the robot holds some spe
i�
 obje
t B, and in

that situation performs some a
tion other than Putdown(R;B), we 
an infer

from the 
ontrapositive that the robot still holds B after that a
tion.

2

I will

give details and argue the su

in
tness and other advantages of the approa
h

in se
tion 2.

Haas termed his axioms \domain-spe
i�
 frame axioms." I will instead


all axioms whi
h spe
ify the a
tions needed to produ
e a given type of


hange explanation-
losure axioms. This re
e
ts the fa
t that they supply


omplete sets of possible explanations for given types of 
hange. As su
h (I

will suggest) they are important in other areas of AI, su
h as story under-

standing. It is true that the 
ontrapositive of an axiom like the above predi
ts

a non-
hange, and in that sense resembles a \frame axiom." However, it does

so on the basis of the non-o

urren
e, rather than the o

urren
e, of 
ertain

spe
i�
 a
tions, and it is 
lear that this is not what M
Carthy and Hayes,

or any of the many 
ommentators on the frame problem sin
e then, meant

by frame axioms. As I will try to show, explanation 
losure axioms have

important advantages over (traditional) frame axioms.

In se
tion 3, I will provide a more 
omplete illustration of how primitive

a
tions in a serial world 
an be axiomatized using explanation 
losure. I

will in
lude an illustration that 
onfronts the problem of impli
it e�e
ts. An

example of an impli
it e�e
t is the 
hange in the lo
ation of the topmost

obje
t in a sta
k, when the base of the sta
k is moved; though the e�e
t is


ausally dire
t, its dete
tion may require any number of inferen
e steps. I will

give examples of what 
an and 
annot be inferred in this world, 
ontrasting

this with the more usual approa
hes.

Despite the emphasis in the Hayes quote on su

in
tness, 
omputational

2

Similar proposals have been made by Lansky (1987), George� (1987), and Morgenstern

(1988). George� proposes axioms of form, \If 
uent p is not independent of event e, then

e must be one of e

1

, e

2

, ..., e

n

". However, George�'s approa
h is non-fun
tional and less

dire
t than Haas', in its relian
e on the notion of independen
e (whi
h remains somewhat

un
lear). Morgenstern's persisten
e rules of form "If su
h-and-su
h a
tions did not o

ur

at time j, then 
uent p is un
hanged at time j + 1" also depend on a non-fun
tional view

of a
tion; further, she takes these rules as being derivable from a 
losed world assumption

about 
ausal rules (i.e., only 
hanges provably 
aused by known a
tions a
tually o

ur),

and that is an assumption I wish to avoid.
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eÆ
ien
y is of obvious importan
e in reasoning about 
hange and non-
hange.

In se
tion 4, I will show that a default strategy whi
h is essentially the \sleep-

ing dog" strategy of STRIPS is dedu
tively sound when appropriately based

on explanation 
losure. This refutes a 
ommon assumption that monotoni


solutions to the frame problem are the slowest, and that the STRIPS strategy

lies somehow beyond the pale of ordinary logi
.

In se
tion 5, I will brie
y explore the potential of the Situation Cal
ulus,

and the present approa
h to the frame problem, with respe
t to external

events, 
ontinuous 
hange, a
tion 
omposition using sequen
ing, 
onditionals

and iteration, and most of all, 
on
urren
y. Note that the earlier inferen
e

about persisten
e of holding depended on the assumption that a
tions 
annot

be 
on
urrent, so that performan
e of one a
tion 
annot produ
e 
hanges

that require other a
tions. Extensions to worlds with 
on
urrent a
tions are

possible using parallel 
omposition of a
tions, along with a modi�ed form

of Haas' axioms and general axioms about the primitive parts of 
omplex

a
tions.

An example of a 
omposite a
tion is (Costart(Walk(R,L

0

,L

1

), Walk(H,L

2

,

L

3

)) whi
h represents 
on
urrent walks by R and H starting simultaneously

and �nishing whenever both walks are done (not ne
essarily simultaneously).

Just as in the serial 
ase, the Result fun
tion is interpreted as yielding the

unique new state whi
h results if only the a
tion spe
i�ed by its �rst argu-

ment takes pla
e. By maintaining this fun
tional view of a
tions, we preserve

an important property of the original Situation Cal
ulus (exploited by C.

Green, 1969): plans are terms, and 
an be extra
ted dedu
tively from exis-

ten
e proofs. On the other hand, the approa
h may not be systemati
ally

extensible to 
ases where reasoning about a given situation o

urs against

the ba
kdrop of a large world knowledge base. The diÆ
ulty lies in the la
k

of uniform prin
iples for identifying the relevant agents and the \boundaries"

of the given situation in a way that will make a fun
tional view of a
tion,

and explanation 
losure, 
onsistent with the ba
kground knowledge.
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2 Explanation 
losure: a simple illustration and pre-

liminary assessment

\A weapon has been used to 
rush a man's skull and it is not

found at the s
ene of the 
rime. The only alternative is that it

has been 
arried away."

{ Isaa
 Asimov, The Naked Sun

Let us begin by going through the earlier example, adapted from Haas

(1987), in more detail. We are assuming a robot's world in whi
h the

robot 
an walk about, paint or dye obje
ts, pi
k them up and put them

down or drop them, et
. He 
annot perform any of these primitive a
tions

simultaneously.

3

The immediate 
onsequen
es of a
tions are expressed by

e�e
t axioms su
h as

A1. (8x; y; s; s

0

)[[at(R; x; s) ^ s

0

= Result(Walk(R; x; y); s)℄

! at(R; y; s

0

)℄

Note that the 
uent literal at(R; x; s) fun
tions as a (suÆ
ient) pre
ondition

for the su

ess of Walk.

We assume that in the initial situation S

0

, the robot is at lo
ation L

0

holding an obje
t B:

at(R;L

0

; S

0

), holding(R;B; S

0

)

We are interested in the situation S

1

resulting from R's walking from L

0

to

L

1

:

S

1

= Result(Walk(R;L

0

; L

1

); S

0

)

Spe
i�
ally, we wish to show that R is still holding B in S

1

:

G1. holding(R;B; S

1

)

The possible explanations for 
essation of holding are that the robot put

down or dropped the obje
t:

3

Primitive a
tions are immediately exe
utable, requiring no further elaboration or de-


omposition into lower-level a
tions (though they may require exe
ution monitoring to see

whether, in fa
t, they run their 
ourse as expe
ted). All pra
ti
al planning systems seem

to re
ognize su
h a level of primitive a
tions, even though the 
hoi
e of where to \draw

the line" is rather arbitrary.
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A2. (8a; x; s; s

0

)[[holding(R; x; s) ^ :holding(R; x; s

0

) ^ s

0

= Result(a; s)℄

! a 2 fPutdown(R; x); Drop(R; x)g℄;

where a 2 fa

1

; � � � ; a

n

g abbreviates a = a

1

_ � � � _ a = a

n

. To prove G1, we

assume its negation

:holding(R;B; S

1

),

and use (A2) along with the initial 
onditions and the de�nition of S

1

to

obtain

Walk(R;L

0

; L

1

) 2 fPutdown(R;B); Drop(R;B)g.

But synta
ti
ally distin
t primitive a
tions are not the same:

A3 (Inequality s
hemas). If � and � are distin
t m-pla
e and n-pla
e fun
-

tion symbols (m;n � 1) representing primitive a
tions, then

(8x

1

; � � � ; x

m

; y

1

; � � � ; y

n

) �(x

1

; � � � ; x

m

) 6= �(y

1

; � � � ; y

n

); and

(8x

1

; � � � ; x

m

; y

1

; � � � ; y

n

)[�(x

1

; � � � ; x

m

) 6= �(y

1

; � � � ; y

m

) _

(x

1

= y

1

^ � � � ^ x

m

= y

m

)℄.

Appropriate instan
es of these s
hemas deny that aWalk is identi�able with a

Putdown or a Drop, and this 
ontradi
tion establishes the desired 
on
lusion

G1.

Note that the traditional approa
h would have used a set of frame axioms

in
luding

(8a; x; y; z; s; s

0

)[[holding(R; x; s) ^ s

0

= Result(Walk(R; x; z); s)℄

! holding(R; x; s

0

)℄

and similar ones for every other a
tion whi
h does not a�e
t holding, in pla
e

of (A2). Explanation 
losure axioms are more su

in
t than sets of su
h frame

axioms be
ause there are typi
ally few a
tions that 
hange a given 
uent, but

many 
uents that are una�e
ted by a given a
tion.

4

Besides, (as suggested

earlier) frame axioms do not generalize to worlds with 
on
urrent a
tions.

For example, in a world in whi
h a robot 
an simultaneously walk and drop

an obje
t, there is no guarantee that an obje
t held at the beginning of a

walk is still held at the end.

4

However, as Kowalski (1979: 135) showed, sets of frame axioms spe
ifying all 
uents

una�e
ted by a given a
tion 
an be 
ollapsed by reifying 
uents and quantifying over them.
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The pre
eding su

in
tness 
laim for explanation 
losure axioms is quite

vague. It is unlikely that it 
an be made fully pre
ise, sin
e it amounts to

a 
laim about the stru
ture of \natural" theories of a
tion for real-world

domains. A \natural" theory should be intuitively understandable, extensi-

ble, and e�e
tively usable for inferen
e. But su
h desiderata are hard, if not

impossible, to redu
e to synta
ti
 
onstraints.

Nevertheless, the 
laim 
an be made rather plausible, if formulated rela-

tive to the 
omplexity of the axiomatization of e�e
ts. The following argu-

ment is an intuitive and empiri
al one, in its ta
it appeal to the form whi
h

e�e
t axioms \naturally" take (in the sorts of axiomatizations familiar to AI

resear
hers). It assumes a primitive, serial world with \expli
it e�e
ts". In

the next se
tion, I will attempt a slight generalization.

Su

in
tness Claim 1 (for explanation 
losure in a primitive, se-

rial world with expli
it e�e
ts). In a natural axiomatization of a world

in terms of a set of 
uents and a set of non
on
urrent primitive a
tions,

where the axioms spe
ifying the e�e
ts of an a
tion expli
itly state whi
h


uents be
ome true and whi
h ones be
ome false, it is possible to axiomatize

non-
hange using explanation 
losure axioms whose overall 
omplexity is of

the same order as that of the e�e
t axioms.

Argument. To see the intuition behind the 
laim, think of the e�e
t ax-

ioms as 
onditionals of form \
uent p 
hanges if a
tion a

1

; or a

2

; � � � ; or a

k

o

urs" (this may require some slight synta
ti
 rearrangements); e.g.,

{ an obje
t 
hanges 
olor if it is painted or dyed (with a new 
olor);

(note that this statement may 
ollapse two axioms, one for the e�e
t

of painting and one for the e�e
t of dyeing);

{ an obje
t 
eases to be on another if the robot pi
ks it up;

{ the robot 
hanges lo
ation if he takes a walk or pushes an obje
t; (this

might again 
orrespond to two e�e
t axioms); et
.

Now, roughly speaking, the addition of explanation 
losure axioms is just a

matter of 
hanging all the \if"s to \if and only if"s. At least this is so if

ea
h of the e�e
t axioms states all 
uent 
hanges engendered by the a
tions.
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The addition of the \only if" axioms 
learly will not in
rease the overall


omplexity by more than a 
onstant fa
tor.

I hasten to add that this is an oversimpli�
ation. Explanation 
losure

does, in general, di�er from a stri
t \bi
onditionalization" of the e�e
t ax-

ioms { indeed, I am about to argue that this is an advantage it has over


ir
ums
riptive or nonmonotoni
 approa
hes. Nevertheless, an explanation


losure axiom in a world with expli
it e�e
ts typi
ally supplies those a
tions

as alternative explanations of a 
hange whi
h produ
e that 
hange a

ording

to the e�e
t axioms. 2

One 
ould further argue that su
h relative su

in
tness assures a storage


omplexity well below O(mn), sin
e the 
omplexity of the e�e
t axioms pre-

sumably lies below this. (If it did not, M
Carthy and Hayes would hardly

have had grounds for 
omplaining about the potential o(mn) 
omplexity of

frame axioms!) Note also that if e�e
t axioms do not involve unboundedly

many 
uents for ea
h a
tion, their 
omplexity should be O(n), and if a 
uent

is not referen
ed in unboundedly many e�e
t axioms, it should be O(m).

5

Being su

in
t, the explanation 
losure approa
h o�ers a viable alterna-

tive to nonmonotoni
 and 
ir
ums
riptive approa
hes. Unlike nonmonotoni


approa
hes, it does not jeopardize e�e
tive provability. Unlike 
ir
ums
rip-

tion, it does not 
reate subtle problems about what to 
ir
ums
ribe. As

Hanks and M
Dermott (1987) remark, �nding the \right" 
ir
ums
riptive

theory invariably hinges on already knowing the preferred model it should

deliver. I would suggest that explanation 
losure axioms are a natural way

to express our preferen
es dire
tly, at least in simple worlds. (I argue below

for their naturalness).

