
CSC 191/291 Lecture Notes Jan. 17, 2022

Representing Knowledge Symbolically

Much of the knowledge that we can informally ex-
press in ordinary language can be expressed sym-
bolically in a way that enables inference

We − unlike other animals − have vast amounts of knowledge that we can put into
words; and this knowledge makes possible our social interaction through language, our
commonsense reasoning about the world, and our planning of immediate and future
actions. Our knowledge includes tens of millions of specific facts, about ourselves and
our lives, about family, friends and others, our possessions, the things and places in
our environment, facts we have learned about history, about geography, politicians and
world affairs, fictional items from novels, movies, mythology, etc. Our knowledge also
includes comparable amounts of general knowledge about the properties, and behavior
of people, social groups and organizations, animals and other environmental entities,
numerous artifacts (including computers and programs), physics, mathematics, biology,
foods, drugs, and other substances, etc.

Drew McDermott argues in Mind and Mechanism that human-like consciousness will
be achieved in machines only if they acquire human-like cognitive abilities and self-models.
Though McDermott is skeptical about a general internal knowledge representation, the
very fact of language, and the uniformity of semantic categories across all languages,
suggests that we do have such a “Mentalese”, capable representing internally whatever
we can express overtly in language. Thus it seems that human-level AI systems will also
need such a Mentalese, and will have to acquire the same kinds and amounts of knowledge
that people possess, if they are going to converse, or reason, or plan intelligently.

Why “logical” representations?

In the following, we will repeatedly see the term “logic” (or “logical”) in connection
with symbolic representations of knowledge. This is traditional terminology, but it is
important not to be misled by it. In particular, using a “logical” symbolism does not
mean we are committing to building “logical AI systems”, i.e., ones capable only of strict
deductive reasoning. Quite the contrary: Effective reasoning in the world depends very
heavily, perhaps predominantly, on “jumping to conclusions” based on limited evidence.
For example, you can’t deduce that the flight you’re taking won’t crash, that the server
in the restaurant will bring you the food you ordered, that your pet dog will wag its tail
rather than bite you when you come home, that you won’t get mugged tomorrow, etc.;

1

yet we live by such presumptive inferences. Our AI systems will need the same ability to
make these inferences − even though they should also be able to reason deductively (just
as we are).

Using logical representations does not commit us to any particular mode of infer-
ence; it merely commits us to a certain (rather language-like) syntax, and a denotational
semantics. The idea of denotational semantics is that we can put symbols into corre-
spondence with a “world”, in a way that allows us to formalize the notion of “truth”.
More specifically, we can decide what the atomic constituents of symbolic expressions
refer to, in whatever domain we have chosen, and having done so, we can judge whether
a sentential expression is true or false in that domain.

For example, suppose we decide that the symbol Sn refers to a certain dog, Snoopy,
that the symbol Tw refers to a certain bird, Tweety; that the symbol D refers to the set
of all dogs; that the symbol B refers to the set of all birds; and that the symbol Like
refers to the set of all pairs of entities x, y such that x likes y. Further, suppose the pair
of Snoopy and Tweety is in that set of pairs, i.e., Snoopy likes Tweety. Then we can
specify what it means for sentential expressions like

D(Sn), D(Tw), B(Sn), B(Tw), Like(Sn,Tw)

to be true or false: D(Sn) is true iff (i.e., if and only if) Snoopy (denoted by Sn) is in
the set of dogs (denoted by D); thus by our choices above, it is true. D(Tw) is true iff
Tweety (denoted by Tw) is in the set of birds; thus by our choices above, assuming we
consider the set of birds disjoint from the set of dogs, it is false. And Like(Sn,Tw) is
true iff the pair of Snoopy and Tweety (denoted by Sn and Tw) is in the set of pairs of
entities where the first likes the second; and by our choices above, this is true. This way
of defining truth can be generalized to arbitrarily complex sentential expressions, such as

¬D(Tw) ∧∀x (D(x)⇒L(x,Tw),

but we won’t do that here (it’s CSC 244/444 material). Instead we’ll focus on syntax,
and rely on an intuitive understanding of the denotational semantics of the symbolism.
Such an intuitive understanding relies on some familiarity with math and boolean logic,
and more importantly on our understanding of how ordinary language can correspond
to entities, properties, and relations in the world. After all, logical representations are
derivative from ordinary language...

