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Artificial Intelligence

McDermott — section on game-playing

Cognitive science is based on the idea that computation is the main thing
going on in the brain. Cognitive scientists create computational models
of the sorts of tasks that brains do, and then test them to see if they
work. This characterization is somewhat vague because there is a wide
range of models and testing strategies. Some cognitive scientists are inter-
ested in discovering exactly which computational mechanisms are used by
human brains. Others are interested primarily in what mechanisms could
carry out a particular task, and only secondarily in whether animal brains
actually use those mechanisms.

This discipline has been around for about half a century. Before that,
psychologists, linguists, neuroscientists, and philosophers asked questions
about the mind, but in different ways. It was the invention of the digi-
tal computer that first opened up the possibility of using computational
models to explain almost everything.

It is possible to approach cognitive science from various points of view,
starting from psychology, neuroscience, linguistics, or philosophy, as pre-
vious authors have done (Jackendoff 1987; Dennett 1991; Churchland
and Sejnowski 1992). My starting point is going to be computer science.
The application of computer science to cognitive science is called artificial
mntelligence, or Al. Al has been used as a placform for a more general dis-
cussion before (Minsky 1986; Hofstadter and Dennetr 1981), but rarely
in a way that takes philosophical questions seriously.'

One misapprehension is that artificial intelligence has to do with intelli-
gence. When the field started, it tended to focus on “intellectual™ activities
such as playing chess or proving theorems, It was assumed that algorithms
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Computer Chess

To get a feel for what artificial intelligence is trying to do, let's look at
a particular case history, the development of computer programs to play
games such as chess. Playing chess was one of the first tasks to be con-
sidered by researchers, because the chessboard is easy 10 represent inside
a computer, but winning the game is difficule. The game has the reputa-
tion of requiring brains to play, and very few people ever get good at it.
There is no obvious algorithm for playing chess well, so it appears to be a
good domain for studying more general sorts of reasoning, or it appeared
that way at firse. In the 19505, Allen Newell, Clifford Shaw, and Herbert
Simon wrote some papers (Newell et al. 1958) about a program they de-
signed and parnally implemented, which used general-purpose symbolic
structures for representing aspects of chess positions. However, over the
years chess programs have become more and more specialized, so that
now there is no pretense that what they do resembles human thinking, at
least not in any direct way.

Almost all chess programs work along the lines suggested in carly
papers by Claude Shannon and Alan Turing (Shannon 19504, 1950b;
Turing 1953), which build on work in game theory by von Neumann and
Morgenstern (1944). A key feature of chess is that both players know ev-
erything about the current state of play except each other's plans. In card
games a player is usually ignorant of exactly which cards the opponent
has, which adds a dimension we don't need to worry about in chess, where
both players can see every piece. We can use this feature to construct a
simple representation of every possible continuation from a chess posi-
tion. Imagine drawing a picture of the current position at the top margin
of an enormous blackboard. Assuming it is your turn to move, you can
then draw all the possible positions that could result from that move, and
jomn them to the original position by lines. Now below each such position
draw a picture of every position that can be reached by the opponent’s
next move. Continue with your move, and keep going until every possible
position reachable from the oniginal position has been drawn. (This had
better be a really big blackboard.) The process will go on for a long time,
but not forever, because at any position there are only a finite number of
available moves and every chess game must come to an end. The resulting
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Figure 2.1
Game tree

drawing is called a game tree (figure 2.1). Each position is indicated by a
square. Pretend the square contains a chess position reached at a certain
poimhapml‘luphhdnnmbenshonly.mrootoftheuuis
at the top and the leaves at the bottom. It looks more like a tree if you
turn the picture upside down, but it's called a tree even though it’s usually
drawn with the root at the top. The root is the original position, and the
lummﬁnhlpoﬁﬁom.mmepmehamdcdnndnofunher
moves are possible.

