Artificial Intelligence 17
Vision

So far we have considered applications of Al to game playing, which may
require intelligence but probably have little bearing on behavior in the
real world. This is mot because of some intrinsic limitation on search and
neural nets, but just because it seemed simpler to start with the kind of
closed, well-defined world created by the rules of a game.

Getting a computer to thrive in the real world immediately raises the
problem of getting information into the computer and allowing its behav-
ior 1o change the things around it. Gerting information in is the problem
of sensing; behaving is the problem of robotics. To these we now turn, We
will focus on computer vision. This is the sense modality most thoroughly
studied, presumably because scientists are primates and have excellent
vision themselves.

Biological vision systems are very good at finding moving objects in
images. Indeed, the primitive visual systems of frogs and similar animals
sce very little except moving objects. Since the work of the psychologist
].J. Gibson, many have used the concept of optical flow to think about

processing changing images. Imagine capturing the state of the image over
a small ume interval and wartching where each part of the image moves.
For example, imagine you're on a roller coaster, zooming down the track.
Everything in the image is moving, except a point directly in front of you,
the point you're headed toward. Bur if you're rounding a corner; then
nothing in the image is stationary. At each point in the image, draw an
arrow in the direction that piece of the image is moving, and make the
arrow longer if that piece is moving faster. When | say “point,” I mean
mathematcal point, so there is an infinite number of arrows; this is an
abstract vector field. The flow field is useful in a couple of ways. If you
are moving, the stationary poin, if there is one, tells you what your im-
mediate target is. Points nearer by are moving faster, so the field tells you
the approximate distance of objects. If you are not moving, then the flow |
field tells you whar is moving; if you're a frog, a small moving object 1s
lunch. See figure 2 3a, showing the flow ficld a person might sce as she
exits a building.

It 1s possible to state a precise relanonship between the way the im-
age changes as you move across it spatially and the way it changes at a
particular point over time. An example appears in figure 2.3b, Suppose

Figure 2.3b
Moving patch

an image consists of a dark patch moving over a white background. The
patch is not uniform, but is a darker gray in the middle than at the edges.
Consider what happens at a point P as the right edge of the patch moves
over it. At one instant the brightness is (P, 0); after the patch has moved

Artificial Intelligence 49

“¥" indicates shart time delay

Figure 2.3¢
Two motion detectors (from Sekuler et al., fig. 1C)

for a short length of time ¢, the brightness is reduced to I(P, 1). But if
the dark patch doesn’t change as it moves, it is possible to predict this
change by looking at the piece that's coming. Letting v be the velocity of
the parch, it will travel distance vt over the time interval £, so the bright-
ness value that’s at point vt to the left of P now will be over P after the
interval. Calling this value I(P — vt, 0), we can conclude

I(P,t)=I(P — w,0).

In other words, if we know v we can predict the change in brightness
value at P by “peeking” to the left to see what's coming. However, what
we want to do is the opposite: figure out the value of v by matching up
the temporal brightness change at a single point in the image (the left side
of the equation) with the spatial brightness change at a single point in
time (the nght side of the equation). The flow field is just the value of »
at every point.®

Actually computing the field requires coping with the fact that we can't
really list the value of the field at the infinite number of points in the
image and points in time. One way to cope is to approximate by laying a
grid over the image, and finding the value several times a second at every
square of the grid, If the grid is fine enough, the resulting approxima-
tion will give you all the information you need. Not surprisingly, both
the biological vision system and the digital vision system use such an ap-
proximation. The digital system represents the image and the flow field
as arrays of numbers, and the biological system represents them by the

"I)

. i
iy ‘L,k

v

r=)
et 7
r

50 Chapter 2

activi:ykvclsofamysofoellsindteretinaofthccyeandvimnlanm
of the brain. The computer’s arrays are more regular, but that's a detail.
The computer solves the equation numerically by performing repeated
numerical operations at every grid square, or pixel, of the image. The
brain of an animal solves it by allowing a neuron reacting to the bright-
ness level at one place to compare it to the recent brightness stored at 2
neighboring neuron (Reichardt 1961, Sekuler et al. 1990). In figure 2.3¢,
rwo motion-detection cells, labeled “M,” are connected to two nearby
receptor cells with delays (labeled) in between. As a patrern moves across
the two receptors, the M cells are able to compare the brightness at a
poimwiththemmbﬁ;hmatamrbypoim.mnthebiobgial
system’s way of comparing I(P, 1) with I(P — vz, 0).