First-order logic (FOL) as a representation

But if logical representations are derivative from language, and intended to capture knowl-
edge expressible in language, why don’t we use ordinary language directly for representing
knowledge in a computer? In a word, the problem is ambiguity. For instance, imagine
trying to tell a computer the following fact:

I saw the moons of Jupiter with a telescope last night.

2

If we imagine the computer just storing this away as is (as a string or as a sequence of
words), we can see that the following problems could arise:

• The computer wouldn’t know who “I” is − it may even interpret this as being about
itself.

• It wouldn’t know what “last night” is − what this means all depends on when it
was uttered. Also, it could modify “telescope” (cf., “the accident last night was
terrible”).

• It wouldn’t know whether “with a telescope” modifies “saw” or “moons” (i.e., it
might be that some moons of Jupiter have telescopes on them, and those are the
ones I saw!)

• The verb “saw” could refer to the action of “sawing”!

• “Jupiter” could refer to the god, rather than the planet

We might say that FOL is a formalized, unambiguous form of ordinary language that
avoids problems like the above. Its invention is one of the most important intellectual
achievements of the 19th and 20th centuries, and has had an enormous impact on math-
ematics, philosophy, and AI.

Basically, the way FOL avoids problems like the above is by

• using brackets and fixed operator-operand ordering to avoid syntactic ambiguity;

• allowing any one symbol (like “I” or “saw”) to denote just one thing, called its
interpretation;1

• using formalized versions of and, or, not, implies, is equivalent to, and is identical
to, as a means of combining information, where these operators have fixed, well-
defined meanings;

• using quantifiers ∃, ∀ and variables like x, y, z to talk about an existing, but
unspecified individual, or about all individuals.

In the early, somewhat arrogant days of AI, people working on knowledge representa-
tion (KR) often thought they could safely ignore logic as a representation, since after all
they were working within a completely new “paradigm” − a new way of looking at rea-
soning and intelligence, namely in terms of symbolic information processing. They came
up with many supposedly new representations inspired by the computational needs of
question-answering, and simple inferencing. But ultimately these representations turned
out to be very, very close to FOL, but with a new terminology, and new ways of writing

1More generally, logic avoids context-dependent meanings, evident in such sentences as “He got one
too”, or questions like “What about you?”.

3

things down or drawing them. There were some genuinely new features, particularly no-
tational devices (and data structures) that indicated how knowledge was to be accessed
and used; but in terms of content of the knowledge representation, the new notations
tended to be a re-invention of FOL − but less precise!

In retrospect, this is not really surprising. Any representation for particular and
general facts about the world surely needs at least the following devices:

• A way of referring to individuals that we want to say something about, and a way
of saying that an individual has a certain property, or that certain individuals are
related in a particular way (e.g., that Mary is single, or that she is married to John,
or that the US borders on Canada);

• Ways of saying that a certain statement is true and a certain other statement is
true as well; that one or another of two statements are true; or that a statement
does not hold;

• A way of saying that all individuals (of a specified type) have a certain property
(e.g., that all birds have wings).

• A way of saying that two things are identical (e.g., that 2 plus 2 equals 4, or that
the Morning Star is the planet Venus)

• A way of referring to entities that are functionally determined by other entities
(e.g., the sum of 2 and 2; the weight of an object; the surface of an object)

But taken together (and allowing arbitrary depth of embedding of connectives and quan-
tifiers), these requirements virtually force you to adopt (at least) FOL as a representation!
In fact, the last requirement is really technically redundant, as is the requirement for “or”
(“and” together with “not” can express “A or B”, viz., “not ((not A) and (not B))”).

So, better to learn it than reinvent it! A lot is known about how to precisely char-
acterize meaning in FOL, and how to perform inferences (see below), and it is both
very difficult and a waste of time to keep rediscovering these things, in slightly different
notations. That is not to say “FOL is all you need”; it isn’t. But it’s an important,
fundamental part of what you need!