We now label the leaves with 0, 1, or —1, depending on whether the
game is a draw, a win for you, or a win for your opponent, respectively.
To describe what happens next | need to introduce another definition, Let
the children of a position B refer to the positions reachable by making
one move in B. (1 apologize for the mixing of a family-tree metaphor with
the botanical-tree metaphor.) Now pick a position P that has only leaves
as its children, that is, a position in which no matter what move is made
dnpmismwthﬂudmpomion'nisyourtumtomove.
If there is a child position labeled 1 (meaning “you win™), then you can
win in position P by making the corresponding move. Hence P can be
labeled 1 as well. If no child is winning, then if there is a child labeled 0
(draw), you can at least draw, so P should be labeled 0. Otherwise, no
matter what you do you will lose, so P is lost, and should be labeled ~1.
Aauaﬂy.(hbhinpoﬁbleiachec;thehnpcnonwnmean’t lose. We
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include this possibility for completeness, because we're going to see the
same pattern elsewhere in the tree: at any position where it’s your turn
to move, the position should be labeled 1 if any child is labeled 1; 0 if
no child is labeled 1 but some child is labeled 0; and —1 if every child
is labeled —1. In other words, at every position where it's your tumm to
move, you should label it with the maximum of the labels attached to its
children. At positions where it's the opponent’s turn to move, you should,
by a similar argument, place a label equal to the mimimum of the labels
attached to the children.

If we continue in this way we will eventually label every position. The
original position will be labeled 1 if you can force a win, —1 if your
opponent can, and 0 if neither of you can. This claim may not seem
obvious, so let’s consider in more detail the strategy you can follow if the
label is 1. There must be some child position labeled 1, so pick one and
make the move that gets you there. At this position it is the opponent’s turn
to move, so if it's labeled 1 then every child position must be labeled 1. So
no matter what the opponent does, you will be in a siruarion like the one
you started with: you will have a position with at least one child position
labeled 1. You will be able to make the corresponding move, and then
wait for the opponent to pick among unappetizing choices. No matter
what happens, you'll always have a position labeled 1 and can therefore
always force a situation where the opponent must move from a position
labeled 1. Sooner or later you'll get to a position one step from a leaf,
where you have a move that wins.

This idea was first made explicit by von Neumann and Morgenstern.
It sounds like a surefire recipe for winning at chess (and any other board
game with complete information about the state of play and no random
element such as dice or roulette wheels). Of course, no person can play
the game this way, because the equipment (an enormous blackboard) is
oo unwieldy, and it would take way too long to work out the whole game
tree. But computers can get around these problems, right? They can use
some kind of database to represent the tree of positions, and use their
awesome speed to construct the tree and label all the positions.

No, they can’t. There is no problem representing the board positions.
We can use a byte to represent the state of a square, and 64 bytes to
represent the board.* It's not hard to compute the set of all possible moves
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only 10%. A ten-gigabyte hard disk can store 10" bytes. We will need
10 ten-gigabyte disks to store all the positions in the tree. Suppose each
hard drive is 1 cm on a side. The volume of the earth is about 10" cubic
meters, 30 if the earth were hollowed out and used to hold hard drives it
could hold 10" of them. So we'll need 10** carth-sized planets to hold
all the data. | belabor all this because it is easy to misjudge just how large
these numbers are. Once you grasp their size you realize why it is that no
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It is unlikely that a'computer could ever be built that could construct
more than a small fragment of the game tree for chess. But perhaps a
small fragment is all that is necessary. As first suggested by Shannon, a
computer could construct all the positions reachable in, say, five ply. At
that point it could apply a position-evaluation function, which would look
at factors like the number of remaining pieces belonging to cach playes,
pawn structure, piece mobility, king safety, and so on in order to come
up with an estimare of which player is winning. The numbers wouldn't
have to be 1, 0, or —1. We could use numbers like 0.3 to indicate a slight
advantage for White, or —0.9 to indicate a big advantage for Black. The
computer can then use the same labeling idea, taking the maximum of
child labels at a position where it is to move, the minimum where its
opponent is to move.

This idea underlies almost all chess-playing programs. There are a Jot
of possible enhancements. The position-evaluation function can be tuned
differently for middle game and end game. There are ways of pruning
the tree slightly, so that once a good move has been found the computer
can skip examining some of the other branches. One can streamline data
structures and optimize move-generation algorithms. Good openings can
be prestored so that the computer just plays them, doing no game-tree
generation at all, just as a grandmaster does. If a position can be reached
by two different sequences of moves, the computer can avoid exploring
it twice. You can also buy a faster computer. One way to do that is to use
several computers to explore the game tree in parallel. However, by itself
this step doesn’t get you very far, as the numbers above suggest,