The key point is that both schemes rely on approximations of the un-
derlying abstract mathematical objects. They work because the approxi-
mations are close enough. The details of the hardware, whether cells or
silicon, are not important, provided they don’t get in the way.

There are obvious differences between the rwo cases. The visual system
must have many pairs of cells, one for each possible position, orientation,
and velocity of a patch moving across the eye. A given motion detector
can only tell you the motion at a certain point, in a certain direction,
and at a certain speed.” To compute the whole field you have to pro-
vide a stupendous number of cells, each of which does a tiny bit of the
computation. The digital computer may employ a stupendous number
of silicon memory chips, but all the numbers pulled from those chips go
through a small number of CPUs, each working blindingly fast. The dig-
ital computer exhibits what is called a von Newmann architecture;® the
neural system has a commectionist architecture, because every interaction
between two computations must be manifest in an explicit connection
between the neural structures that perform them. But, as | have argued
already, this is a difference that makes no difference, a matter of minor
economic constraints on the materials at hand.

Another difference is that the computer implementation is the result of
a deliberate attempt by vision researchers to solve an equation, whereas
the biological system was designed by evolution—that is, not designed
at all. So we must be cautious in claiming that the equation explains
the structure of the biological system. Nonetheless, this kind of claim is

Artificial Intelligence 51

not that unusual. Suppose that we are trying to explain photosynthesis,
and we produce a thermodynamic analysis that shows that the maximum
amount of energy that can be extracted from sunlight is X. Then we
find a mechanism in plants that comes close to extracting that amount.
The existence of the mechanism is explained by pointing out the need
and the analysis. Of course, many gaps are left. We have to explain how
the mechanism can have arisen from a series of mutations. We have to
argue that the energy required to create and sustain the mechanism is less
than X. We might even have to argue that the mechanism confers no other
large benefit on the plant, whose existence might lead us to a different or
complementary explanation of its evolution. This is a ropic I will return
to (in chapter 5).

Robotics

Vision and other sensor systems give an organism information about the
world around it. The main use of this information is to guide the organ-
ism’s motion through the world. The word “robot" is used to refer to a
mechanical analogue: a creature that uses motors to control the motion
of its body and limbs.

The problem of controlling motion using sensors is difficult for several
reasons. One is that robots are more complex than traditional machines.|
An automobile engine contains many moving parts, but they're all mov-!
ing along fixed trajectories. A piston goes back and forth in exactly the
same way millions of times, causing the crankshaft to rotate the same
way on each occasion. But consider an arm consisting of a shoulder, an
elbow, a wrist, a hand, and several fingers. When the elbow and wrist are
extended, the arm is the shape of a beam, and the shoulder must support
the movement of a beam. If the arm is extended and holding a heavy ob-
ject (such as a bag of garbage), the beam’s physical characteristics change
completely, but the shoulder muscles must still control its motion. When
the elbow is bent, the same shoulder is the pivot for an object of an en-
ticely different shape. When the elbow is bent and the hand is positioned
near a table (to do some work on a watch, for instance), then the shoulder
and elbow must move in such a way as to keep the hand near its position
while allowing the fingers to manipulate things. So the general motion

52 Chapter2

problem is to move some parts of the arm-hand system in a desired mo-
tion, carrying loads of different sizes, while other parts obey constraints
on their possible locations and velocities.

That's one bundle of difficulties. Another is that the world imposes
constraints on the possible locations of the parts of the system. If you're
working on an automobile engine, your arm must fit around the contours
of the engine and its compartment.