The syntax of first-order logic

The list of requirements above very directly motivates the syntax of FOL. The syntax
allows us to form formulas similar to English sentences, Above we used symbols like
Sn for a certain dog, Snoopy, symbol D for the set of dogs, etc. This was intended to
make clear two distinctions: the distinction between symbols and real-world entities like
particular dogs or birds or sets of these; and, the distinction between natural language
symbols and FOL symbols. For example, Like as an FOL predicate doesn’t have to denote

4

the set of entities where the first likes the other − it can mean whatever we want it to
mean! That said, in work on KR we usually find it convenient and natural to “echo” the
words of ordinary language in the basic symbols that we employ. This makes it easier
to remember what we intended the symbols to mean. Thus we might write sentential
expressions (“formulas”) such as Dog(Odie) (“Odie is a dog”), or Loves(Romeo,Juliet),
or (∀x (Dog(x) ⇒¬Can-talk(x))) (“For any object x, if x is a dog, it cannot talk”, i.e.,
“Dogs can’t talk”). We build such formulas systematically from smaller pieces, as follows.

Terms

First, the basic terms used to refer to individuals are

individual constants: A, B, C, John, Mary, CSC191, Block1, Block2, ...2

and (here we use lower case)

individual variables: x, y, z, x1, y1, block1, block2,

(Since there are no other variables in FOL, we often just say “variables”.) Two points
should be noted about the interpretation of individual constants (informally speaking).
As already noted, we can let them refer to any individuals we please. So A or John
(or both) could refer to John or to the US or to the number 17 or to the chair you are
sitting on, etc. (assuming that these are things you wish to be able to talk about in
your knowledge base). In this respect logic is unlike a natural language − in English
we cannot usually use John to refer to countries, numbers, or chairs, except perhaps by
special prior agreement, as some sort of secret code or joke. Another point is that since
in logic meanings are unambiguous, a constant denotes exactly one thing.3 This is also
unlike ordinary language, since a name like John can refer to various individuals with
that name, depending on context.

It can also be quite useful to allow numerals

0, 1, 2, ..., 10, 11, 12, ...

as individual constants. Given the above “freedom of interpretation”, numerals could
refer to people or countries, or anything else; however, it is more common to constrain
the interpretation of numerals so that it is consistent to regard them as denoting numbers.

For referring to the values of functions, we introduce lower-case

function constants: f, g, h, weight, father-of, surface-of, sum, ...

For each function constant, we have to decide how many arguments it takes − this is called
its arity (or adicity). Thus weight might be a unary (or, monadic) function constant (arity
1), and sum might be a binary (or, dyadic) function constant (arity 2). But note that
function constants can be interpreted to mean anything we want them to mean, just as in

2We use capitalized identifiers here, although conventions vary.
3For a quantified variable, we “iterate” over its alternative values

5

the case of individual constants. For instance, weight might actually refer to the surface
area of an object, and sum to the distance between two given objects; however, we usually
do not choose our constants so perversely! Using functions, we can form

function terms: weight(John), sum(weight(x),weight(y)), ...4

In general, we can recursively define terms as being either individual constants, or indi-
vidual variables, or functions applied to an appropriate number of terms. Terms contain-
ing no variables are called ground terms, while others are non-ground terms.

An important technical point here is that we assume that functions always have values,
no matter what objects they are applied to. (They are total functions.) For example,

weight(17), father-of(Pacific-Ocean)

are presumed to have values, perhaps chosen in some arbitrary way since we don’t really
expect to refer to these values.

In addition to ordinary function constants like those above, some versions of FOL also
allow certain mathematical function symbols, such as

., +, −, ∗, /, ↑, ∪, ∩.

These constants have certain “intended interpretations”, and can be written in infix rather
than prefix form; e.g.,

(A . x), (A + 2), etc.,

rather than .(A,x), +(A,2), etc. (“.” is intended to refer to addition of an initial element to
a sequence, like the Lisp cons function.) However, unless we somehow define or constrain
the interpretations of these function constants, they can in principle refer to any functions
at all.

Formulas

Formulas (also often called sentences) describe properties and relationships (including
identity) of objects. Thus, besides terms referring to objects, we also need symbols
referring to properties and relations. These are called

predicate constants: A, B, C, Dog, Person, Loves, Married-to, Smokes, ...

These again have to have a fixed arity, such as 1 in the case of Dog and 2 in the case of
Loves. And again these predicate constants can refer to any properties and relationships
we like, not necessarily the ones we would expect from their resemblance to English.