Another possible line of attack is to observe how human experts play
chess and try to duplicate their skills. This was what Newell and Simon
tried. They were interested in questions such as, what do human players
look at when they look at a board? What hypotheses do they form about
key features of the current position? They thought that answers to these
questions might give them ideas they could incorporate into computer
programs. However, even though a few things were learned about human
play, none of this knowledge is used in the design of today's programs,
Nonetheless, these programs play very well, as was shown dramatically
in 1997 when a computer, Deep Blue, constructed and programmed by
programmers from IBM, beat Garry Kasparov, who is probably the best
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human chessplayer. Deep Blue used a combination of parallelism and 2n
excellent position-evaluation function to beat Kasparov.

When this happened, it made headlines all over the world. Every news-
paper and magazine ran opinion pieces. Most of the writers of those pieces
argued that the computer’s victory should not be a threat 1o our posinon
as the most intelligent species on the planet. There were several main lines
of argument. Some pointed to the fact that the methods used by Deep Blue
are very different from the methods used by human players. Some argued
that Deep Blue’s narrowness meant that it wasn't really intelligent; sure
it could win the game, but it couldn’t even see the board, and whea you
come down to it, it didn't care whether it won or not. Some believed that
the fact that Decp Blue had to be programmed meant that its program-
mers were intelligent, not the machine itself. And some pointed out that
chess is a finite world, so computers were bound to become fast enough
to search enough of its ramifications to win.

1 don't think these arguments are as strong as they seem at first. But be-
fore 1 address them, let me point out that the evolution of chess programs
has been similar to the evolution of Al systems in general. In the early
days, researchers in the field tended to assume that there were general al-
gorithmic principles underlying human though, so that (a) these could be
embodied as all-purpose intelligent algorithms, and (b) these algorithms
would resemble humans in their style of thinking. As time has gone by,
systems have gotten more and more specialized. A researcher in com-
puter vision, which is defined as the attempt to extract information from
visual images, deals with completely different issues from those explored
by computer-chess researchers, or researchers working on understand-
ing natural language, scheduling resources for companies, and proving
mathematical theorems. Within these specialties there are subspecialties.
People working in stereo vision (comparing information from two eyes
to estimate depth) do not use the same methods as people studying pro-
cessing images over time. If there are general principles of reasoning, they
don't play a role in most of what gets studied nowadays.

In addition, the principles of computer reasoning don't seem much like
the principles of human reasoning, at least not those we are introspectively
aware of, A chess master will explore a tree of moves, but not every legal
move, only those that make sense. Computers usually look at every move
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at a given position. This is a patrern that we see a lot: the computer is
good at exhaustively sifting through possibilities, while the person is good

at insight and judgment. It is this striking difference that many people . . .

adverted to in the reassuring editorials that appeared after Deep Blue -

beat Kasparov. Wen = Ly
I think this reassurance is illusory, for the following reasons: 1 i Cat

1. Insight and judgment are not the names of techniques used by the
brain; they are words used to praise the brain’s output. . ¢ /L,
2. The method used by the brain to arrive at insightful results might,

when implemented on a computer, involve a lot of exhaustive sifting. =1 - .. . ¢

These points are frequently misunderstood, and explaining them further
will be one of my main goals in this chapter.

People often find the digital computer to be a ridiculous mode! of the hu-
man brain. It executes a single instruction at a time, pulling small chunks
of data in from memory to a central processing unit where various tiny hit-
tle operations are done to them, and pushing the results back out to mem-
ory, all of this happening repeatedly and repetitively, billions of times a
second. What in the brain or mind looks like that? The answer is: nothing.
There is no way that a brain can be thought of as a digital computer.

This fact is, however, completely irrelevant. Our hypothesis is that the
brain is using neurons to do computation. The hypothesis implies that
what's important about a neuron is not the chemicals it secretes or the
electrical potentials it generates, but the content of the information en-
coded in those physical media. If you could encode the information in
another set of physical properties, and still do the same computation, you
could replace a neuron with an equivalent computational device in an-
other medium, and it wouldn't make any difference. You could replace
all the nevrons in a brain with one or more digital computers simulating
them, and the brain would be just as good. The point is that the digr
talness of the computer is a red herring. Animals need things to be com-
puted in the same sense that they need blood to be circulated. There are
many different technologies that can carry out these computations. Each
technology will approximate the answer slightly differently, and thereby
ntroduce shightly different errors, but as long as the errors are small
these discrepancies will be irrelevant, Neurons are wonderful biological
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computers, but there is nothing magical about them. Digital computers
are just as good in some ways. Above all, they are much more flexible.
We can reprogram them overnight. For that reason they are a superb tool
for exploration of hypotheses about what it is neural systems are trying
to compute.