Another 
ru
ial advantage of the approa
h is that it avoids overly strong

persisten
e inferen
es. This point was made brie
y by Haas (1987), but

5

It would be ni
e to be able to repla
e su
h tentative arguments with a hard-and-fast

theoreti
al argument to the e�e
t that (a) the logi
al stru
ture of 
ausation is su
h that

for the \right" 
hoi
e of formal terminology (i.e., the \right" 
uents and a
tions), e�e
t

axioms will not involve more than a few 
uents on average; and perhaps even that (b)

there is an e�e
tive pro
edure allowing an agent intera
ting with the world to 
onverge

toward su
h a \right" 
hoi
e of terminology. Fodor (1987) seems to demand all this and

more of any genuine solution to the frame problem; however, most AI resear
hers take a

more pra
ti
al view.
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deserves detailed reiteration. Suppose, for example, that we want to allow for

the possibility that when the robot drops an obje
t it might break, without

insisting that this will be the out
ome. A natural way to approximate this

situation is to make the out
ome dependent on how fragile the obje
t is,

without assuming that we know whether it is fragile enough to break. So

the e�e
t axiom might be:

A4. (8x; s; s

0

)[[holding(R; x; s) ^ s

0

= Result(Drop((R; x); s)℄

! [:holding(R; x; s

0

) ^ [fragile(x; s)! broken(x; s

0

)℄℄℄

Although we won't be able to infer breakage without knowledge of fragility,

we still want to assert that if an obje
t breaks, it was dropped. This 
an be

straightforwardly expressed by the explanation 
losure axiom

A5. (8a; x; s; s

0

)[[:broken(x; s) ^ broken(x; s

0

) ^ s

0

= Result(a; s)℄

! a = Drop(R; x)℄

Note that here (A5) 
annot be derived from the 
orresponding e�e
t axiom

(A4) by some systemati
 \bi
onditionalization", or any other general prin-


iple. It is essentially a domain fa
t. (In a more realisti
 world, we would

allow for some additional ways of breaking, su
h as being stru
k or 
rushed.)

So, given the parti
ulars

:broken(C; S

0

), holding(R;C; S

0

) and S

1

= Result(Drop(R;C); S

0

),

we 
an infer neither broken(C; S

1

) nor :broken(C; S

1

), and that is as it

should be.

By 
ontrast, a 
ir
ums
riptive approa
h that minimizes the amount of

\abnormality" engendered by an a
tion (M
Carthy 1984), or its 
ausal eÆ-


a
y (Lifs
hitz 1987), would predi
t :broken(C; S

1

) and hen
e :fragile(C; S

0

).

Similarly nonmonotoni
 methods (Reiter 1980) would san
tion this unwar-

ranted inferen
e. Moreover, if we are given the parti
ulars

:broken(C; S

0

), broken(C; S

1

), and S = Result(A; S

0

),

the explanation 
losure approa
h yields the reasonable 
on
lusionA=Drop(R,

C), whereas 
ir
ums
riptive and nonmonotoni
 approa
hes are silent about

A (given axiom (A4) but not (A5)).

Areas of un
ertainty or ignoran
e like that 
on
erning breakage are hard

to avoid in domain theories of pra
ti
al magnitude. A familiar instan
e

of this is the \next-to" problem: it is hard to provide e�e
t axioms whi
h

10



will supply all 
hanges in next-to relations (without appeal to some overly

pre
ise geometri
al representation). Yet 
ir
ums
riptive and nonmonotoni


approa
hes will treat the axioms as if they supplied all su
h 
hanges, and

as a result san
tion unwarranted persisten
e inferen
es. I will return to the

next-to problem in the next se
tion, whi
h 
ontains a more elaborate \robot's

world."

Finally, I 
laim that en
oding non-
hange via explanation 
losure axioms

is prin
ipled and natural, in the sense that there are reasons independent

of the frame problem for invoking them. One su
h reason is the observa-

tion that people 
an 
ome up with small sets of plausible explanations for


hanges of state almost instantaneously, at least in familiar domains. For

example, if the grass got wet, perhaps it rained, or the sprinkler was on, or

dew formed overnight, or some snow melted { and that just about 
overs

the most likely explanations. (Similarly 
onsider, \How did the wall 
ome

to be blue?", \Why is the sun no longer shining?", \How did John's lo
a-

tion get 
hanged from the ground 
oor to the 17th 
oor of his apartment

building?", \How did John learn about the earthquake in Italy while having

breakfast alone in his New York apartment?", \How did John gain possession

of the hamburger he is eating?", \What is 
ausing John's nose to be runny?",

et
.) Endowing ma
hines with 
omparable abilities would seem to require

some quite dire
t en
oding of the 
onne
tion between various phenomena

and their immediate 
auses. Furthermore, resear
h in natural language un-

derstanding has shown that the ability to infer a
tions that a

omplish given

state 
hanges is extremely important, and has led to postulation of knowledge

stru
tures very similar to explanation-
losure axioms. For example, S
hank

and Abelson (1977:75) suggest that state 
hanges deliberately brought about

by human agents are asso
iated with sets of possible a
tions (in their terms,

sets of \plan boxes") that a
hieve those state 
hanges. They assume that if

a story leads to the inferen
e that an agent will try to a

omplish a state


hange, the further inferen
e is warranted that he will attempt one of the

asso
iated a
tions. Clearly this involves a ta
it 
losure assumption that a

deliberately 
aused state 
hange is normally brought about by one of a �xed

11



set of a
tions.

6

To be sure, examples of \real-world" explanation 
losure are generally

subtler than (A2) or (A5). They vary in level of detail (s
ale or \grain

size") and level of abstra
tion (see se
tion 5), and most importantly, are

\defeasible" { the standard explanations o

asionally do fail. However, my

primary 
on
ern here is with 
ausally insulated, predi
table worlds, free of

booby-trapped boxes and meteor strikes. Everything of interest that o

urs

will be attributable to known agents. In su
h a setting, (non-defeasible)

explanation 
losure works remarkably well.

3 Explanation 
losure in a world with impli
it e�e
ts

In 
ase of holding, the 
essation of this relation 
an be dire
tly attributed to

a Putdown or Drop. Based on su
h examples, the \expli
it e�e
ts" assump-

tion required dire
t axiomati
 
onne
tions from a
tions to all a�e
ted 
uents.

This requirement is hard to enfor
e in nontrivial worlds. For instan
e, sup-

pose that a robot is regarded as \
arrying" its own integral parts, anything

\riding" in or on it, and anything those \riders", in turn, are 
arrying (
f.

the \assemblies" of Haas, 1987). This is a useful notion, be
ause an obje
t

\
arried" by another 
hanges lo
ation with it. Now in axiomatizing a
tions

like Walk or Pi
kup, we do not want to expli
itly spe
ify all e�e
ts on ob-

je
ts 
arried (and left behind). Rather, we want these 
hanges to follow from

axiomati
 
onne
tions between holding, in, on, et
., and 
arrying.

The following partial theory of a world with impli
it e�e
ts serves sev-

eral purposes. First, it shows that the explanation 
losure approa
h to the

frame problem extends readily to su
h worlds. (The new 
losure axioms are

(A16-A20).) Se
ond, it provides a nontrivial setting for illustrating inferen
e

based on explanation 
losure. Finally, it provides the ba
kground for further

dis
ussion of the su

in
tness 
laim and the \next-to" problem.

A6. An obje
t \
arries" its integral parts, its riders, anything 
arried by

6

The more re
ent work of Kautz and Allen(1986) also involves an idea that seems


losely related to explanation 
losure: observed, reported or inferred a
tions are explained

in terms of a set of a set of alternative, jointly exhaustive higher-level a
tions (plans).

After several observations, it is often possible to dedu
e a unique top-level plan.

12



its riders, and nothing else.

7

(8x; y; s)[
arries(x; y; s)$ [integral-part(y; x) _ rider(y; x; s)_

(9z)[rider(z; x; s) ^ 
arries(z; y; s)℄℄℄

A7. \Carries" is irre
exive (so that by A6 and A9, integral-part, rider, in,

on and holding are also irre
exive).

(8x; y; s)[
arries(x; y; s)! :
arries(y; x; s)℄

A8. An obje
t 
arried by another is at the same pla
e as its 
arrier.

(8x; y; z; s)[[
arries(x; y; s) ^ at(x; z; s)℄! at(y; z; s)℄

A9. An obje
t is a rider on another i� it is in, on, or held by it.

(8x; y; s)[rider(y; x; s)$ [in(y; x; s) _ on(y; x; s) _ holding(x; y; s)℄℄

A10. \in" 
orresponds to one or more nested in

0

's.

(8x; z; s)[in(x; z; s)$ [in

0

(x; z; s) _ (9y)[in(x; y; s) ^ in

0

(y; z; s)℄℄℄

A11. Paint has the expe
ted e�e
t, if the robot is next to a paintbrush,

paint of the right hue, and the obje
t to be painted, and isn't holding

anything.

(8x; b; 
; p; s; s

0

)[[next-to(R; x; s) ^ next-to(R; b; s) ^ next-to(R; p; s)^

brush(b) ^ paint(p) ^ hue(p; 
)^ :(9y)holding(R; y; s)^

s

0

= Result(Paint(R; x; 
); s)℄ ! 
olor(x; 
; s

0

)℄

A12. Dye has the expe
ted e�e
t { mu
h like (A11).

A13. Putdown has the expe
ted e�e
t, if the robot is holding the obje
t.

(To illustrate less dire
t e�e
ts, e�e
ts on in and on are also in
luded.)

7

Nonintegral parts, su
h as a 
omputer remotely 
ontrolling a robot, need not be 
arried

by it.

13



(8x; y; s; s

0

)[[holding(R; x; s) ^ s

0

= Result(Putdown(R; x); x)℄

!:holding(R; x; s

0

) ^ [above(x; y; s)!

[[
ontainer(y) ^ smaller(x; y)! in(x; y; s

0

)℄ ^

[:
ontainer(y) _ :smaller(x; y)! on(x; y; s

0

)℄℄℄℄

A14. Pi
kup has the expe
ted e�e
t on holding, if the robot is next to the

obje
t and the obje
t is liftable.

8

(8x; s; s

0

)[[next-to(R; x; s) ^ liftable(x) ^ :(9z)holding(R; z; s)^

s

0

= Result(Pi
kup(R; x); s)℄! holding(R; x; s

0

)℄

A15. As in the 
ase of (A13), we might have in
luded additional e�e
ts of

Pi
kup in (A14). Alternatively, we 
an state additional e�e
ts sepa-

rately, as in the following axiom about (su

essful) Pi
kups being able

to undo 
arries relations:

(8x; y; s; s

0

)[[next-to(R; x; s) ^ liftable(x) ^ :(9z)holding(R; z; s)^

s

0

= Result(Pi
kup(R; x); s)℄

! [[
arries(y; x; s) ^ :
arries(y; R; s)℄! :
arries(y; x; s

0

)℄℄

A16. If an obje
t 
eases to be of some 
olor y, it was painted or dyed with

some 
olor z.

(8a; x; y; s; s

0

)[[
olor(x; y; s) ^ :
olor(x; y; s

0

) ^ s

0

= Result(a; s)℄

! (9z)a 2 fPaint(R; x; z); Dye(R; x; z)g℄

A17. A 
hange from not holding an obje
t to holding it requires a Pi
kup

a
tion.

(8a; x; y; s; s

0

)[[:holding(x; y; s) ^ holding(x; y; s

0

) ^ s

0

= Result(a; s)℄

! a = Pi
kup(x; y)℄

A18. If an obje
t 
eases to be in a 
ontainer, then the robot must have

pi
ked up the obje
t, or pi
ked up something in the 
ontainer 
arrying

the obje
t.

8

liftable is here treated as independent of the agent and the given situation (e.g.,

whether there are \riders" on the obje
t), but 
ould easily be made dependent on them.
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(8a; x; y; s; s

0

)[[in(x; y; s) ^ :in(x; y; s

0

) ^ s

0

= Result(a; s)℄

! [a = Pi
kup(R; x)_

(9z)[a = Pi
kup(R; z) ^ in(z; y; s) ^ 
arry(z; x; s)℄℄℄

A19. If an obje
t x 
omes to be in a 
ontainer, then the robot must have

put down or dropped an obje
t z it was holding above the 
ontainer,

where z is smaller than the 
ontainer, and either is x or was 
arrying

it:

(8a; x; y; s; s

0

)[[:in(x; y; s) ^ in(x; y; s

0

) ^ s

0

= Result(a; s)℄

! (9z)[[z = x _ 
arries(z; x; s)℄ ^ holding(R; z; s) ^

above(z; y; s) ^ smaller(z; y) ^

[a = Putdown(R; z) _ a = Drop(R; z)℄℄℄

A20. If an obje
t 
eases to be at a lo
ation, then the robot took a Walk

to some pla
e, and either the robot is that obje
t, or was 
arrying that

obje
t.

(8a; x; y; s; s

0

)[[at(x; y; s) ^ :at(x; y; s

0

) ^ s

0

= Result(a; s)℄

! (9z)[a = Walk(R; y; z) ^ [R = x _ 
arries(R; x; s)℄℄

This partial axiomatization la
ks axioms for on and next-to, explanations

for 
olor or at be
oming true, et
. While further axioms would be needed

in any pra
ti
al appli
ation, it is signi�
ant that even a partial axiomatiza-

tion allows many reasonable 
on
lusions about 
hange and non-
hange to be

drawn, as the following examples show (see also se
tion 4). The problem of

unwarranted persisten
e inferen
es, whi
h attends 
ir
ums
riptive and non-

monotoni
 
losure of in
omplete theories, does not arise (at least not within

settings with fully spe
i�ed a
tions; limitations are dis
ussed in se
tion 5).