Note that we allow any capitalized (or completely upper-case) symbols for both indi-
vidual constants and predicate constants. However, any one symbol can be used in only

4The case conventions used here fall by the wayside when we write formulas in Lisp, since Lisp is
case-insensitive; also in Lisp we would put the function name inside the brackets, e.g., (weight john),
rather than weight(John).

6

one way. Similarly a lower-case symbol can be used as a variable or function constant,
but not simultaneously for both. Also note that we need not explicitly specify whether
something is an individual constant, function, or predicate − it can be inferred from the
way we use these symbols (if, in fact, we do use them consistently). Similarly, the arity
of functions and predicates is evident from the way we use them.

We should note here that we also allow the equality predicate, =, but rather than
being freely interpretable, this predicate has a fixed meaning: it holds only for a pair of
arguments that refer to the same object. As in the case of binary mathematical functions,
we use infix form (possibly surrounded by brackets, if there is ambiguity)

A = B, etc.,

for equality statements, rather than prefix form =(A,B), etc. The presence of the equality
predicate distinguishes FOL from the First-Order Predicate Calculus (FOPC), i.e., FOL
is FOPC plus equality. Certain additional mathematical predicates may be useful as well,
such as

<, >, ≤, ≥, ∈, ⊂, ⊃, ⊆, ⊇ .

Using predicates and terms, we can now form

atomic formulas: Dog(Fido), Loves(Romeo,Juliet), f(x) = y, etc.

Formulas containing no variables are called ground formulas.

There are two general ways of forming complex formulas from atomic formulas,
namely, by use of logical connectives and by use of quantifiers. We use the following

logical connectives: ¬, ∧ , ∨ , ⇒ , ⇐ , ⇔ .

Intuitively these mean not, and, or, implies, implied by, and if and only if (equivalent to)
respectively. “⇒ ” may also be written as “⊃” and “⇔ ” as “≡”.5 ¬ is a unary (1-place)
logical connective, while the others are binary (2-place) logical connectives, and as such
allow formation of compound sentences such as

¬Likes(Biden,Putin), Loves(Romeo,Juliet)∧Loves(Juliet,Romeo),
At-home(Mary)∨At-work(Mary), Poodle(Fifi)⇒Dog(Fifi),
(A > B)⇔ (B < A).

Finally, we introduce the two

quantifiers: ∀, ∃.

Their use is illustrated by the following examples:

(∀x Entity(x)), (∀x (Poodle(x) ⇒Dog(x))),
(∃x Robot(x)), (∃x (Robot(x) ∧Smart(x))),
(∀x (Robot(x) ⇒ (∃y Built(y,x)))),

5We prefer “⇒ ” and “⇔ ” because they are ascii-printable and can be Lisp atoms; also “⊃” can be
confused with “superset”, if we want to use such a relation.

7

(∃x (Robot(x) ∧ (∀y (Robot(y) ⇒ x=y)))).

These can be read respectively as Everything is an entity; Every poodle is a dog; There
exists a robot; Some robot is smart (Note that this requires ∧ rather than ⇒ !); For every
robot, there is someone (or something) that built this robot; and, There is only one (i.e.,
exactly one) robot.

As you see, a quantifier is always followed immediately by a variable, and is said to
bind that variable. The quantifier and variable are immediately followed by a formula,
called the scope of the quantifier. The quantifier, variable, and scope are enclosed in
parentheses, except where no ambiguity can arise.

There is another way to formalize quantification, which is still a little closer to natural
language. In that alternative approach, Some robot is smart and All robots are smart
would be written respectively as

(∃x: Robot(x) Smart(x)),
(∀x: Robot(x) Smart(x)),

i.e., “Some x such that x is a robot is smart”, and “Every x such that x is a robot is smart”.
This is called restricted quantification, and it is equivalent, for quantifiers ’∃’ and ’∧ ’, to
the original versions above, which used connectives ’∧ ’ and ’⇒ ’. The restrictor-based
approach has the advantage of being generalizable to such natural-language quantifiers
as most, few, almost all, no, etc.. Except for no, these can’t readily be expressed in FOL
(in fact not at all, in a certain technical sense).

An occurrence of a variable ν in a formula is said to be a free occurrence if it is not in
the scope of any ∀- or ∃-quantifier that binds ν. A formula that contains no free variables
is called a closed formula. The term sentence is also frequently reserved for closed
formulas (though as noted it is commonly used for arbitrary formulas as well). Note that
ground formulas are always closed, but some closed formulas are not ground formulas,
because they contain quantifiers.