But the worst problem is that it is not casy to obtain from the sensors
the information required to control motion. We saw ia the last section
how hard it is to compute the optical flow. We are now asking for some-
thing much more precise: the exact three-dimensional structure of, say,
an automobile engine. Extracting this information is possible, but it's not
clear that you can get everything you need to guide an arm. There are
' several methods for extracing three-dimensional structure from an im-
| age. One is 1o use two eyes, and use the slight differences between the two
? imnpmmmdepdsofpoinu;mdahmdﬁuahmadﬁ&mn
points of an object and measure how long it takes for the pulse to return.
Obviously, the former method, stereascopic vision, 1s used by animals {in-
cluding us), and the latter, laser rangefinding, is not. There are less obvious
techniques, such as noticing how texture and shadows change as a surface
curves away from the eye. Optical flow gives depth information; objects
that are closer tend to move faster across the eye. Using these techniques
one can recover a depth map, which gives the distance from the eye of
every pixel in the image. This is almost the same as a three-dimensional
model of the object; it represents that shape from the point of view of the
eye, and it's a straightforward mathematical operation to transform it to
represent the shape from any other desired point of view.

Unfortunately, except for laser rangefinding, all of these techniques tend
to yield inaccurate depth maps, and in any case a depth map is not a com-
pletenptatnntionofdledree-dmlshpeoflheobiutbeilg
seen. It’s almost one but not quite. By definition it says nothing about
pieces of the object that are not visible, which includes at least half of it.
(See figure 2.4, which shows the depth map generated from a 3/4 view
of a bucket.) The eye can move to take in more of the object, but that

requires knitting together depth maps taken from more than one point
of view.

Artificial Intelligence 53

(b}

Figure 2.4
() Bocket. (b) Depth map from (a) (seen from the side)

It may be possible to solve these problems, but it may also be unneces-
sary. There isn't much hard evidence that the human visual-motor system
constructs an accurate three-dimensional model of the objects in view
before beginning to mteract with them. As we interact with an object,
we keep looking at it and are constantly acquiring new views of it. As we
move our hands close to a part of the object, we can see our fingers getting
closer to it without knowing exactly where cither the object or the hand is.
And, of course, we have our sense of touch to tell us when the hand {(or the
elbow) has bumped into something, whether we see the collision or not.

We can use the same approach in a robotic system, on a more modest
scale. Suppose we want the robot to align a screwdriver with a screw.
The screw is sticking up out of a surface, and the robot is supposed to

54 Chapter 2

Figare 2.5
Screwdniver control

screw it down flush with the surface (figure 2.5). This requires lining up
four points: the place where the screw enters the surface, the head of the
screw, the blade of the screwdriver, and the handle of the screwdriver
{points A, B, C, and D in figure 2.5). These four points are really defined
in three-dimensional space, but all the robot knows is where they are in
the image, a two-dimensional space. Under the expected range of motions,
these four points will not change their appearance very much. So we can
define them as visual patterns that the vision system should keep track of as
the hand moves. Now our control algorithm can work as follows: Draw
line segments A'B’ and C'D, joining the centers of the visual patterns
corresponding to points A and B, and C and D, respectively. If the two
line segments are not collinear, move the screwdriver a little bit (the exact
motion depends on the discrepancy in direction of A'B’ and C'D’, as
well as how far the line containing A’ B’ is from the line containing C'D’;
the details are beyond the scope of this book). After the motion, take
another picture. Presumably A B’ is closer to the line containing C' D', so
the operation is repeated, until the two segments are collineac.

This procedure will not guarantee that the physical points A, B, C,
and D are collinear. If they lic in a plane, and that planc is parallel to
the line of sight, then they will look collinear no matter what their true
alignment. Any variation in position in that plane will be invisible to the

Artificial Intelligence 55

camera. However, if we use two cameras looking from slightly different
directions, then it is possible to align the screwdriver with the screw using
only measurements in the image (Hager 1997), without ever having to
infer the three-dimensional position of any of the objects involved.

A very different problem in robotics is the problem of map learning,
Many animals do an amazingly good job of getting from one place to
another. Bees find their way to flower beds, birds find their way south in
the winter, and many mammals, including humans, roam a large ternitory
without getting lost. The field of map learning has the goal of giving robots
a similar set of skills.