The following example des
ribes initial 
onditions in the robot's world in

whi
h the robot is at lo
ation L

0

, and is next to a blue box B 
ontaining

a 
up C (and perhaps other obje
ts). In addition, there is a doormat D at

lo
ation L

1

, whi
h is distin
t from L

0

. The problem is to show that if the

robot pi
ks up the box and walks to a lo
ation L

2

, the lo
ation of the 
up is


hanged but not the 
olor of the box or the lo
ation of the doormat. (The

des
riptions \box", \
up", and \doormat" are not a
tually en
oded in the

premises, but are used for mnemoni
 reasons.)
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Proposition 1. Given axioms (A1-A20), along with initial 
on-

ditions

at(R;L

0

; S

0

); next-to(R;B; S

0

); in

0

(C;B; S

0

); liftable(B);


olor(B;Blue; S

0

); at(D;L

1

; S

0

); L

1

6= L

0

;

:(9z)holding(R; z; S

0

)

and plan

S

1

= Result(Pi
kup(R;B); S

0

);

S

2

= Result(Walk(R;L

0

; L

2

); S

1

)

then

(a) 
olor(B;Blue; S

2

), (b) at(D;L

1

; S

2

), (
) at(C;L

2

; S

2

).

Proof sket
h.

(a): If the 
olor of box B were not blue in situation S

1

, then by (A16) the

Pi
kup a
tion whi
h led to the situation would have had to equal a Paint or

Dye a
tion, whi
h is impossible by (A3). Similarly we infer the persisten
e

of B's 
olor through the Walk.

(b): We assume that the doormat does not stay at L

1

. Then by explanation


losure for 
essation of at (A20), the robot walked from L

1

to some lo
ation

and either is D or 
arried D. But this is impossible, be
ause the Pi
kup was

no Walk, and the Walk was from L

0

, whi
h di�ers from L

1

. (Besides, the

robot is not D, and didn't 
arry D, be
ause the lo
ations of D and the robot

in situation S

0

are distin
t.)

(
): To prove the 
up ends up at L

2

, we �rst show that the robot ends up

there, by (A1). Next, we show he ends up holding the box B, sin
e the

Pi
kup in the �rst step su

eeds by (A14) and the holding persists through

the Walk (by explanation axiom (A2) for 
essation of holding, and the in-

equality s
hemas). Hen
e, we dedu
e by (A8) that the box ends up at L

2

(via

the rider and 
arries relations, (A5) and (A6)). Next we infer by (A10) that

sin
e 
up C is in

0

the box, it is in it, and that this relation persists through

the Pi
kup and theWalk, using explanation axiom (A18) for 
essation of in.

(The former inferen
e requires use of irre
exivity for in (A6, A7, A9), to rule

out the possibility that in pi
king up the box, the robot lifted the 
up out of

the box along with the box!) Finally, with the box at L

2

and the 
up in it,

we infer by (A8) that the 
up is at L

2

(via the rider and 
arries relations). 2

So non-
hange, as well as 
hange, 
an be straightforwardly dedu
ed in
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our robot's world, without appeal to nonstandard methods. As well, it is

relevant to 
onsider what sorts of things 
annot be inferred in this world.

Suppose, for instan
e, we add an assumption that there is a video 
amera at

the robot's lo
ation at the outset, i.e., at(V C; L

0

; S

0

). We 
an dedu
e neither

at(V C; L

0

; S

2

) nor its negation, and that is as we would want. After all, the


amera may or may not be atta
hed to (or 
arried by) the robot.

Is the su

in
tness 
laim still tenable in su
h worlds with impli
it e�e
ts?

I submit that it is, although the eviden
e, even more than before, must be

sought in examples (su
h as the one just presented) and in our intuitions

about \natural" axiomati
 theories.

Su

in
tness Claim 2 (for explanation 
losure in a primitive, serial

world with impli
it e�e
ts). In a natural axiomatization of an intuitively


omprehensible dynami
 world in terms of a set of situational 
uents and

a set of (non
on
urrent) primitive a
tions, it is possible to axiomatize non-


hange using explanation 
losure axioms whose overall 
omplexity is of the

same order as that of the e�e
t axioms plus the axioms relating primary


uents (those expli
itly 
onne
ted to a
tions) to se
ondary ones.

Argument. In this 
ase, \bi
onditionalizing" e�e
t axioms of form \
uent

p 
hanges if a
tion a

1

, or a

2

; � � � ; or a

k

o

urs" will provide explanation 
lo-

sure axioms for the primary 
uents only (in approximate form). Do we also

need 
losure axioms for se
ondary 
uents? The pre
eding example suggests

that se
ondary 
uents will often have de�nitions in terms of primary ones

(see 
arries and rider in (A6) and (A9)). Changes in su
h 
uents are fully

determined by { as well as explained by { 
hanges in the relevant primary


uents. For example, if an obje
t 
eases to be a rider on another, we 
an

infer from (A9) that if it was previously in, on or held by the other obje
t,

that relationship 
eased; hen
e we 
an infer what a
tion (or possible a
tions)

must have o

urred. So it appears that separate 
losure axioms will often be

redundant for se
ondary 
uents.

But even where su
h axioms turn out to be ne
essary or 
onvenient, the

overall 
omplexity of 
losure should not ex
eed that of other axioms. After

all, for ea
h se
ondary 
uent at least one axiom must already be present

whi
h introdu
es that 
uent and relates it to others. As long as explanation


losure axioms do not get arbitrarily more 
ompli
ated than these relational
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ones, the su

in
tness 
laim remains true.

Examples suggest they will not get arbitrarily more 
ompli
ated. For

instan
e, although explanation 
losure axioms are theoreti
ally redundant

for the 
arries and rider 
uents of our illustration, it is 
onvenient to have

them. For explaining how a 
arries relation 
omes about for the robot and

an obje
t x, and how it 
eases, we might say:

A21. (8a; x; s; s

0

)[[:
arries(R; x; s) ^ 
arries(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[[y = x _ 
arries(y; x)℄ ^ a = Pi
kup(R; y)℄℄

A22. (8a; x; s; s

0

)[[
arries(R; x; s) ^ :
arries(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[[y = x _ 
arries(y; x)℄^

[a = Putdown(R; y) _ a = Drop(R; y)℄℄℄

These are no more 
ompli
ated than the 
losure axioms suggested for primary


uents like holding and in.

Indeed, it seems unlikely that a natural set of 
on
epts for des
ribing an

intuitively 
omprehensible domain would in
lude 
uents whose 
hanges, even

under ordinary 
onditions, 
annot be explained (at any level) in terms of a

few simple alternative 
auses. In other words, it seems to me that having

simple explanation and predi
tion rules for a dynami
 world is what makes

it intuitively 
omprehensible. 2

Finally, let us return to the next-to problem, whose relevan
e to pra
ti
al

robot problem solving makes it a tou
hstone for putative solutions to the

frame problem. Essentially the problem is that neither persisten
e nor 
hange

of next-to relations 
an be reliably inferred for all pairs of obje
ts. For

example, suppose that our robot's world 
ontains two adja
ent windows W

1

,

W

2

and (for whatever reason) the robot is interested in the goal

(9s)next-to(R;W

1

; s) ^ :next-to(R;W

2

; s).

Suppose also that the robot has a Go-next-to a
tion, whi
h is 
apable of

taking him next to either window. (Assume for this dis
ussion that Go-next-

to repla
es Walk, though it wouldn't be hard to allow for both.) But if he

walks next toW

1

, will he be next toW

2

? Perhaps so, if the exe
ution routines


hoose a pla
e between the windows, and perhaps not, if they 
hoose a pla
e

next to W

1

but on the far side from W

2

. In su
h a 
ase we do not want the
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robot to think he 
an a
hieve the above goal by starting at a pla
e not next

to W

2

, and going next to W

1

, with the 
onvi
tion that :next-to(R;W

2

; S

0

)

will persist. Rather, he might de
ide the problem is not amenable to reliable

solution, or he might know some fa
ts whi
h will allow him to over
ome the

problem (e.g., he might just happen to know that if he goes next to the left

portion of a window's frame, he will be next to the window but not next to

any windows or doors to its right).

9

Similarly, it would be risky to assume (as STRIPS-style robots typi
ally

do) that when the robot walks, it 
eases to be next-to whatever stationary

obje
ts it was next-to at the start. After all, it may only have travelled a

short distan
e, or along a traje
tory parallel to an obje
t (e.g., alongside a

table).

One possible way of dealing with the next-to problem is to rely on an

exa
t geometri
al model (e.g., one whi
h divides up the 
oor spa
e into tiles,

and dedu
es next-to or :next-to from whi
h tiles are o

upied). For this

to permit the 
onstru
tion of reliable plans involving next-to, however, we

have to insist that all a
tions available to the robot pre
isely and predi
tably

determine his lo
ation. But this is just not a tenable assumption in a realisti
,

reasonably 
omplex world.

Now the 
hallenge is this: how do we avoid unsound persisten
e and


hange inferen
es, su
h as those above, while still obtaining those that are

sound? For instan
e, we do want to infer that the robot's next-to relations

don't 
hange, say when he pi
ks up, puts down, or paints an obje
t (un-

der a \horizontal" interpretation of next-to); and we do want to infer that

nonmoving obje
ts maintain their next-to and :next-to relations.

This 
hallenge, ostensibly a very serious one for nonmonotoni
 and 
ir-


ums
riptive approa
hes, is easily met by explanation 
losure. For instan
e,

we 
an state that next-to(R; x; s

0

) be
omes true only if the robot goes next-to

an obje
t y (possibly x itself) whi
h is not remote from x (where, say, remote

means beyond four times the maximum distan
e for being next-to):

A23. (8a; x; s; s

0

)[[:next-to(R; x; s) ^ next-to(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[a = Go-next-to(R; y) ^ :remote(x; y; s)℄℄

9

Anyone in
lined to think the robot ought to just make some default assumption, su
h

as that he'll not be next to W

2

, should imagine a situation in whi
h W

1

has its blinds

drawn but W

2

does not, and the robot is aware of a sniper a
ross the street, bent on his

destru
tion!
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This does not require exhaustive knowledge of what's remote from what, but

if we do happen to know that the obje
t the robot went to is remote from x,

we 
an ex
lude x from the set of obje
ts the robot may now be next to. Note

that the axiom also permits inferen
e of persisten
e of :next-to(R; x; s) if the

robot did something other than a Go-next-to. Similarly we 
an add 
losure

axioms for next-to(R; x; s) be
oming false, and for next-to(x; y; s) be
oming

true or false for obje
ts x, y other than the robot. (They will be mu
h like

the at-
losure axiom, (A20).) These will 
apture just the persisten
es that

are intuitively warranted by our 
on
eption of next-to.

The next se
tion des
ribes a pra
ti
al and dedu
tively sound way in whi
h

explanation 
losure axioms 
an be translated into eÆ
ient, STRIPS-like per-

sisten
e inferen
e methods.

4 STRIPS revisited: explanation 
losure meets the

sleeping dog

The pra
ti
al problem of eÆ
iently inferring 
hange and non-
hange has been

dis
ussed by many writers on the frame problem (B. Raphael, 1971, being an

early example). Ideally, we would like to mat
h the 
onstant-time inferen
e of

non-
hange a
hieved by STRIPS-like systems (Fikes & Nilsson 1971). These

employ the \sleeping dog" strategy: 
uents referen
ed by the add-lists and

delete-lists of operators are updated, and the rest are assumed to remain

un
hanged.

The idea in the following is to emulate STRIPS within the Situation

Cal
ulus by working out 
ertain e�e
ts of plan steps, and inferring persisten
e

via default rules. The default rules treat the \most re
ent" values of 
uents

as still 
orre
t in the 
urrent situation. One novelty is that explanation


losure axioms are used to guard against overly strong persisten
e inferen
es

(by 
agging 
ertain 
uents as \questionable"). The default inferen
es are

dedu
tively sound (and in spe
ial 
ases, 
omplete) relative to a domain theory

whi
h in
ludes the explanation 
losure axioms.

I will �rst illustrate these te
hniques for a spe
i�
 set of 
uents in a slightly


urtailed version of the previous \robot's world." In this 
ase no 
agging of


uents is needed, and the rules are not only sound, but also 
omplete for


uents of form (:)holding(R; �; �), relative to any \
erti�able" plan { one

20



whose steps have provably true pre
onditions. Further, they permit 
onstant-

time persisten
e inferen
e when suitably implemented.

I will then abstra
t from this example, and provide a general method for

using explanation 
losure axioms as \sentries" whi
h wat
h for a
tions that

may 
hange a given 
uent. This enables 
agging 
uents so as to pave the

way for sound (but not in general 
omplete) default inferen
es.

In order to look up the \most re
ent" value of a 
uent one needs to have

worked out the relevant values at ea
h step of a plan. Consequently, any

formal 
laims about su
h strategies must rely on some formalized notion of

the updating pro
ess.

In the holding example, this is a

omplished by de�ning an initial \world"

(theory) D

0

and a su

ession of augmented worlds D

1

, D

2

; � � �, where ea
h

D

i

in
orporates D

i�1

, a new plan step, and some logi
al 
onsequen
es of the

step. In pra
ti
e, one would expe
t ea
h D

i

to be derived by some \forward

inferen
e" pro
ess from D

i�1

and the ith plan step. In the example, the

forward inferen
es have been judi
iously 
hosen to provide expli
it pre
on-

ditions for any subsequent Pi
kup, Putdown, or Drop step, and formulas of

the right sort for making sound and 
omplete persisten
e inferen
es.

Our domain axioms will essentially be (A2) - (A19). By leaving out the

Walk-axiom (A1) and explanation axiom for 
hanges in at, (A20), we have


hanged the robot from a rover to a stationary manipulator. This allows us

to avoid next-to reasoning; in fa
t, we 
an drop the situation argument from

next-to, so that next-to(R; x) is permanently true, or permanently false, for

any obje
t x.