BNF notation; first-order logic and first-order languages

For those who have some acquaintance with programming language theory, we can sum-
marize and semi-formalize these syntactic devices as follows, using “BNF” notation (ig-
noring the infixed, mathematical functions and relations, and also ignoring correct cor-
respondence between the arity of function and predicate constants, and the number of
arguments to which they are applied):

〈individual constant〉 ::= a | A | b | B | c | C | John | Block1 | Block2 | ...
〈variable〉 ::= x | y | z | x1 | x2 | block1 | ...
〈function constant〉 ::= f | g | h | weight | sum | mother-of | ...
〈term〉 ::= 〈individual constant〉 | 〈variable〉 |

〈function constant〉 (〈term〉 , ..., 〈term〉)

8

〈predicate constant〉 ::= A | B | C | Dog | Loves | Owes | ...
〈binary connective〉 ::= ∧ | ∨ | ⇒ | ⇐ | ⇔
〈formula〉 ::= 〈predicate constant〉 (〈term〉 , ..., 〈term〉) | (〈term〉 = 〈term〉)

| ¬〈formula〉 | (〈formula〉 〈binary connective〉 〈formula〉)
| (∀〈variable〉 〈formula〉) | (∃〈variable〉 〈formula〉)

Note that expressions of form 〈....〉 above are metalinguistic symbols − they vary over
expressions in the formalism being defined, rather than being part of that formalism.

Also, we are still not being perfectly precise: function and predicate constants should
really be sorted into 1-place, 2-place, 3-place, ... constants (also called monadic, dyadic,
triadic, ..., or unary, binary, ternary, ...). Furthermore, a given alphanumeric string may
only be used as one type of constant, with a fixed adicity (arity). In other words, the sets
comprising the individual constants, the 1-place function constants, the 2-place function
constants, ..., the 1-place predicate constants, the 2-place predicate constants, etc., are
disjoint sets.

As a final point, observe that depending on exactly what individual constants, function
constants and predicate constants we choose, we can get various first-order languages
using the above schema. For instance, we might limit these constants to some finite sets,
rather than having an unlimited supply of them. So FOL, as such, is not itself a unique
language, but rather it is a formalism that allows for many first-order languages.

What FOL can and can’t do

We’ve indicated that logical representations provide an unambiguous way of capturing
factual (or at least declarative) knowledge, of the sort we can readily express in words.
But of course storing away factual knowledge is not an end in itself − the question is
what we can do with such knowledge. In general, what we do besides retrieving relevant
knowledge (e.g., to answer a question) is to make inferences. While in a full exposition of
knowledge representation our next major task would be to spell out in detail the semantics
(meaning) of FOL, here we’ll just take a quick look at the use of FOL to perform inference.
(Some would say reasoning, though to this term tends to suggest figuring something out
by a complex series of inferences.)

Factual knowledge and types of inference

When logicians talk about FOL, they generally have in mind the above syntax (perhaps
leaving out some inessential features), a formal semantics of the type hinted at above, and
the “deductive proof theory”. The deductive proof theory concerns the rules by which
we derive true conclusions from true premises. However, let me emphasize again that
it would be a mistake to think that in using FOL we are somehow restricted to using
deduction for inference (a mistake typically made by people who argue against the use

9

of logical representations!) As was apparent from the earlier examples about flights not
crashing, servers bringing the requested food, etc., there are other important forms of
inference besides deduction that FOL lends itself to, and it is worth looking at a quick
list of these:

• Deduction: deriving logically necessary consequences

– Mary has a poodle named Fifi. Therefore (given that all poodles are dogs),
Mary has a dog.

– Fifi’s mother is Lulu. Therefore (given that offspring are younger than their
parents, and that mothers are parents), Fifi is younger than Lulu.

– Fifi ate a cookie. Therefore (given certain facts about eating, which you can
fill in), the cookie went inside Fifi.

• Uncertain and nonmonotonic inference: deriving likely consequences in the absence
of information to the contrary

– Given (only) that Tweety is a canary, tentatively conclude that Tweety flies.

– Given that John is sniffling and has a sore throat but no fever, tentatively
conclude that he has a cold. (In either example, further evidence may reverse
the conclusion − that’s what “nonmonotonic” means.)