The word “map™ may have misleading connotations. One pictures a
folded piece of paper with a schematic picture of the world on it. Such -
a picture might indeed be a necessary component of a map, but it omits
an important factor, namely, what a point on the map looks like when |
you're there, Without this information, you will know which way 1o turn |
at every point on the trip, but you won't know when you're at that point.
The only reason a road map is usable is that it shows the names of streets
and roads, and, if you're lucky,” there are street signs displaying the same
names. Thart’s normally all you need to know about what the place looks
like. In environments less structured than street networks, you must store
more and different information about what the places look like when
you're there.

Animals use a vanety of techniques for figuring out where they are
(Gallistel 1990; Muller et al. 1991). One technique is dead reckomng, in
which the animal keeps track of every step and turn it takes after leaving
home, adding up all those little motions to figure out what its net motion
from home has been. It can then find its way back by turning in the
direction of home and heading straight there. Robots can do this, oo,
but not as well. They do it by counting things like the number of times
their wheels have turned. A typical robot changes its heading by having
one wheel rotate more than the other, so a difference in the rotation counts
for the two wheels translates into a change in the direction the robor is
moving. Unfortunately, even though the robot can measure fairly small
fractions of a wheel rotation, slight errors in the measurement translate
into significant errors in the robot’s estimate of its heading. Every time a
robot turns it loses track of its orientaticn by a couple of degrees, so a few

Uncertainty

Frgure 2.6
Positional uncertainty due to angular uncertainty

turns leave it rather disoriented. If the robot travels a long distance in an
uncertain direction, a seemingly small direction uncertainty can translate
into a large position uncertainty. In figure 2.6, the robot has no uncertainty
at all abour the distance it travels, and it knows the amount it turns to
within 10 degrees. Nonetheless, after three turns and moves, its positional
uncertainty (represented by an ellipse surrounding all the places where it
might be) is enormous,

Hence a robot cannot rely entirely on dead reckoning to tell it where it
is. It must visit locations more than once, and remember what they look
like, or how they appear to nonvisual sensors. Then, if dead reckoning
tells it that it might be at a previously visited location, it can compare
its current appearance with the stored picture (or sonar recording) to
venify.

Much of the research in this area uses sonar to measure the shape
of the robot’s immediate environment. Pulses of ultrasound are sent out
and the time required for the pulse to bounce off something and return
is recorded. The idea is that if there is an object in front of the sonar,

Artificial Intelligence 57

the time recorded tells the robot how far away that object is. Sonar has
the advantage that it is cheap and simple. Many commercially available
robots come equipped with rings of sonars so that signals can be sensed in
all directions simultaneously. The quality of the information sonar returns
is not very good, however. A sonar beam is 30 degrees wide, so getting
a pulse back tells you there is an object but gives its direction to within
only 30 degrees. The time it takes to record a pulse depends in complex
ways on the composition and shape of obstacles.

Vision potentially provides a lot more information. A medium-sized
black-and-white image can contain over 10,000 pixels, each encoded with
a byte of information. A ring of 16 sonars provides about 16 bytes. A sonar
recording of the environment is a low-resolution, one-dimensional row
of dots. A picture is worth ..., well, you get the idea. Many places look
pretty much alike to a sonar. Every place looks different to a camera.

The problem is that the same place looks different to a camera. If you
take a picture of a place, then come back and take another picture, they
will look different. For one thing, some of the contents of the image will
be different. The lighting may have changed. But the biggest changes will
be due to the fact that the camera will not be in exactly the same place.
Many of the lines will be at different angles. Objects will be foreshortened
differently.

An algorithm developed by Hemant Tagare (Tagare et al. 1998) can
cope with some of these problems. The idca is to treat the change in an |
image due to the change in camera position as a random perturbation of
the image. If the camera hasn't moved too far, then there are limits to how
the image can have changed. Let's assume that the camera is mounted
horizontally and is located in the same plane now as when the picture
was taken. Let's also assume that the lighting conditions haven’t changed
much. These assumptions are reasonable for indoor scenes taken from a
robot rolling around on a flat, horizontal floor. Under these conditions,
there are three ways the scene can be perturbed: (1) the camera axis won't
be parallel to its orientation when the picture was originally taken; (2) the
camera will be closer to or further from the objects in front of it; (3) some
objects may have been added or removed; in particular, even if the same
objects are present, some objects in the foreground may block different
parts of the background image than they did oniginally (figure 2.7a.b).