As another pra
ti
al measure we invoke the \unique names assumption";

i.e., all 
onstants of our theory are drawn from a set Names, where these

are interpreted (mu
h as in the 
ase of a
tion names) as having distin
t

denotations. This 
ould be expressed by axiom s
hema � 6= �, where �; �

are distin
t names.

An initial world des
riptionD

0


onsists of (A2)-(A19) (with next-to 
hanged

as dis
ussed) along with :(9x)holding(R; x; S

0

), any number of additional

formulas whi
h 
an be 
onsistently added, and all instan
es of liftable(�)

and next-to(R; �) entailed by the rest of D

0

for 
onstants � o

urring in D

0

.

A plan is a set of formulas

S

i

= Result(�; S

i�1

) ; i = 1; � � � ; N ,
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where ea
h � 2 fPi
kup(R; �); Putdown(R; �); Drop(R; �); Paint(R; �; 
);

Dye(R; �; 
)g for some � 2 Names and S

1

; � � � ; S

N

are 
onstants distin
t

from ea
h other and from all 
onstants o

urring in D

0

. The augmented

des
riptions relative to su
h a plan are given (for 1 � i � N) by

1. for S

i

= Result(Pi
kup(R; �); S

i�1

); � 2 Names, and

fnext-to(R; �), liftable(�), :(9z)holding(R; z; S

i�1

)g � D

i�1

,

let D

i

=D

i�1

[ fS

i

= Result(Pi
kup(R; �); S

i�1

); holding(R; �; S

i

)g;

2. for S

i

= Result(Putdown(R; �); S

i�1

); � 2 Names, and

holding(R; �; S

i�1

) 2 D

i�1

,

let D

i

=D

i�1

[ fS

i

= Result(Putdown(R; �); S

i�1

);:holding(R; �; S

i

);

:(9z)holding(R; z; S

i

)g;

3. same as (2), with Drop repla
ing Putdown;

4. for � a Paint or Dye a
tion (whose e�e
ts 
an be left impli
it, sin
e

only holding relations are to be inferred by default),

let D

i

=D

i�1

[ fS

i

= Result(�; S

i�1

)g.

Note that in essen
e, ea
h of (1) - (3) \
he
ks" the pre
onditions of the

a
tion, and adds appropriate post
onditions (e�e
ts). These follow logi
ally

fromD

i�1

together with the new step. For instan
e in (2), :holding(R; �; S

i

)

is added as a logi
al 
onsequen
e of the e�e
t axiom (A13) for Putdown.

:(9z)holding(R; z; S

i

) is also a 
onsequen
e, though not an obvious one: it

follows from the presen
e of :(9z)holding(R; z; S

0

) inD

0

(and hen
e D

i

) and

from the explanation axiom (A17) for holding be
oming true (an indu
tive

proof is required). It would not ordinarily be found by forward inferen
e,

but is in
luded to se
ure 
ompleteness in the \sleeping-dog" proposition to

follow.

Evidently, D

i

does not exist if the pre
onditions of some step aren't prov-

able. However, D

i

exists whenever the pre
onditions for Pi
kup, Putdown,

or Drop a
tions are provable (be
ause (4) is indi�erent to the pre
onditions

of Paint and Dye steps). I will term su
h plans 
erti�able (relative to D

0

).

As a �nal preliminary we note the following way of applying explanation


losure axioms to multistep plans (expressed as Result-equations):
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Serial Plan Lemma. Given an explanation 
losure axiom

(8a; x

1

; � � � ; x

k

; s; s

0

)[[�(x

1

; � � � ; x

k

; s) ^ �(x

1

; � � � ; x

k

; s

0

) ^

s

0

= Result(a; s)℄ ! '(a)℄,

where � is a negated or unnegated predi
ate and � its 
omplement and '(a)

a formula 
ontaining a, and a plan

S

i

= Result(�

i

; S

i�1

); i = 1; � � � ; N ,

su
h that �(�

1

; � � � ; �

k

; S

0

) and �(�

1

; � � � ; �

k

; S

N

) hold (where �

1

; � � � ; �

k

are

terms), we 
an 
on
lude that for some i (1 � i � N); '(�

i

).

Proof. Obviously �(�

1

; � � � ; �

k

; S

i�1

) and �(�

1

; � � � ; �

k

; S

i

) must hold for some

i, allowing appli
ation of the 
losure axiom. 2

Sleeping-dog proposition for holding. Let D

N

be a theory (i.e., domain

theory and 
erti�able plan) as de�ned above. Then the following default

rules are sound and 
omplete for 
on
lusions of form holding(R; �; S

k

) and

:holding(R; �; S

k

), where � 2 Names and 0 < k � N :

holding(R; �; S

i

) :holding(R; �; S

i

) :(9z)holding(R; z; S

i

)

holding(R; �; S

k

)

,

:holding(R; �; S

k

)

,

:holding(R; �; S

k

)

where i is the largest integer � k su
h that at least one of holding(R; �; S

i

),

:holding(R; �; S

i

), and :(9z)holding(R; z; S

i

) 2 D

k

.

Proof.

Soundness: We need to show that if i (as de�ned) exists for a given � 2

Names, then D

k

entails whi
hever 
on
lusions are given by the default rules.

Suppose otherwise, i.e., there are �; i satisfying the premises for whi
h a

default rule gives a 
on
lusion whose negation follows from D

k

, or neither

the 
on
lusion nor its negation follows from D

k

. Consider the 
ase where

holding(R; �; S

i

) 2 D

k

and D

k

` :holding(R; �; S

k

). Then by (A2) (expla-

nation for holding be
oming false) and the Serial Plan Lemma, there was

a step S

j

= Result(�; S

j�1

) with � 2 fPutdown(R; �); Drop(R; �)g and

i < j � k. By the unique-names assumption and inequality s
hemas (A3),

this step must appear in D

k

in pre
isely this form, i.e., as jth step of the
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plan. But then by (2) and (3), :holding(R; �; S

j

) 2 D

k

, 
ontrary to the

de�nition of i. Next 
onsider the 
ase where :holding(R; �; S

j

) 2 D

k

and

D

k

` holding(R; �; S

k

). Then a 
ontradi
tion is derived just as before, using

(A17) (explanation for holding be
oming true) and (1). Third, 
onsider the


ase where :(9z)holding(R; z; S

i

) 2 D

k

and D

k

` holding(R; �; S

k

). Then

the 
ontradi
tion follows just as in the previous 
ase, ex
ept for use of the

fa
t that :(9z)holding(R; z; S

i

) ` :holding(R; �; S

i

).

Now suppose �; i are su
h that neither the 
on
lusion of the appli
able

default rule, nor its negation, follows from D

k

. Consider the 
ase where

holding(R; �; S

i

) 2 D

k

. Sin
e D

k

6` holding(R; �; S

k

), we 
an 
onsistently

form D

0

k

= D

k

[f:holding(R; �; S

k

)g. Then in this theory we 
an prove that

there was a step S

j

= Result(�; S

j�1

) with � 2 fPutdown(R; �); Drop(R; �)g

and i < j � k, and that this step must appear expli
itly in D

0

k

, and hen
e

in D

k

, by exa
tly the same line of argument as before (i.e., using the Serial

Plan Lemma, unique names, and (A3)); thus we arrive at a 
ontradi
tion

as before. We 
an derive 
ontradi
tions from the remaining two 
ases (for

:holding(R; �; S

i

) or :(9z)holding(R; z; S

i

) 2 D

k

) in an exa
tly analogous

manner.

Completeness: Assume �rst thatD

k

` holding(R; �; S

k

) for some � 2 Names.

We need to show that i exists as de�ned and holding(R; �; S

i

) 2 D

k

(so

that default inferen
e yields holding(R; �; S

k

)).

10

By the premises of the

proposition, :(9z)holding(R; z; S

0

) 2 D

0

, so i 
ertainly exists. Now suppose

holding(R; �; S

i

) 62 D

i

. Then (by the de�nition of i) either :holding(R; �; S

i

)

2 D

i

or :(9z)holding(R; z; S

i

) 2 D

i

. In either 
ase, by (A17) there is a step

S

j

= Result(Pi
kup(R; �); S

j�1

) for some j (i < j � k) and this must be

expli
itly in D

k

by the unique-names assumption and inequality s
hemas.

By (1), applied to D

j

, this 
ontradi
ts the de�nition of i. Se
ond, assume

that D

k

` :holding(R; �; S

i

) for some � 2 Names; we show i exists as de-

�ned and either :holding(R; �; S

i

) 2 D

k

or :(9z)holding(R; z; S

i

) 2 D

k

(so

that default inferen
e yields :holding(R; �; S

k

)). The denial of this disjun
-

tion leads to holding(R; �; S

i

) 2 D

k

, and a 
ontradi
tion follows as before. 2

These default rules 
learly give us a fast method of inferring non-
hange

for holding (or :holding), when we are working out the e�e
ts of a plan

10

Of 
ourse, if i happens to be k, the "default inferen
e" gives nothing new.

24



step-by-step. In fa
t, we 
an ensure the inferen
es will be made in 
onstant

time (on average). We store the initial and inferred instan
es of literals of

form holding(R; �; �), :holding(R; �; �), :(9z)holding(R; z; �), where �; �

2 Names, in a 
ommon hash table with 
omplex key (holding; �). (We

in
lude holding as part of the key for generality, i.e., for 
ases where other


uents are \tra
ked" as well.) Note that � (the situation 
onstant) is ignored

in the key, so that as we progress through the plan, a list of entries will be

formed for ea
h key in 
hronologi
al order. The literal needed for default

inferen
e will always be at the front of the list, allowing 
onstant-time a

ess.

So this provides a detailed and 
on
rete example of eÆ
ient, STRIPS-

like inferen
e in the Situation Cal
ulus, with the additional advantage of

soundness and 
ompleteness (for a 
ertain 
lass of formulas) relative to the

underlying domain theory. Moreover, the stru
ture of the soundness and


ompleteness proofs suggests that su
h proofs will be possible for many 
u-

ents in many appli
ations.

Nevertheless, su
h default propositions are not entirely trivial to formu-

late (in parti
ular, with regard to what \e�e
t inferen
es" should be in
luded

in theD

i

) and to prove. We would mu
h prefer to have a generalmethodology

for exploiting 
losure axioms for STRIPS-like default inferen
es.

Now it turns out that the main sour
e of diÆ
ulty in formulating and

proving sleeping-dog propositions is the goal of 
ompleteness, i.e., having

the default rules 
over all persisten
e inferen
es of a 
ertain form. But it is

a

eptable, and ultimately ne
essary, to relax this 
onstraint. It is a

ept-

able be
ause losing a few of the fast persisten
e inferen
es need not seriously

degrade average performan
e. It is ultimately ne
essary in an unrestri
ted

�rst-order theory be
ause the forward inferen
es (from a
tions to resultant


hanges) needed to support subsequent default inferen
es may be
ome arbi-

trarily hard. Clearly dedu
ing 
hange by forward inferen
ing is worthwhile

only to the extent that its 
osts do not ex
eed the resultant savings in de-

du
ing non-
hange. It is un
lear how to trade these o� in general, so I will

leave the issue open in the following, 
on
entrating instead on the issue of

soundness.

As soon as we 
onsider in
omplete inferen
e of 
hange, the risk of overly

strong persisten
e inferen
e arises: if at some point a 
hange in a 
uent

o

urred, but we failed to infer and register it, our default rules might mis-

takenly give us the old, outdated value as the 
urrent one. Fortunately,
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explanation 
losure axioms 
an be used to safeguard against su
h errors.

Roughly the idea is to set them up as \sentries" on 
uents, and \trigger"

them when an a
tion that may a

ount for a 
hange in those 
uents o

urs.

Brief attempts to prove 
hange or non-
hange are then made, and where

both fail, the 
uent is 
agged as \questionable." This 
agging blo
ks un-

sound default inferen
es. Sin
e the 
agging is essentially 
on�ned to \old"


uent literals referen
ed by explanation 
losure axioms and not subsequently

updated using e�e
t axioms, the total 
omputational e�ort arguably remains

modest.

In more detail, we begin with an initial world des
ription D

0

, in
luding


uent formulas des
ribing initial situation S

0

. I will write an unspe
i�ed


uent formula for a parti
ular situation S

i

resulting from the ith step of a

plan as '(S

i

). S

i

is understood to be the only 
onstant situational argument

o

urring in '(S

i

). '(S

k

) is the result of uniformly substituting S

k

for S

i

.

'(S

i

) is the negation of '(S

i

) (with double negations eliminated). ?'(S

i

) is

'(S

i

) pre�xed with \?", after removal of the negation, if any. We also de�ne

the essential 
uents as some algorithmi
ally re
ognizable 
lass of 
uent for-

mulas for whose 
hanges we have explanation 
losure axioms. For instan
e,

these might be all formulas of form (:)�(�

1

; � � � ; �

k

; S

i

), where � is a primary


uent predi
ate (used in the axiomatization of the dire
t e�e
ts of a
tions),

and �

1

; � � � ; �

k

are 
onstants. We now apply the following pro
edure. (The

role of explanation 
losure axioms as \sentries" in step (4) is left impli
it for

the moment.)

Plan Tra
king Pro
edure. We take a

ount of the steps of a given plan

S

k

= Result(�

k

; S

k�1

), k = 1; � � � ; N , expanding D

k�1

to D

k

for ea
h k as

follows. Note that for k > 1, D

k�1

may 
ontain \questioned" 
uents.