– Given that John and Mary are sitting in a restaurant at a table with some
dirty dishes and coffee cups on it, not eating or drinking, conclude that they
came into the restaurant (perhaps 1/2 hour to 1 1/2 hours ago), were seated at
that table by a host, ordered a meal from a server, ate most of the meal, and
either have just paid or are waiting to pay for the meal, shortly after which
they will exit the restaurant. (This is a script-based inference.)

• Abduction (and induction): formulating general hypotheses to account for multi-
ple particular observations or facts; (induction: confirming or disconfirming such
hypotheses based on observations)

– Given that all the crows I’ve seen are black, conjecture that all crows are
black. (Induction: gradually confirm the hypothesis after seeing more and
more examples, and no counterexamples.)

– Upon noticing that it is possible to “fit” ellipses to observations of the motions
of several planets, conjecture that all planets follow elliptical orbits (Kepler).

• Explanation: postulating particular facts which, when combined with other avail-
able knowledge, can account for new observed facts (this is sometimes counted as
a special case of abduction; it also shades over into uncertain or nonmonotonic
inference)

– Given that my parked car has disappeared, conclude that it was stolen or
towed.

10

– Given the observation of a slight, periodic wobble in the position of a certain
star, conclude that a large planet is orbiting it.

• Planning and plan recognition: formulating plans to achieve given goals; and con-
jecturing other agents’ plans based on their actions or stated desires

– Given my goal of, say, being in Baltimore in early November, I decide to book
a flight, arrange for a TA to sub for me in CSC 244/444, etc.

– As I am about to pull out of my parking spot at a busy supermarket, I see
another car stop and wait behind me. I infer that the driver wants to park in
my spot, and (probably) go to the supermarket.

The limits of FOL: Analogue representations and “know-how”

Does the above list of inference modes cover the full range of thinking that people are
capable of? It seems clear that the answer is “no”: We possess both analogue-like methods
of making inferences, and various specialized skills and know-how.

Analogical inference, then and now. In classical studies of analogical inference (e.g.,
see Thomas Evans’ 1964 Analogy program, http://logical.ai/auai/p327-evans.pdf), the
goal was to match one geometric figure to another, among several possibilities, so that
the relationship between the two figures would be the same as the relationship between
two given figures. There were also programs for predicting the next number in a sequence
such as 1, 4, 9, 16, But it was not appreciated at the time that human analogical
thinking might be far more pervasive than such constructed problems from IQ tests might
indicate.

The last twenty years or so have made clear that powerful kinds of analogical infer-
ence are possible with vector space representations of entities and relationships. We can
represent many types of objects, including images and words (or larger text segements)
in terms of arrays of feature vectors. For example, a vector representation of an image,
say, of a dog, might contain local features corresponding pixel values (intensity and color)
or, at a subsequent processing level in a neural-net-like architecture, edge elements, color
patches or texture elements or, at still later processing levels, features corresponding to
curves, surfaces, object parts, etc., until at the top level we have a vector whose direction
in vector space corresponds to a particular type of object such as a dog or a fire hydrant
or bicycle, etc. Now, this way of describing feature vectors in a neural net (NN) is a bit
deceptive. In reality, the feature vectors in a NN are learned (except at the input level),
based on seeing many appropriately labeled examples of a concept (e.g., many images of
dogs, fire hydrants and bicycles), and in general it’s only a supposition that the vector
representations at the various “hidden” levels might reflect features that seem intuitively
relevant to recognizing an image as an image of a dog, etc. Essentially NNs are “black

11

boxes” whose internal vector epresentions somehow derive object categories; and close ex-
amination of NNs has shown that they may use entirely unexpected “clues” in an image
to obtain a correct result.

How is such processing analogical? Well, it turn out that when you’ve trained a NN
on some large set of examples of a concept, it will be able to recognize new examples of
the same concept, such as correctly identifying an image of a dog as such, though it was
never seen before. In a sense then, the NN has made an analogy between previously seen
dog images and the new one.