58 Chapter2

Focus of expansion

Moscn along
CamCTa AXis

Image 2 O
Figure 2.7a
Camera shift

The first kind of perturbation is handled by taking a wide-angled picture
when a location is first visited. We don't use 3 wide-angled camera, bur
instead take a series of ordinary pictures and “gluc” them together. If the
resulting panorama spans 160 degrees, and the camera’s field of view is
30 degrees, then the later picture can be taken with the axis rotated by up
to 50 degrees (left or right) and it will match some part of the panorama.

The second kind of perturbation is more tricky. We don't know if the
camera moved away from or toward the objects in the scene. Even if we
did, the amount thar a pixel would shift depends on the distance of the
object whose surface it occurs on. In face, this is a variant of the optical-
flow problem we considered carlier, the difference being that we don't get
to track pixels over ime; if the camera had moved smoothly and directly
from its old to its new position, we could compute the flow, but all we
have is two snapshots. Nonetheless, for cach pixel in one image, we can
place constraints on the pixels it “could have flowed from™ in the other.
We call this set of pixels the source region for that pixel. If we maintain

wﬁﬂl}"&%}_.w,w Jive g ;élm}w)' Q. il
yA b o ¢

Artificial Intelligence §9

(5) The change in the images slong
path from P P

= -
P——
—-

tit g

Motica perpendicular %o the camera axis

causes translatoa
(¢) The change in the images along
pach from P’ 1o P,
Fagure 2.7b
Image perturbations due to camera shift

the idealized picture of the camera rotating and then moving in or out,
and we correctly guess the rotation, then the pixel in the center of the
image will be the same as in the old image; its source region is one pixel.
As we look at pixels further from the center, the optical geometry of the
camera means that the source regions get bigger. We can draw a diagram
that gives, for some representative pixels, the source region in the other
image (figure 2.8). For each point with a cross-hair over it, the enclosing
quadrilateral with curved side gives the source region for that point.
The third kind of perturbation is unmodelable. Some pixels in the two
images simply don't correspond to each other. We call these outliers. The
more there are, the harder it is to see the similarity of the two images.
We put all this together by providing an estimate for the probability
that the image can have arisen as a random perturbation of a slice of the
panorama. For each pixel, we look at the pixels in its source region. If
they are all of roughly the same gray level, then this pixel's brightness had
better be close to it. If they exhibit a wide range of gray levels, then this
pixel’s brightness must fall in that range. The algorithm examines every

60 Chapter 2

45 deg

o 4 " 4 <]

JE\/
INT VA

P. A L} Ll

f
-48deg 0 deg 45 deg

Figure 2.8
Pixel source regions (from Tagare and McDermott 1998)

pixel, and computes the square of the difference between it and the middle
of the range as a proportion of the size of the range. If the difference is
very high, then the algorithm classifies the pixel as an outlier. When every
pixel has been examined, we arrive at two numbers that characterize how
good the march is between two images: the outlier count, and the average
difference between nonoutliers. If both these numbers are low, then the
chances are good that the new image was taken from about the same place
as the panorama.

This algorithm is not foolproof, There cannot be a foolproof algorithm
in a world where some pairs of locations look very similar. But it often
provides a strong clue to a robot that it has returned to a previously visited
location. With enough such clues the robot can build a map.

There have been several approaches to robot map building {Kuipers and
Byun 1991; Mataric 1990; Kunz et al. 1997; Engelson and McDermort

. f 1/)
U] (15 T L #Y) e

Artificial Intelligence 61

1992; Kriegman and Taylor 1996). A recent piece of work (Thrun et al.
1998) relies, like many recent research efforts in Al, on the theory of
probability. That's because the inputs to the system yield “clues” to the
shape of the world but not perfect information. It turns out that such
clues can be modeled well using the language of subjective probability,
in which propositions are assigned “degrees of belief” between 0 and 1.
A proposition with subjective probability 1 is believed to be true with
certainty; one with probability 0 is believed to be false with certainty; if
you believe a proposition with degree p, you should be willing to bet p
dollars against 1 — p dollars that the proposition is true (Savage 1954).