1. Initialize D

k

to D

k�1

2. Add S

k

= Result(�

k

; S

k�1

) to D

k

3. Apply e�e
t axioms to this plan step in an algorithmi
ally bounded

way, adding new 
uents '(S

k

) to D

k

. Some impli
it e�e
ts may be

dedu
ed as well, as long as the 
omputation is guaranteed to terminate.

Pre
onditions of e�e
t axioms at situation S

k�1

may be veri�ed in part

by default rules, to be des
ribed.
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4. Determine a subset V of the \visible" essential 
uents. A 
uent formula

'(S

i

) (0 � i � k) is visible if none of '(S

j

), '(S

j

), ?'(S

j

) are present

for any j > i (these would \
on
eal" '(S

i

)). V must in
lude any

visible, essential '(S

i

) for whi
h '(S

k

) is not provable (i.e., for whi
h

D

0

[ fS

j

= Result(�

j

; S

j�1

) j j = 1; � � � ; kg 6` '(S

k

)). (Note that we

must have i < k.) In other words, it must in
lude the essential 
uents

whose persisten
e has not been proved, or 
annot be proved. (This 
an

be guaranteed by in
luding all visible essential 
uents, but this would

defeat our purposes; more on this later.)

5. For ea
h '(S

j

) 2 V, initiate 
on
urrent proof attempts for '(S

k

) and

'(S

k

), basing the former on relevant explanation 
losure axioms and

the latter on relevant e�e
t axioms. Again, 
onditions at situation

S

k�1

may be established with the aid of default rules. Terminate the


omputations by some algorithmi
 bound T ('(S

k

); D

k

). If the proof

of '(S

k

) su

eeded, pro
eed to the next element of V (i.e., '(S

i

) need

not be 
on
ealed). If the proof '(S

k

) su

eeded, add '(S

k

) to D

k

. If

both attempts failed, add ?'(S

k

) to D

k

.

Having tra
ked a plan to step N , we would attempt to prove the goals

of the plan, in the same manner as we prove pre
onditions in step (3). Of


ourse, in a bounded proof attempt in unrestri
ted Situation Cal
ulus, step

(3) and the goal proof attempt may both terminate before a target formula

is 
on�rmed, even though it may be provable in prin
iple. However, in the

event of failed pre
ondition or goal proofs we might well use some systemati


way of in
reasing the 
omputational e�ort in steps (3) and (5) (and the �nal

goal proof). If our underlying proof pro
edures are 
omplete, this will ensure

that we will eventually prove the pre
onditions and goals, if indeed they are

provable.

All this presupposes that the pro
edure as stated is dedu
tively sound.

This hinges entirely on the soundness of the default rules employed in steps

(3) and (5). We now turn to these.

Default Lemma. For ea
h k 2 fi; � � � ; Ng, at the end of step (5) of the
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Plan Tra
king Pro
edure, the following default rule

'(S

i

)

'(S

k

)

is sound for any essential 
uent formula '(S

i

) visible in D

k

, i.e., D

0

[

fS

j

= Result(�

j

; S

j�1

) j j = 1; � � � ; kg ` '(S

k

).

Proof. By indu
tion on k. The proposition is true for k = 0, sin
e then

all visible formulas are 2 D

0

. Assume it is true for all k � k

0

� 1 (k

0

> 0).

Then the �rst k

0

�1 
y
les through steps (1)-(5) 
learly add only logi
al 
on-

sequen
es of D

0

[ fS

j

= Result(�

j

; S

j�1

) j j = 1; � � � ; k

0

� 1g to D

k

0

�1

(aside

from questioned 
uents). At the k

0

th 
y
le, the use of default rules in steps

(3) and (5) to derive essential 
uents '(S

k

0

�1

) is also sound by hypothesis. In

step (5), by the de�nition of V every essential 
uent '(S

i

) su
h that '(S

k

0

) is

not dedu
ible is 
on
ealed. Hen
e no su
h '(S

k

0

) 
an be unsoundly obtained

by default rules after step (4). 2

Soundness is a minimal requirement if the plan tra
king pro
edure is

to provide an interesting alternative to STRIPS-like or other nonmonotoni


methods. The other requirement is eÆ
ien
y. How does the eÆ
ien
y of the

pro
edure 
ompare to that of STRIPS-like methods? And does the use of the

default rule provide gains over ordinary proofs based on explanation 
losure,

like that of Proposition 1?

I don't think either of these impre
ise questions 
an be made pre
ise with-

out 
on�ning oneself to some spe
i�
 domain. That is an exer
ise we have

already gone through (in the sleeping-dog proposition for holding), so my an-

swers will not aspire to theoremhood. It appears that plan tra
king 
an be

roughly 
onstant-time per plan step in STRIPS. This assumes that true pre-


onditions 
an be 
on�rmed in 
onstant time on average (i.e., pre
onditions

do not depend on \deeply impli
it" e�e
ts), and that the 
uents mat
hed by

add-list and delete-list patterns do not be
ome arbitrarily numerous. How


lose does the plan tra
king pro
edure 
ome to this level of eÆ
ien
y?

Steps (1)-(3) 
losely resemble pre
ondition and e�e
t 
omputations for

STRIPS operators, and so 
an reasonably be expe
ted to be of 
omparably

low 
omplexity. This assumes that essential 
uents 
orrespond 
losely to


uents that would be referen
ed in STRIPS operators. It also assumes that

default determination of pre
ondition 
uents will usually su

eed in step (3)

when it su

eeds via the STRIPS (persisten
e) assumption; and that depends
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on steps (4) and (5), so let us turn to these.

The key question is whether in step (4), V is an easily found, small subset

of the visible, essential 
uents. If V does not be
ome arbitrarily large (even

when the number of essential 
uents \tra
ked" be
omes arbitrarily large) or

arbitrarily hard to �nd, then step (5) will also have bounded 
omplexity {

provided that the bound T is suÆ
iently tight. Furthermore, if V remains

small, then there will be few failures in step (3) to infer essential pre
ondition


uents by default.

The �rst observation about the size of V is that it is sometimes 0. That

was the point of the sleeping-dog proposition for holding. Essentially this

was made possible by the bi
onditional nature of the 
ombined e�e
t and ex-

planation axioms: holding begins i� the robot (su

essfully) pi
ks something

up, and 
eases i� he (su

essfully) puts down or drops something.

But exploiting this fa
t required a de�nition of D

1

; D

2

; � � � tailored to the

domain. How is D to be determined in general? The answer is to be sought

in the explanation 
losure axioms. V 
onsists of essential 
uents whi
h may

have 
hanged as a result of the last plan step, but have not been proved to do

so. But if we have an explanation 
losure axiom for su
h a 
uent, we know

that the only way it 
ould have 
hanged is through the o

urren
e of one of

the a
tions spe
i�ed in the explanation. This immediately rules out all the

essential 
uents for whi
h the known types of explanations for 
hange do not

mat
h the a
tion whi
h o

urred. This should eliminate the great majority

of 
andidates.

Knowing that only a fra
tion of the visible essential 
uents are 
andidates

for V is no immediate guarantee that we 
an avoid sifting through them all.

however, if we a

ept the a
tion inequality s
hemas (3) and the unique-names

assumption (so that \a
tion instan
es that don't look the same denote dis-

tin
t a
tions"), we 
an use the following sort of indexing s
heme to 
ompile

V e�ortlessly. (i) We store (names of) explanation 
losure axioms in a stati


table with the type of 
uent whose 
hange they explain as key. (ii) We also

store them in another stati
 table with the types of a
tions they invoke as

explanations as keys (with separate storage under ea
h alternative explana-

tion). (iii) Finally, we maintain a dynami
 table whi
h for ea
h explanation


losure axiom 
ontains a list of those visible, essential 
uents whose 
hange, if

it o

urs, would be explained by the axiom. (These are the 
uents for whi
h

the axiom serves as \sentry".) When a new essential 
uent is asserted, we
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delete any 
uent in table (iii) 
on
ealed by the new 
uent (using ba
k point-

ers from the 
uents to the table). We look up the 
losure axiom relevant to

the 
uent in table (i), and hen
e store the 
uent in table (iii). We 
an then

implement step (4) of the plan tra
king pro
edure by indexing into table (ii)

for the new a
tion �

k

; we thus �nd the relevant \sentries" (
losure axioms

involving explanations whi
h the new a
tion instantiates), and hen
e retrieve

the visible essential 
uents potentially a�e
ted by the a
tion from table (iii)

(where we 
an restri
t attention to those '(S

i

) with i < k, as indi
ated in

step (4)). This makes plausible the 
laim that STRIPS-like eÆ
ien
y 
an be

a
hieved, while retaining soundness.

A brief return to the next-to problem may help to 
larify the di�eren
es

between the inferen
es made by a STRIPS-like approa
h and those made

by the present pro
edure. Let us treat 
uents of form (:)next-to(R; �; �)

(where � and � are 
onstants) as essential. We already have (A23) as possible

explanation 
losure axiom for next-to be
oming true, to whi
h we might add:

A24. (8a; x; s; s

0

)[[next-to(R; x; s) ^ :next-to(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[a = Go-next-to(R; y) ^ :next-to(x; y; s)℄℄

Also, the e�e
t axiom is

A25. (8a; x; s; s

0

)[[:next-to(R; x; s) ^ s

0

= Result(Go-next-to(R; x); s)℄

! next-to(R; x; s

0

)℄

We take (A3) and (A23) - (A25) as our only general axioms here, and assume

initial situation S

0

su
h that

:next-to(R;W

1

; S

0

); :next-to(R;W

2

; S

0

); remote(Door;W

1

; S

0

);

:next-to(R;Door; S

0

); next-to(W

1

;W

2

; S

0

)

Now we tra
k the e�e
t of \plan" S

1

= Result(Go-next-to(R;W

1

); S

0

):

Applying e�e
t axiom (A25):

next-to(R;W

1

; S

1

)

At this point, next-to(R;W

1

; S

1

);:next-to(R;W

2

; S

0

); and :next-to(R;Door;

S

0

) are visible, essential 
uents. (next-to(W

1

;W

2

; S

0

) is not essential as we

have supplied no explanation 
losure axioms that apply; W

1

6= R by the

unique-names assumption.) The �rst is not in V (see step (4) of pro
edure)
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sin
e it is a 
urrent 
uent (i = k): :next-to(R;W

2

; S

0

) leads to 
on
urrent

proof attempts for next-to(R;W

2

; S

1

) and :next-to(R;W

2

; S

1

), the former

via e�e
t axiom (A25) (whi
h fails), and the latter via explanation axiom

(A23). One way the proof strategy might pro
eed is by assuming next-

to(R;W

2

; S1) and attempting to derive a 
ontradi
tion from (A23). This

yields

(9y)[Go-next-to(R;W

1

) = Go-next-to(R; y) ^ :remote(W

2

; y; S

0

)℄:

By inequality s
hemas (A3), W

1

= y; so

:remote(W

2

;W

1

; S

0

).

This does not lead to 
ontradi
tion; so sin
e both proof attempts failed, the

questioned 
uent ?next-to(R;W

2

; S

1

) is posted.

Similarly :next-to(R;Door; S

0

) leads to 
on
urrent proof attempts for

next-to(R;Door; S

1

) and :next-to(R;Door; S

1

). The former fails. The latter

may again be attempted by assuming next-to(R;Door; S

1

) and trying to

derive a 
ontradi
tion from (A23). This yields

(9y)[Go-next-to(R;W

1

) = Go-next-to(R; y) ^ :remote(Door; y; S

0

)℄.

By s
hemas (A3), W

1

= y, so

:remote(Door;W

1

; S

0

),


ontrary to a given fa
t. Sin
e persisten
e of the robot's not being next to the

door has thus been 
on�rmed, nothing further is done: :next-to(R;Door; S

0

)

will stay visible in world des
ription D

1

and will thus be available for default

inferen
e of :next-to(R;Door; S

1

).

Of 
ourse, sin
e the example only re
ognizes one type of essential 
u-

ent, and this is the one a�e
ted by the assumed a
tion, it 
annot serve to

illustrate the 
laim that only a small fra
tion of the visible essential 
uents

will typi
ally fall into subset V . What it does illustrate is the distin
tion

the approa
h makes between warranted and unwarranted persisten
e infer-

en
es { it 
orre
tly re
ognizes the persisten
e of :next-to(R;Door; S

0

), and


orre
tly \questions" the persisten
e of :next-to(R;W

2

; S

0

). STRIPS-like,


ir
ums
riptive, and nonmonotoni
 approa
hes would fail to make this dis-

tin
tion.

This still leaves the question of whether the Plan Tra
king Pro
edure,

with its relian
e on default inferen
e, provides signi�
ant gains over proofs

in the goal-dire
ted style of Proposition 1.

Here the answer appears to be \not ne
essarily" { only in spe
ial 
ases.
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Consider how one might try to argue the aÆrmative. One might, for instan
e,

point to tasks su
h as letter 
arrying. Repetitive tasks of this type may well

be of 
onsiderable interest in roboti
 domains. Now one might argue that a

nondefault approa
h would have to prove after ea
h delivery that the mail bag

is still at hand, and the undelivered letters still in it. But su
h an argument

would be erroneous. A goal-dire
ted approa
h that performs inferen
es as

needed would ignore the question of where the letters are until it was time to

deliver the letter x to address y. At this point the reasoner would note that

x was in the bag at the outset, that only \delivering x" 
an 
hange this fa
t,

that this a
tion did not o

ur, and hen
e that x is still in the bag. If a
tions

are suitably indexed (e.g., via keys like (Deliver, Letter41)), this inferen
e

pro
ess is a 
onstant-time one, and hen
e 
annot be signi�
antly worse (in

terms of order of 
omplexity) than the default method.