This sort of analogizing is even more impressive when the output of an NN is not
just a catageory, but another complex pattern. Suppose, for example, that we provide
many examples of “premise sentences” to a NN, along with desired “conclusions”. Just
for illustration, suppose the example pairs are something like the following:

A woman fell in love => The woman was happy;
A man had an accident => The man was unhappy;
A child received a present => The child was delighted;
A student was mugged => The student was furious;
A man tripped and fell => The man was embarrassed;

etc., i.e., certain eventualities involving some person elicit certain emotions. Such ex-
amples could be hand-constructed, but for scaling up, they would be crowd-sourced, or
better, similar kinds of pairs would be derived somehow from the vast online textual
resources. A NN trained on such data might well learn to correctly produce output sen-
tences similar to the sentences on the right above, corresponding to new input sentences
like those on the left. This amounts to a way of inferring human emotions in given situ-
ations by analogy with previously seen examples. Note that this type of inference is not
just a matter of learning to predict the right emotion, but also learning to express the
conclusion in understandable English! The same kind of learning is of course involved in
learning to translate sentences of one language into semantically equivalent sentences in
another language, which systems like Google Translate do remarkably well.

Does human analogical inference work this way? Well, quite possibly to some extent,
especially in some domains (e.g., learning to recognize words in a speech stream). But
note the striking difference between classical analogical inference and NN-based inference:
The classical tasks are apt to be solvable by people based on a single example or a few
examples, just using their general knowledge about geometrical figures, numbers, people,
sentence meanings, etc. Note that you could solve new examples of the above types, such
as the emotion inference examples, just based on the five examples given; and people
can solve geometric analogy or sequence extrapolation problems even when they have
seen no such problems before. By contrast, NN-based inference is typically based on
thousands, millions, or even billions of training examples! Moreover, people can explain
why they reached an analogical conclusion, such as the kind of transformation involved in
mapping one geometrical figure into another, or the mathematics involved in a sequence
extrapolation task; whereas NNs are unable to explain their answers, because they were

12

reached through vector processing, not any knowledge-based reasoning.

Imagistic reasoning. The most “vivid” analogue method people make use of is imagistic
reasoning. For example, consider the follwoing two scenarios:

a. “Walking alongside the lioness, Joy Adamson stroked its head”.
b. “Walking alongside the giraffe, Joy Adamson stroked its head”.

The second scenario strikes us as highly implausible, because when we try to visualize
it, we “see” that Joy Adamson wouldn’t be able to reach the head of the much taller
giraffe. (We might “force” an understanding by imagining the giraffe to be “bowing
down” its head, or to be a new-born.) Though one could concoct FOL axioms (about
the sizes of various, creatures, reaching, etc.) that would allow an AI system to detect
the anomaly by symbolic reasoning, this would be a never-ending knowledge engineering
task. Imagine that either of the above sentences were followed by, “Then she climbed on
its back”. In the case of the giraffe, we are likely to visualize a failed attempt to climb up
– again something very hard to capture axiomatically; or we might imagine the intrepid
naturalist as possessing incredible climbing skills, or using a ladder, which would be even
more challenging to capture in symbols. A much more promising approach is to make
use of computer graphics techniques, allowing 3-D dynamic simulation of such scenarios
based on models of various familiar physical entities. The goal would be to match human
visualization capabilities, which are well-established, e.g., through the work of George A.
Miller and (later) Stephen Kosslyn.

Temporal and taxonomic reasoning. Using mental imagery or visualization is not
the only special analogue capability we possess. We also absorb large complexes of tem-
poral relationships (such as those among the events in a novel – or in our own lives) with
ease, and can determine before/after relationships and approximate durations more or
less instantly. In computers, we can use graphs that “mimic” temporal relations and al-
low rapid relation and duration inference through suitable numeric annotations. Another
innate human capability is the classifications of the types of entities we learn about in
the world into hierarchies, where we have very general types (such as “physical object”,
“physical substance”, or “abstract entity”) at the top, and more specialized types further
down, such as a division of physical objects into living and non-living things, where living
things are in turn divided into humans, nonhuman creatures, and plants, and so on. This
type of hierarchic or taxonomic organization can also be matched in computers through
tree-like, labeled data structures allowing efficient inference of relationships among entity
types, such as subordination of one type by another (squirrels are living things) or incom-
patibility of types (squirrels are not monkeys). A case can be made for other analogue
reasoning capabilities as well, but we’ve sufficiently clarified what is at issue here.