Thrun et al, represent a map as an assignment of probabilities of the |
presence of landmarks at every point in an area. A landmark is a recog- |
nizable entity; the case of there being no landmark ar a point is treated |
as the presence of a special “null landmark™ there. For example, in fig-
ure 2.9a, after some exploration a robot might assign probability 0.99
to the presence of the null landmark at every point except those near
the two indicated points. At one of these the robot identified a coatrack,
at the other a floor lamp. It is more certain of the exact location of the
coatrack, so there is a smaller cluster of higher probabilities there. In fig-
ure 2.9b we sce a more realistic example, in which the space consists of
a set of corridors. Many areas cannot be visited at all, because they are
blocked by walls and unopened doors. The landmarks in this case consist
of panoramas that are marched at various points.

A robot can use a map like this in a couple of ways. One is for route
planming. Given a destination and an origin, the robot can compute a
path through the map that will allow it to get to the destination. Another
is location estimation. As the robot moves, it can update its position
by comparing what it sees with the map. Because the map is represented
probabilistically, we can think of this as the problem of finding the location
L such that the following quantity is maximized:

P(robot at X|map M & observations D),

where P(A| B) is the conditional probability of proposition A given
proposition B. X is a location, M is a probabilistic map, and D is a
set of data from observations taken as the robot moves around, including
dead-reckoning data and the landmarks seen along the way. Conditional

ANP———
[
L—'—"::lr

(b)

-~

Figure 2.9
(a) Simple probabilistic map. (b) More complex map (from Thrun et al. 1995)

probability is a convenient way of representing changes in judgments of
the plausibility of various beliefs as information is gathered. The prob-
ability that your ticket will win the lottery, P(win), might be +plmg:
but after several digits have been selected, and they all match your ticker,
you're justified in getting excited, especially if your ticket survives uneil
there’s just one digit left to select. At that point the relevant number is
P (winlall but one digit match), which is .

Artificial Intelligence 63

Sometimes the robot is just given the map to begin with, but it can
also use probability techniques to learn a2 map by wandering around and
noticing landmarks. We pose this problem as that of finding a map M so
2% to maximize
P(map M | observations D),
where now D is the set of observations collected as the robot wanders.

Conditional probability is related to unconditional probability by the
following relationship
P(A| B) = P(AXB)/P(B).

For instance, in the case of our lottery, the probability P(all but one
MMM= ﬁm,”lh
1
P(swin | all buct one digit matched) = TOBB _ 1
ww 10

Given this relationship between conditional and unconditional proba-
bilities, we can infer:

P(A%B) = P(A| B)P(B) = P(B| A)P(A)
and hence

(P(BI AP(A)
P(B)

This equation is known as Bayes's Theorem. It is very handy when you
want to compute P(A| B) and you happen to know P(B| A). In our map
example we can apply Bayes’s Theorem to derive this:

P(D| M)P(M)
P(D)

The term P(D| M) is the probability of observations given the map.
Because the map specifies more or less where everything is, it turns out
that this is not too hard to compute; it corresponds to asking, what would
I see if I stood at a given point in the map and looked in a certain direction?
P(M) is the prior probability of a map. Some maps might be considered
less plausible than others even if you had no data. For instance, you
might not know where an acquaintance’s house is, but you might rate it
as unlikely that the house is in the river (although not impossible). P(D)
is the probability, over all possible maps, of the data that we happened to

P(A|B) =

P(map M| observations D) =

64 Chapter2

observe. These two quantities may sound difficult to compute, but we can
get around the difficulties, The exact form of P(M) is not too important.
Perhaps some simple rule would suffice that assigns higher probability
to maps with landmarks spaced at a certain ideal distance. P(D) doesn't
depend on M ar all, so if we want the M that maximizes P(M| D) and
don’t care about the exact value of P(M | D), we can just leave P(D) out.
(I have omittted many technical details.)

Thrun et al. tested their algorithm by moving the robot around by hand
for fifteen minutes, telling it where various landmarks were. They then
ran their algorithm to find the map that maximized the probability of
making the observations that were actually made, The map that resulted
was accurate to within inches.