Still, the default method has the advantage that in 
ases like the above

even less work (viz., a look-up) is needed; in other words, the 
onstant is

smaller. Also, the greater expli
itness of world des
riptions in the default-

based approa
h may fa
ilitate \mental per
eption" pro
esses, su
h as re
og-

nition of opportunities and threats. For instan
e, a robot planning to 
hange

a lightbulb and to hang up a 
alendar might \observe himself" passing 
lose

to the tool shelf in imagining his ex
ursion to the basement to fet
h a bulb.

This might prompt him to obtain a hammer and nail on the same trip.

\Observing" his proximity to the tool shelf requires maintenan
e of an up-

to-date world model, one whi
h re
e
ts both 
hange (his own lo
ation) and

persisten
e (the tool shelf lo
ation). The STRIPS-inspired Plan Tra
king

Pro
edure seems well-suited to this kind of mental per
eption; for instan
e,

one 
an imagine using \demons" whi
h wat
h for opportune 
ir
umstan
es

(relative to 
urrent goals). It would be harder to trigger su
h demons if the


ir
umstan
es of interest 
ould only be brought to light through persisten
e

inferen
e, however eÆ
iently.

5 Possible extensions and probable limitations

Its supposed impoten
e vis-�a-vis the frame problem is not the only de�
ien
y


ommonly attributed to the Situation Cal
ulus. It is also alleged to rule

out 
on
urrent a
tions, an independently 
hanging world (external events),


ontinuous 
hange, nonprimitive and hierar
hi
ally stru
tured a
tions, and
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other 
omplex a
tions su
h as 
onditional and iterative ones.

While this range of topi
s is too broad for detailed 
onsideration here, I

will attempt a brief ex
ulpation, with emphasis on the issue of 
on
urren
y.

However, an interesting weakness that does emerge is that there is a kind

of tension between the predi
ative language of propositional 
uents, and the

fun
tional language of a
tions and Result. The former provides a simple

means for des
ribing 
hange in any desired aspe
t of the world. The latter

is in prin
iple 
ompatible with a broadly 
hanging world, but is useful only

to the extent that one adopts a lo
alized view 
entered around one or a few

agents. In parti
ular, the rest of the world poses a hazard to the 
onsisten
y

of the fun
tional view. So the overall pi
ture is that the Situation Cal
ulus is

in prin
iple mu
h more expressive than generally assumed, but is hampered

in pra
tise by the \paro
hialism" of the Result fun
tion.

To see that the Situation Cal
ulus does not rule out external events and

agen
ies, think of the situations S

0

= Result(A; S) as being the result of A

and situation S (rather than just the result of A in situation S). In other

words, S may be a dynami
 situation, whi
h is headed for 
hange no matter

what a
tions are initiated in it. This view allows for any sort of deterministi


external 
hange we 
are to des
ribe, su
h as that the sun will have risen by

8:00 o'
lo
k on any day, no matter what:

(8a; d; s; s

0

)[[day(d) ^ 
ontains(d; s) ^ 
ontains(d; s

0

)^

:risen(Sun; s) ^ Clo
k-time(s

0

) > 8 ^ s

0

= Result(a; s)℄

! risen(Sun; s

0

)℄

We 
an even a

ommodate animate agen
ies of 
hange, as in the arrival of

buses at a bus stop. Here we might use a Wait-for-bus a
tion whose \result"

{ thanks to the transit agen
y and drivers { is the presen
e of a bus.

However, external agen
ies of 
hange do be
ome a problem if they alter


riterial 
uents (those on whi
h planned a
tions and goals depend) unpre-

di
tably. In su
h a 
ase both e�e
t axioms and explanation 
losure axioms

may be invalidated. For example, if traÆ
 on the bus route may jam, or the

drivers may strike, then being at the bus stop with the fare at hand is no

longer a suÆ
ient 
ondition for su

ess of Wait-for-bus. (In other words, we

en
ounter the quali�
ation problem.) Similarly, if the money in my po
ket

may be arbitrarily lost or stolen, I 
annot assert an axiom that its depletion

requires an expenditure. Thus, I will be unable to prove the �nan
ial pre-
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onditions for boarding the bus. It would not help to in
lude loss and theft

among the possible explanations for depletion of funds, sin
e the o

urren
e

of these events 
annot be ruled out on the grounds that some other event

o

urred, su
h as Wait-for-bus (or to put it di�erently, they weren't part of

the plan).

This inability to deal e�e
tively with a larger, more 
apri
ious world

was impli
it even in the earlier, sharply delimited robot's world: the 
losure

axioms used there have highly implausible 
onsequen
es if applied to the

world at large. For instan
e, (A20), the 
losure axiom for 
essation of at,

together with a simple a
tion like S

1

= Result(Pi
kup(R;B); S

0

) and the

inequality s
hemas (A3), entails that

:(9x; y) [at(x; y; S

0

) ^ :at(x; y; S

1

)℄,

i.e., nothing moved (horizontally) between S

0

and S

1

. While this is a rea-

sonable 
on
lusion within a restri
ted robot's world, it is not reasonable in

a world where numerous external agen
ies are a
tive 
on
urrently with the

agent of interest. One way of a
hieving greater realism would be to pla
e

restri
tions on the variables of the 
losure axioms. For instan
e, we might

say that when any one of a 
ertain set of obje
ts (nondiminutive ones within

the setting of interest) 
eases to be at a lo
ation, then the robot walked, and

is that obje
t or 
arried it. However, it is un
lear in general how to formu-

late su
h variable restri
tions in a prin
ipled, uniform manner. Even agents

physi
ally remote from an obje
t may be able to a�e
t it (
f. George� 1987).

Despite these limitations, the fa
t remains that the Situation Cal
ulus in

prin
iple admits external events.

Before moving on the the next supposed de�
ien
y of the Situation Cal-


ulus, let us re
all that it subsumes �rst-order logi
. As su
h it allows the

formation of 
omplex a
tion terms from simpler ones. This 
ompositional

potential has generally been overlooked (but see Kowalski 1986, Kowalski

and Sergot 1986, and Morgenstern 1987). All of my remaining suggestions

hinge on modifying or 
ombining a
tions by means of fun
tions.

In the standard \robot's world" examples (in
luding the ones herein)


hange o

urs in quantum jumps. However, in formalizations based on the

Situation Cal
ulus, this is not due to a limitation of the formalism (in 
ontrast

with STRIPS, for instan
e), but only to tradition. We 
an readily attain a


ontinuous view of what goes on during an a
tion, using a fun
tion su
h as

Trun
(a; t) for \
utting short" a
tion a after t se
onds, if it would otherwise
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have taken longer. The properties of trun
ated a
tions 
an be axiomatized

using a Time fun
tion on situations whi
h is real-valued and one-to-one on

any set of situations 
onstituting a \possible history of the universe" (
f.,

M
Dermott 1982, Allen 1984). Trun
 allows us to say, for example, that

at all situations s

00

during Walk(R; x; y) starting in situation s and ending

in s

0

, the 
uent formula moving-toward(R; y; s

00

) holds. Moreover, a slight

generalization of explanation 
losure axioms allows us to extend persisten
e

reasoning to ongoing a
tions. For example, we 
an modify (A2) appropriately

by stating that the only primitive a
tions whose initial segments 
an lead to


essation of holding are Putdown and Drop.

Another simple use to whi
h fun
tions on a
tions 
an be put is to form

sequen
es of a
tions. (M
Carthy and Hayes modelled sequen
ing and other


ontrol regimes by inserting expressions of the Situation Cal
ulus into Algol

programs, rather than attempting 
omposition within the Situation Cal
u-

lus). In parti
ular, we 
an employ a binary Seq fun
tion with the obvious

de�nition

(8a; b; s) Result(Seq(a; b); s) = Result(b; Result(a; s)):

Axioms to distinguish primitive from 
omposite a
tions are easily formulated,

using predi
ates prim and 
omp. Another slight amendment of explanation


losure axioms will then preserve their utility: in axioms like (A16) - (A24),

we in
lude the quali�
ation prim(a) in the ante
edent.

Now what makes sequen
es of a
tions interesting is the possibility of

using them as \ma
ros" (larger-s
ale a
tions) in plan reasoning. For this to

be pro�table, however, both e�e
t axioms and explanation 
losure axioms

need to be formulated at the level of 
omposite a
tions. Both turn out to

be possible, at least within limits. For e�e
t axioms, we 
an use \lemmas"

about their net e�e
t based on e�e
ts of 
onstituent primitive a
tions. For

explanation 
losure, where there are just two levels (prim and 
omp) of

strati�
ation, we 
an use entirely separate 
losure axioms at the 
omp level,

with a
tions quali�ed as 
omp(a) in the ante
edent. For instan
e, suppose

we have de�ned Move-obje
t as a 3-step ma
ro (involving Pi
kup, Walk,

and Putdown), along with \stationary" ma
ros like Empty-into, Open-blind,

Unlo
k, and so on. Then we 
an state that if an obje
t 
hanges lo
ation via

a 
omp a
tion, the a
tion must be a Move-obje
t (and the relo
ated obje
t

must be the argument, or 
arried by it, or is the robot, or something the
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robot was already 
arrying at the start).

Generalizing beyond two levels of strati�
ation is 
ertainly desirable but

at this point an open problem. We need to move from the two predi
ates

prim and 
omp toward a general taxonomy of a
tions, allowing for both


omposition (
onstru
ting larger-s
ale a
tions out of smaller-s
ale ones) and

abstra
tion (
lassifying a given set of a
tions as being of the same abstra
t

type). As an example of abstra
tion, running, walking, 
rawling and hop-

ping (by humans) 
an all be 
lassi�ed as types of unme
hanized travel, where

the latter is in turn subsumed under (me
hanized and unme
hanized) travel.

Preliminary resear
h suggests that persisten
e reasoning based on explana-

tion 
losure axioms 
arries over to this setting, with the requirement that

\a
tion inequality reasoning" based on s
hemas (A3) be repla
ed by \a
tion

ex
lusion reasoning" (e.g., the in
ompatibility of running and walking).

One possible weakness of the Situation Cal
ulus that emerges from a


onsideration of a
tion abstra
tion is its somewhat 
ounterintuitive distin
-

tion between \deterministi
 a
tions" { those (rei�ed) a
tions whi
h lead to

a unique su

essor state via Result { and abstra
t a
tions { those des
rib-

able only by predi
ates over (rei�ed) a
tions. This 
aw apparently 
annot

be remedied without substantial reformulation of the 
al
ulus (e.g., in terms

of a result-relation over a
tions and pairs of situations) or without losing

the advantage of having plans expressed as terms, allowing their dedu
tive

extra
tion in the manner of Green.

Conditional a
tions and iteration 
an also be introdu
ed with the aid

of 
omposition fun
tions su
h as If (test; a
tion) and While(test; a
tion).

The details would take us too far a�eld, but three things are worth pointing

out. First, pre
onditions for 
onditional a
tions must take a

ount of the

agent's knowledge about the truth of test, to avoid an assumption of omni-

s
ien
e and the risk of paradox; 
onsider, for instan
e, If(Goldba
h-
onje
ture,

Say-yes(R)) or If(Committed-to-saying-yes(R), Say-no(R)) (
f., Manna and

Waldinger 1987, Morgenstern 1987). Se
ond, tests are rei�ed propositions

about situations and as su
h appear to 
all for dupli
ating the entire logi


within its fun
tional notation, in
luding quanti�ers and 
onne
tives (e.g.,


onsider \test whether there is a blue 
up in every box"). This is feasible

(M
Carthy 1979), but to my mind not very attra
tive. The third point is

that at least if we limit ourselves to \tests" whi
h �t into our taxonomy of a
-

tions (e.g., prim and 
omp in simple 
ases), explanation 
losure 
an be used
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to prove persisten
e through 
onditionals and loops { though naturally both


hange and non
hange inferen
e 
an be
ome quite 
ompli
ated in proofs by


ases or by indu
tion.

Finally, I will 
onsider 
on
urren
y at somewhat greater length. As be-

fore, the key is a
tion 
omposition, in this 
ase by parallel 
ombinators. I

will restri
t myself to one for the moment, Costart(a

1

; a

2

) whi
h is the a
tion


onsisting of simultaneously started a
tions a

1

, a

2

, and whi
h terminates as

soon as both are done (not ne
essarily at the same time). a

1

and a

2

need

not be independent of ea
h other, i.e., the e�e
t of ea
h may depend upon

the 
o-o

urren
e of the other (as, for example, in 
ooperative lifting and


arrying of a sofa). However, I will not 
on
ern myself with reasoning about

interdependent a
tions here.

It is important to understand the intuitive interpretation of the expression

Result(Costart(a

1

; a

2

); s).

Just as in the 
ase of Result(a; s), this is the resultant situation when only

the a
tion spe
i�ed by the �rst argument (in this 
ase, Costart(a

1

; a

2

)) takes

pla
e. This in
idently does not pre
lude external 
hange any more than in

the serial 
ase. The notation simply says that the 
on
urrent a
tions a

1

and

a

2

are the only ones 
arried out by the agents of interest { those who from

our 
hosen perspe
tive generate the spa
e of possible future histories (while

any other sour
es of 
hange 
an only be a

ommodated predi
tively).