The question | raised above is whether the methods used by Deep Blue
are intrinsically less insightful and more exhaustive than the methods used
h&mkmmmdmmmmh&nmbody
knows. There has been some work on the psychology of chess playing
(deGroot 1965; Chase and Simon 1973), but it really doesn't tell us what
goodcbusplammdoing.lfyonu&dmn,thqangivemlou
of fascinating advice. Here is the “thinking technique™ recommended by
Silman (1993):

1. Figurc out the positive and negative imbalances for both sides.
2. Figure out the side of the board you wish to play on. ...

3. Don't calculate! Instead, dream up various fantasy positions, i, the positions
you would most like 1o achicve,

4, Ommﬁdahmpodﬁw&nmkammmwhnoui
you can reach it. If you find that your choice was not possible to implement, you
must create another dream position that is casier 1o achicve.

5. Only now do you look at the moves you wish to calculae. ...

This may superficially appear to be an algorithm. Each step appears
to call a subroutine,® and there’s even a little loop from step 4 back to
mpB.Hmthisisanilhsion.Akhothihangimmfwﬂu
elaboration of each step, such as listing the different kinds of imbalance
onc is to look for in step 1, it remains true that you can't even begin to
follow his advice until you are a pretty good chess player. He's basically
telling you how to “get organized.” The details are up to you. You might
ask, how does a good chess player find “imbalances™ m a position? Why
does a grandmaster find imbalances better than a mediocre player? Unfor-
tunately, no one really knows. The literature cited above seems to indicate
that a grandmaster has a huge store of previously seen positions that he
or she can access. Given a new position, two or three relevant positions
from this collection come to mind. How are they stored and how are they
accessed? No one knows. The key point for us, howeves, is that looking
up these positions in memory requires a lot of work by a lot of neurons.
Each neuron is performing a tiny piece of the job. Each picce involves
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no insight or judgment at all. If we implemented the process on a digi-
tal computer, it would look a lot like exhaustive sifting. So the fact that
Deep Blue does a tremendous amount of “brute force™ computation is, in
itself, irrelevant 1o the question of whether it is intelligent; we know from
our own example that insight can be the result of millions of uninsightful
computations.,

One can still be reassured by one of the arguments | mentioned above,
that Deep Blue is too narrow to be truly intelligent. For the time being,
we can expect programs to solve a handful of well-defined rasks and
be completely oblivious to other demands of a situation. But the other
arguments are mirages. The fact that it took intelligence to program the
computer says nothing about the mental capacity of the resulting program.
The fact that a game or other problem domain is finite does not imply
that eventually computers will become fast enough to solve them. Deep
Blue embodied many algorithmic advances, as well as being quite fast,
There are plenty of “finite” but enormous domains that computers will
never conquer merely by running faster. Finally, the argument that Deep
Blue's methods are “exhaustive™ in a way that people are not is, as I have
shown, based on a quick jump to a conclusion thatr cannot withstand
serious examination.

Neural Nets

I have argued that digital computers are useful for studying mental pro-
cesses because mental processes are ultimately computational, and digital
computers are the Swiss Army knife of computation. This account of
where they fit into the explanatory landscape of the brain and its ac-
tivities seems pretty straightforward to me. However, there is a compet-
ing story, which goes like this: There was once a field called Good Old
Fashioned Artificial Intelligence (GOFAL to use an acronym coined by
John Haugeland 1985). It was based on a model of mind as a symbol-
manipulation system. In this framework, the beliefs of the mind are rep-
resented as expressions in a formal language not unlike the language
of mathematical logic. The central processor of this mind takes groups
of expressions and derives new expressions from them. The expressions
have a formal denotational semantics; each symbol denotes an object or

Omitted:

Mainly McDermott
argues that the sup-
posed distinction bet-
ween “symbolic” and
“subsymbolic” repre-
sentations is meaning-
less .