Skills (know-how). While the above analogue methods support drawing commonsense
conclusions about the world, another important aspect of our cognitive functioning in
the world is our ability to acquire subtle know-how or skills, including many motor skills
and sensory processing abilities. These appear to have nothing to do with logic; rather,
they are best viewed as procedures operating on specialized data structures and I/O

13

streams, and perhaps running on very specialized computational architectures. Imagine
trying to implement any of the following activities in a humanoid robot using logical
representations and operations as a basis:

• whistling (using a human-like vocal tract and musculature)

• riding a bike, catching a ball, using chopsticks, tying shoelaces

• interpreting retinal images

• speaking grammatically (well, this example may be debatable...)

• learning a new concept, a new language, watercolor painting, ...

Even if we could come up with logical descriptions of how we do these things (or how
a humanoid robot could do them), such descriptions probably could not be used in any
direct way to implement them.

It would be wrong to conclude, though, that there is a sharp division between knowl-
edge of how to do things − procedural knowledge − and factual knowledge. (This has
tended to be the view taken by both sides in the old “proceduralist-declarativist contro-
versy” − a controversy that started in the late 60’s, with one side defending procedural
representations and the other logical representations of knowledge.) For instance, consider
the following kinds of procedural knowledge:

• cooking recipes

• assembly and installation instructions (for furniture, electronic equipment, etc.)

• emergency procedures (on airplanes, in medical emergencies, etc.)

etc. These are just as natural to express in language − and FOL − as facts about food,
furniture, airplanes, etc. The difference is really just one of “mood”: declarative (or “in-
dicative”) vs. imperative. Declarative sentences express facts while imperative sentences
express what to do, but apart from that, they use the same grammatical constituents
(noun phrases, verb phrases, etc.), with the same meanings.

In fact in a broad sense, standard programming languages such as Python or C++
can be viewed as logics, but ones that make (mostly) imperative rather than declarative
statements.6 Why, then, is it that programs in most programming languages look so
little like FOL? Well, there are several reasons. First, the objects and operations they
talk about tend to be ones inside the computer (storage locations, variables, assignment)
or abstract mathematical ones (numbers, symbolic objects, subroutines), instead of being
real-world things like food and cooking and furniture and so on. Second, the concern in
procedural languages is very much with sequencing in time, while FOL makes no special

6Prolog gives the illusion of being declarative, but is still interpreted imperatively, i.e., there is an
“understood” way of executing a prolog program.

14

provision for this (any more than for, say, sequencing in a spatial dimension − though it
is entirely possible to “talk about” time and space). Third (a point related to the second),
they use syntactic devices not seen in FOL − e.g., begin−end blocks, if−then statements,
procedure declarations, loops, lambda-abstraction, etc. And at the same time, they tend
not to have quantifiers ∀ or ∃. (Some languages allow commands of form, “Do such-and-
such an operation for all objects in a certain set”; but usually not “Do such-and-such
an operation for some object in a certain set”, as this would be rather vague – more
precisely, nondeterministic.) Still, the meaning of programs can be studied in much the
same way as the meaning of declarative logics.7 As well, certain languages have been
developed, called dynamic logics and executable temporal logics, which have a more FOL-
like syntax and can be used as high-level programming languages (or to describe what
programs written in other programming languages do); e.g., see H. Barringer, M. Fisher,
D. Gabbay, R. Owens and M. Reynolds, The Imperative Future: Principles of Executable
Temporal Logic, Research Studies Press LTd., 1996.

Expressivity limitations of FOL. As a final comment, it should be noted that FOL is
not quite expressive enough to cover everything we can easily express in ordinary language.
For instance, it lacks good means for expressing temporal modifiers (as in “John woke up
repeatedly during the night”), or for expressing belief (as in “Mary believes that John is
an insomniac”). Adding beliefs, wants, desires, and so on is possible in so-called modal
logics, though the ones logicians have studied are mostly too restrictive, and too focused
on deduction, to be suitable for general, human-oriented KR and language understanding.
That’s a significant point in considering self-models and models (theories) of other agents,
since these require attribution of beliefs, intentions, desires, etc., to oneself and others,
and as such are crucial for human-like consciousness.

In summary, FOL provides means of symbolically representing much of the knowledge
that people can express in language and use for deliberate thinking of various sorts. To
ultimately endow machines with human-like cognitive abilities, we will need to integrate
such symbolic methods with several types of analogical and procedural methods.

7E.g., see E. Stoy’s book Denotational Semantics.

15