The following example will serve to illustrate reasoning about persisten
e

(and 
hange) in a world with 
on
urrent a
tions. In a room 
ontaining a

man, a robot and a 
at as the only potential agents, the only a
tions are

that the man walks from one pla
e to another, while the robot pi
ks up a

box 
ontaining the (ina
tive) 
at and walks to another pla
e. So the initial


onditions (in part) and the plan are as follows:

at(R;L

1

; S

0

); next-to(R;B; S

0

); in

0

(C;B; S

0

); liftable(B),


olor(C;Ginger; S

0

); at(H;L

0

; S

0

); :(9z)holding(R; z; S

0

)

Hplan =Walk(H;L

0

; L

3

)

Rplan = Seq(Pi
kup(R;B); Walk(R;L

1

; L

2

))

P lan = Costart(Hplan;Rplan)

S

3

= Result(P lan; S

0

)

Our goal is to show that the 
at retains its ginger 
olor:

37



(a) 
olor(C;Ginger; S

3

)

Sin
e we will need to reason about the primitive parts of 
omposite a
tions,

we will use the following postulates.

A25. Walk, Pi
kup, et
. are primitive: for � an n-pla
e fun
tion 2

fWalk, Pi
kup, Paint, ...g,

(8x

1

; � � � ; x

n

) prim(�(x

1

; � � � ; x

n

))

A26. A primitive part of two 
on
urrent a
tions is a primitive part of one

or the other.

(8x; y; z)[prim-part(x; Costart(y; z))

! [prim-part(x; y) _ prim-part(x; z)℄℄

A27. Similarly for sequen
es of a
tions

(8x; y; z)[prim-part(x; Seq(y; z))

! [prim-part(x; y) _ prim-part(x; z)℄℄

A28. A primitive part of a primitive a
tion is identi
al with it.

(8x; y)[[prim-part(x; y) ^ prim(y)℄! x = y℄

To prove 
olor persisten
e, we will use the following variant of 
losure

axiom (A16):

A29. If an obje
t 
eases to be of 
olor v in the 
ourse of a plan, that plan


ontains a primitive part whi
h is the a
tion of painting or dyeing the

obje
t some 
olor w.

(8p; y; v; s; s

0

)[[
olor(y; v; s) ^ :
olor(y; v; s

0

) ^ s

0

= Result(p; s)℄

! (9x; a; w)[a 2 fPaint(x; y; w); Dye(x; y; w)g^

prim-part(a; p)℄℄

We 
an now prove our goal (a) by assuming it is false and applying (A29)

with s

0

and p instantiated to S

3

and P lan respe
tively. We infer that for some

agent x, x painted or dyed the 
at and this a
tion is a primitive part of P lan.

Then this a
tion is also a primitive part of Hplan or Rplan by (A26). Hen
e

it is a primitive part of Walk(H;L

0

; L

3

), Pi
kup(R;B), or Walk(R;L

1

; L

2

)

by (A27). By (A25) and (A28) the painting or dyeing a
tion is identi
al with

one of these three a
tions, 
ontrary to the inequality s
hemas.
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This proof (and its axiomati
 basis) is very simple, and that is the primary

point of the illustration. However, we would also like to 
on�rm that 
hange


an be inferred in su
h a setting, based on reasonable su

ess 
riteria for the


on
urrent a
tions involved. As in the 
ase of serial worlds, this is a little

harder than inferring persisten
e.

For a
tions whi
h have their usual pre
onditions satis�ed, I will take spa-

tiotemporal disjointness of their \proje
ted paths" as a suÆ
ient 
ondition

for their su

essful 
on
urrent exe
ution.

11

Path(a; s) 
an be thought of as

a time-varying spatial region, namely the region whi
h the agent of a
tion a

and all the obje
ts it \
arries" is expe
ted to o

upy from T ime(s) onward,

if a is the only a
tion initiated in situation s or beyond. Proje
ted paths

are assumed to be adhered to in the performan
e of an a
tion as long as any

a
tions 
on
urrent with it are independent of it.

To state these assumptions formally, we need to think of situations (and

time) as 
hanging 
ontinuously throughout a
tions, and to provide a way

of referring to portions of plans pre
eding or following some intermediate

situation at whi
h a 
omponent a
tion ends. For the pre
eding portion, we

de�ne Costart

1

(p; q) as the a
tion whi
h 
onsists of running p to 
ompletion

while running q 
on
urrently, 
utting it o� if it has not yet �nished when p

is done. (As in the 
ase of Trun
, this does not ne
essarily entail an a
tual


uto�, but just that Result applied to this a
tion will return the situation

at the point where p �nishes.) We will later de�ne Remainder(p; q; s) as the

\left-over" portion of p.

12

Let us prove that the 
at ends up in the same �nal lo
ation as the robot;

i.e.,

(b) at(C;L

2

; S

3

)

introdu
ing further axioms as needed. We begin by showing that R's Pi
kup

su

eeds. The modi�ed e�e
t axiom for Pi
kup is

A30. (8a; x; y; p; s; s

0

)[[next-to(x; y; s) ^ liftable(y) ^ :(9z)holding(x; z; s)

^ a = Pi
kup(x; y) ^ 
ompatible(a; p) ^

11

Spatiotemporal disjointness is a spe
ial 
ase of disjoint \resour
e" use, if one 
on
eives

of resour
es broadly as in
luding o

upiable regions of spa
e. Disjoint resour
e use is often

a suÆ
ient 
ondition for 
ompatibility of 
on
urrent a
tions, though not a ne
essary one.

12

In the same vein, one 
an delay, va
uously extend, and trun
ate a
tions, using

a va
uous a
tion Passtime(t) in Seq(Passtime(t); p), Costart(Passtime(t); p), and

Costart

1

(Passtime(t); p).
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s

0

= Result(Costart

1

(a; p); s)℄

! holding(x; y; s

0

)℄

This illustrates the generalization of e�e
t axioms to worlds with 
on
urrent

a
tions. Note that the result of the a
tion is 
onsidered in the 
ontext of an

arbitrary 
on
urrent plan p.

To apply this axiom to the robot's Pi
kup a
tion in the 
ontext of the

man's Walk, we need to establish the 
ompatibility of the two a
tions. To

minimize geometri
al 
omplexities, let us assume that we are able to 
al
ulate

\a
tion 
orridors" for Pi
kup(R;B) and Walk(H;L

1

; L

2

) independently of

the situation in whi
h they are attempted, ex
ept for being given the lo
ation

of R in the Pi
kup (i.e., L

1

). This is plausible if 
orridors are \generously"

de�ned so as to allow for \elbow room" and as large a 
olle
tion of obje
ts

as R or H are 
apable of 
arrying. (In pra
ti
e the 
orridors might be

generalized 
ylinders based on the geometry of the room and the agents,

plus 
learan
e.) By de�nition the proje
ted path of any Pi
kup feasible in

isolation will be 
on�ned to the Corridor for that Pi
kup, and similarly for

the proje
ted path of a Walk:

A31. (8a; u; x; y; s)[[at(x; u; s) ^ next-to(x; y; s) ^ liftable(y) ^

:(9z)holding(x; z; s) ^ a = Pi
kup(x; y)℄

! 
onfined-to(Path(a; s); Corridor(a; u))℄

(8a; x; y; z; s)[[at(x; y; s) ^ a = Walk(x; y; z)℄

! 
onfined-to(Path(a; s); Corridor(a; y)℄

Call the relevant a
tion 
orridors Corridor-R-Pi
kup and Corridor-H-Walk,

and assume they are disjoint regions of spa
e:

A32. Corridor(Pi
kup(R;B); L

0

) = Corridor-R-Pi
kup

Corridor(Walk(H;L

0

; L

3

); L

0

) = Corridor-H-Walk

disjoint(Corridor-R-Pi
kup; Corridor-H-Walk)

Clearly the ante
edents in (A31) are satis�ed by a = Pi
kup(R;B) and a =

Walk(H;L

0

; L

3

) respe
tively, and so we 
an 
on
lude with the aid of (A32)

that their proje
ted paths are 
on�ned to the above-mentioned 
orridors.

This �nally puts us in a position to infer their 
ompatibility, using

A33. (8a

1

; a

2

; 


1

; 


2

; s)[[
onfined-to(Path(a

1

; s); 


1

) ^
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onfined-to(Path(a

2

; s); 


2

) ^ disjoint(


1

; 


2

)℄

! 
ompatible(a

1

; a

2

; s)℄

The 
on
lusion is 
ompatible(Pi
kup(R;B); Walk(H;L

0

; L

3

); S

0

), and so

we 
an instantiate (A30) and 
on
lude that the Pi
kup su

eeds, i.e., holding (

R; B; S

1

), where S

1

= Result(Costart

1

(Pi
kup(R;B); Walk(H;L

0

; L

3

)); S

0

).

To show that the robot's Walk, initiated right after the Pi
kup, su

eeds,

we begin by de�ning Remainder(p; q; s) as a fun
tion whi
h returns the part

of p \left over" if Costart

1

(q; p) is exe
uted in situation s; i.e.,

A34. (8p; q; s) Result(Costart(p; q); s) =

Result(Seq(Costart

1

(q; p); Remainder(p; q; s)); s)

(A suitable null element 
an be used when nothing is left over.) The reason for

having a situation argument in the Remainder fun
tion is that the part of p

left over when q �nishes in general depends on initial 
onditions. In addition,

a Tail fun
tion will serve to return the remainder of a path, starting at a

spe
i�ed time. Then a required axiom about 
onformity between a
tual and

proje
ted paths, in the 
ase of 
ompatible 
on
urrent a
tions, 
an be stated

as follows:

A35. (8p; q; r; s

0

; s)[[
ompatible(p; q; s

0

) ^ r = Remainder(p; q; s

0

) ^

s = Result(Costart

1

(q; p); s

0

)℄

! [Path(r; s) = Tail(Path(p; s); T ime(s))℄℄

This says that if a plan p has been partially exe
uted 
on
urrently with

another 
ompatible plan till the latter was done, then the proje
ted path for

the remainder of p is un
hanged from the original proje
tion (apart from the

absen
e of the initial path segment already 
ompleted). Thus we 
an use the

previously inferred 
ompatibility of R's Pi
kup and H's Walk to 
al
ulate

the proje
ted remainder of H's Walk, namely,

Tail(Path(Walk(H;L

0

; L

3

); S

0

); T ime(S

1

)):

We assume that a situation rea
hed from another via an a
tion is temporally

later, so this \tail" path will be a part of the 
omplete Walk-path. Sin
e the

latter is 
on�ned to Corridor-H-Walk, it is 
lear (without going into further

detail) that the former is also. So, assuming

A36. Corridor(Walk(R;L

1

; L

2

); L

1

) = Corridor-R-Walk

disjoint(Corridor-R-Walk; Corridor-H-Walk),
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we 
an 
on�rm the pre
onditions for R's Walk, in

A37. (8a; x; y; z; p; s; s

0

)[[at(x; y; s) ^ a = Walk(x; y; z) ^


ompatible(a; p) ^ s

0

= Result(Costart

1

(a; p); s)℄

! at(x; z; s

0

)℄

At least, we will be able to 
on�rm those pre
onditions if we 
an derive the

persisten
e of the robot's lo
ation during the Pi
kup, i.e., at(R;L

1

; S

1

). But

this follows easily from a 
losure axiom for 
hange in at similar to (A29) and

the primitive-part axioms (A26) and (A28).

It then remains to tra
k the lo
ation of the 
at as it gets pi
ked up and

moved along with the box. This need not detain us, sin
e it is 
ompletely

analogous to the proof of Proposition 1(
). (Of 
ourse, all additional e�e
t

axioms and explanation axioms need to allow for 
on
urrent plans in the

manner of (A29), (A30) and (A37). Also, some axioms are needed for re-

lating alternative ways of de
omposing 
omposite plans in terms of Costart,

Costart

1

, Seq, and Remainder.) 2

Clearly, the main 
ompli
ation in tra
king 
hange has been the estab-

lishment of 
ompatibility between 
on
urrent a
tions. This was done by the

rather 
rude devi
e of assuming that a
tion paths are 
on�ned to disjoint

\
orridors". Even that was a little tedious, suggesting (unsurprisingly) that

the Situation Cal
ulus is not well-suited to reasoning about detailed geomet-

ri
al and kinemati
 relationships { at least not without supplementation by

spe
ialized data stru
tures and algorithms.

My main obje
tive, however, has been to demonstrate the ease of proving

non-
hange, using explanation 
losure in a world with 
on
urrent a
tions.

Generalization of STRIPS-like plan tra
king methods to worlds with 
on
ur-

rent a
tions remains an open problem. However, I see no serious obsta
le to

doing so at least in 
ases where the 
hronologi
al ordering of the start and

end points of the set of 
on
urrent a
tions 
an be inferred, and 
on
urrent

a
tions are independent of ea
h other.

Finally, a few words are in order on M
Carthy and Hayes' telephone

problem, with whi
h I started. In a sense, this is simpler than my robot-

and-the-
at problem, sin
e it involves no 
on
urren
y (look up the number

and then dial it) and hen
e requires no a
tion-
ompatibility reasoning. If

we are prepared to posit su
h \primitive" a
tions as Lookup-number (x; y),
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Dial-number (x; y), Carry-o� (x; y), and Leave-home (x), providing e�e
t

and 
losure axioms in terms of these a
tions for 
uents like know-number

(x; y; s), has (x; y; s), at-home (x; s), and in-
onversation (x; y; s), we will

have no trouble with the problem.

However, the same 
aveats apply as in the dis
ussion of external agen-


ies of 
hange at the beginning of this se
tion. If we are not 
areful about

the way we qualify su

ess 
onditions for a
tions, or variable restri
tions in

explanation 
losure axioms, our axioms will be patently false in the world at

large. This is 
ertainly something to be avoided in a general \
ommonsense

reasoner," yet we do not at this point have a general, prin
ipled method of

doing so.

I believe that the most promising resear
h avenue in dealing with this

diÆ
ulty lies in the appli
ation of probabilisti
 methods su
h as those of

Pearl(1988), Ba

hus(1988), Kyburg(1988), Dean & Kanazawa(1988), and

Weber(1989). These methods allow one to give expression to the \statisti
al"

aspe
t of our experien
e and knowledge of the world. For instan
e, people

know that a penny left on the sidewalk is mu
h more likely to stay put for

a day than a dollar bill, that a 
ar parked at night on a residential street

will stay in pla
e mu
h longer on average than one parked on a weekday

at a supermarket, and so on. In part, this knowledge is due to dire
t or

linguisti
ally transmitted observation, and in part it derives from related

knowledge about why, and how often, people or other agents do the things

whi
h a

ount for 
hange. The dollar bill illustrates both aspe
ts: we have

a pretty good idea from dire
t observation about the density of pedestrian

traÆ
 on various kinds of streets at various times, and we also know that few

people would fail to noti
e a dollar bill on the sidewalk, and having noti
ed

it, fail to retrieve it. As well, we know about winds and their e�e
ts. Su
h

\statisti
al" knowledge is absolutely indispensable in 
oping with a 
omplex

and more or less 
apri
ious world. It may even 
onstitute the bulk of our

general knowledge.

The role of this knowledge with respe
t to the frame problem is that it

provides a stable, yet pliable base on whi
h we 
an superimpose our episodi


knowledge. Sin
e this base merely supplies statisti
al priors, it yields to the

pressure of event reports that run against the odds, repla
ing probable per-

sisten
e with known 
hange. E�e
t axioms and explanation 
losure axioms

would be re
ast probabilisti
ally in su
h a representation, and supplemented
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with dire
t empiri
al probabilities for various kinds of 
hange (or 
onversely,

persisten
e). If we regard the su

ess of an a
tion as a mere likelihood, given

that the major pre
onditions are met, we avoid a futile quest for perfe
tly re-

liable pre
onditions. If we regard 
ertain a
tions 
apable of e�e
ting 
hange

as merely improbable, rather than as assuredly absent, we avoid unfounded

beliefs about the la
k of 
hange in the world at large, and about the inevitable

su

ess of our plans.

Of 
ourse, the nonmonotoni
 theorists 
an reasonably 
laim to be striving

toward just this kind of resilient, yet amendable knowledge base. There is,

however, a fundamental di�eren
e between probabilisti
 and nonmonotoni


methods of inferring persisten
e. A

ording to the former, M
Carthy and

Hayes' phone stays put, in the absen
e of information to the 
ontrary, be
ause

we know perfe
tly well that phones very rarely get moved (and indeed, we

know why they don't). A

ording to the latter, it stays put in the absen
e

of information to the 
ontrary simply be
ause there is no information to the


ontrary. The former is sensitive to the statisti
al fa
ts of the world (su
h as

that the phone is mu
h less likely to depart than the intended party at the

other end), while the latter is turned entirely inwards.

6 Con
lusions

I have provided eviden
e that explanation 
losure axioms provide a su

in
t

en
oding of non
hange in serial worlds with fully spe
i�ed a
tions, and a basis

for STRIPS-like, but monotoni
 inferen
e of 
hange and non
hange in su
h

worlds. As su
h, they are 
ertainly preferable to frame axioms; they also o�er

advantages over 
ir
ums
riptive and nonmonotoni
 approa
hes, in that they

relate non
hange to intuitively transparent explanations for 
hange, retain

an e�e
tive proof theory, and avoid unwarranted persisten
e inferen
es.

Furthermore, unlike frame axioms, explanation 
losure axioms generalize

to worlds with 
on
urrent a
tions. I led up to an illustration of this 
laim by

enumerating some generally unknown 
apabilities of the Situation Cal
ulus

with respe
t to external events, 
ontinuous 
hange, and 
omposite a
tions, all

of whi
h seem 
ompatible with explanation 
losure. Throughout, I adhered

to the original Result-formalism, so as to retain the treatment of plans as

terms, and hen
e the possibility of extra
ting plans from proofs.
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Limitations of the Situation Cal
ulus I noted along the way were the

tediousness of reasoning about simple spatiotemporal relationships (without

spe
ial methods), an unequal treatment of primitive (
on
rete) and abstra
t

a
tions, and most importantly, the paro
hial view of the world enfor
ed by

the Result-formalism. It works well only for domains in whi
h the a
tions


apable of e�e
ting salient 
hange are fully and reliably known. I suggested

that probabilisti
 methods o�er the best hope of over
oming this limitation.

Dire
tions for further resear
h are generalizations of the results (espe-


ially the \sleeping dog" strategy) to more 
omplex theories of the world

(with external events, 
ontinuous 
hange, higher-level a
tions, and 
on
ur-

ren
y), investigation of planning (as opposed to mere \plan tra
king") using

dedu
tive or other methods, and the study of all of these issues within a

probabilisti
 framework.

A
knowledgements

I am grateful to S
ott Goodwin and Randy Goebel for providing astute


riti
isms and important pointers to the literature when this work was in the

early stages. Others who provided valuable 
omments and suggestions were

James Allen and several members of a graduate 
lass at the University of

Ro
hester, espe
ially Jay Weber and Hans Koomen. The paper would have

languished in semi
ompleted state without the generous and timely help of

Chung Hee Hwang on many aspe
ts of the paper, both small and large.

The initial resear
h was supported by the Natural S
ien
es and Engineering

Resear
h Coun
il of Canada under Operating Grant A8818.

Referen
es

[Allen, 1984℄ J. F. Allen, \Towards a general theory of a
tion and time,"

Arti�
ial Intelligen
e, 23:123{154, 1984.

[Ba

hus, 1988℄ F. Ba

hus, \Statisti
ally founded degrees of belief," In

Pro
. of the 7th Bienn. Conf. of the Can. So
. for Computational Stud.

of Intelligen
e (CSCSI '88), pages 59{66, Edmonton, Alberta, June 6-10,

1988.

45



[Brown, 1987℄ F. M. Brown, editor, The Frame Problem in Arti�
ial In-

telligen
e. Pro
. of the 1987 Workshop, Lawren
e, KS, Apr. 12-15, 1987.

Morgan Kaufmann Publishers, Los Altos, CA.

[Dean and Kanazawa, 1988℄ J. Dean and K. Kanazawa, \Probabilisti


Causal Reasoning," In Pro
. of the 7th Bienn. Conf. of the Can. So
.

for Computational Stud. of Intelligen
e (CSCSI '88), pages 125{132, Ed-

monton, Alberta, June 6-10, 1988.

[Fikes and Nilsson, 1971℄ R.E. Fikes and N.J. Nilsson, \STRIPS: A new

approa
h to the appli
ation of theorem-proving to problem-solving," In

Pro
. of the 2nd Int. Joint Conf. on AI (IJCAI '71), pages 608{620, 1971.

[Fodor, 1987℄ J.A. Fodor, \Modules, frames, fridgeons, sleeping dogs, and

the musi
 of the spheres," In Z.W. Pylyshyn (1987), pages 139{149. 1987.

[George�, 1987℄ M. P. George�, \A
tions, pro
esses, 
ausality," In M.P.

George� and A.L. Lansky (1987), pages 99{122, 1987.

[George� and Lansky, 1987℄ M.P. George� and A.L. Lansky, editors, Rea-

soning about A
tions and Plans: Pro
. of the 1986 Workshop, Timberline,

OR, June 30-July 2, 1987. Morgan Kaufmann Publ., Los Altos, CA.

[Green, 1969℄ C. Green, \Appli
ation of theorem proving to problem solv-

ing," In Pro
. of the Int. Joint Conf. on AI (IJCAI '69), pages 219{239,

Washington, D. C., May 7-9, 1969.

[Haas, 1987℄ A.R. Haas, \The 
ase for domain-spe
i�
 frame axioms," In F.

M. Brown (1987), pages 343{348. 1987.

[Hanks and M
Dermott, 1987℄ S. Hanks and D. M
Dermott, \Nonmono-

toni
 logi
 and temporal proje
tion," Arti�
ial Intelligen
e, 33:379{412,

1987.

[Hayes, 1987℄ P.J. Hayes, \What the frame problem is and isn't," In Z.W.

Pylyshyn (1987), pages 123{137. 1987.

[Kautz and Allen, 1986℄ H.A. Kautz and J.F. Allen, \Generalized plan

re
ognition," In Pro
. of the 5th Nat. Conf. on AI (AAAI 86), pages

32{37, Philadelphia, PA, August 11-15, 1986.

46



[Kowalski, 1979℄ R.A. Kowalski, Logi
 for Problem Solving, volume 7 of

Arti�
ial Intelligen
e Series, Elsevier North Holland, New York, 1979.

[Kowalski, 1986℄ R.A. Kowalski, \Database updates in the event 
al
ulus,"

Te
hni
al Report DOC 86/12, Dept. of Computing, Imperial College, Lon-

don, England, July 1986, 29 pages.

[Kowalski and Sergot, 1986℄ R.A. Kowalski and M.J. Sergot, \A logi
-based


al
ulus of events," New Generation Computing, 4:67{95, 1986.

[Kyburg, 1988℄ H. Kyburg, \Probabilisti
 inferen
e and probabilisti
 reason-

ing," In Sha
hter and Levitt, editors, The Fourth Workshop on Un
ertainty

in Artif. Intell., pages 237{244. 1988.

[Lansky, 1987℄ A.L. Lansky, \A representation of parallel a
tivity based

on events, stru
ture, and 
ausality," In M.P. George� and A.L. Lansky

(1987), pages 123{159. 1987.

[Lifs
hitz, 1987℄ V. Lifs
hitz, \Formal theories of a
tion," In F. M. Brown

(1987), pages 35{57. 1987.

[Manna and Waldinger, 1987℄ Z. Manna and R. Waldinger, \A theory of

plans," In M.P. George� and A.L. Lansky, pages 11{45. 1987.

[M
Carthy, 1968℄ J. M
Carthy, \Programs with 
ommon sense," In M. Min-

sky, editor, Semanti
 Information Pro
essing, pages 403{417. MIT Press,

Cambridge, MA, 1968.

[M
Carthy, 1979℄ J. M
Carthy, \First-order theories of individual 
on
epts

and propositions," In D. Mi
hie, editor, Ma
hine Intelligen
e, volume 9,

pages 463{502. Edinburgh Univ. Press, Edinburgh, S
otland, 1979.

[M
Carthy, 1980℄ J. M
Carthy, \Cir
ums
ription { a form of non-monotoni


reasoning," Arti�
ial Intelligen
e, 13:27{39, 1980.

[M
Carthy, 1984℄ J. M
Carthy, \Appli
ations of 
ir
ums
ription to formal-

izing 
ommonsense knowledge," In Pro
. of the Nonmonotoni
 Reasoning

Workshop, pages 295{324, Menlo Park, CA, O
t. 17-19, 1984. Sponsored

by AAAI.

47



[M
Carthy and Hayes, 1969℄ J. M
Carthy and P.J. Hayes, \Some philosoph-

i
al problems from the standpoint of arti�
ial intelligen
e," In B. Meltzer

and D. Mi
hie, editors, Ma
hine Intelligen
e, volume 4, pages 463{502.

Edinburgh Univ. Press, Edinburgh, S
otland, 1969.

[M
Dermott, 1982℄ D. M
Dermott, \A temporal logi
 for reasoning about

pro
esses and plans," Cog. S
ien
e, 6:101{155, 1982.

[Morgenstern, 1987℄ L. Morgenstern, \Knowledge pre
onditions for a
tions

and plans," In Pro
. of the 10th Int. Conf. on AI (IJCAI 87), pages

867{874, Milan, Italy, August 23-28, 1987.

[Morgenstern, 1988℄ L. Morgenstern, \Why things go wrong: a formal theory

of 
ausal reasoning," In Pro
. of the 7th Nat. Conf. on AI (AAAI 88),

pages 518{523, Saint Paul, MN, August 21-26, 1988.

[Pearl, 1988℄ J. Pearl, Probabilisti
 Reasoning in Intelligent Systems, Morgan

Kaufman, San Mateo, CA, 1988.

[Pylyshyn, 1987℄ Z.W. Pylyshyn, editor, The Robot's Dilemma: The Frame

Problem in Arti�
ial Intelligen
e, Ablex Publ., Norwood, NJ, 1987.

[Raphael, 1971℄ B. Raphael, \The frame problem in problem solving sys-

tems," In N. V. Findler and B. Meltzer, editors, Artif. Intell. and Heuristi


Programming, pages 159{169. Edinburgh Univ. Press, Edinburgh, S
ot-

land, 1971.

[Reiter, 1980℄ R. Reiter, \A logi
 for default reasoning," Arti�
ial Intelli-

gen
e, 13:81{132, 1980.

[S
hank and Abelson, 1977℄ R.C. S
hank and R.P. Abelson, S
ripts, Plans,

Goals and Understanding, Lawren
e Erlbaum Asso
., Hillsdale, NJ, 1977.

[Weber, 1989℄ J. Weber, \Statisti
al inferen
e and 
ausal reasoning," In

Pro
. 11th Int. Joint Conf. on AI (IJCAI '89), Detroit, MI, Aug. 20-25,

1989.

48


