
Computational Intelligence, Volume 31, Number 3, 2015

TOWARD SELF-MOTIVATED, COGNITIVE, CONTINUALLY
PLANNING AGENTS

DAPHNE LIU AND LENHART SCHUBERT

Department of Computer Science, University of Rochester, Rochester, New York, USA

We present a flexible initial framework for defining self-motivated, self-aware agents in simulated worlds,
planning continuously so as to maximize long-term rewards. While such agents employ reasoned exploration
of feasible sequences of actions and corresponding states, they also behave opportunistically and recover from
failure, thanks to their continual plan updates and quest for rewards. Our framework allows for both specific and
general (quantified) knowledge and for epistemic predicates such as knowing-that and knowing-whether. Because
realistic agents have only partial knowledge of their world, the reasoning of the proposed agents uses a weakened
closed-world assumption; this has consequences for epistemic reasoning, in particular introspection. The planning
operators allow for quantitative, gradual change and side effects such as the passage of time, changes in
distances and rewards, and language production, using a uniform procedural attachment method. Question
answering (involving introspection) and experimental runs are shown for our particular agent ME in a simple
world, demonstrating the value of continual deliberate, reward-driven planning. Though the primary merit of agents
definable in our framework is that they combine all of the aforementioned features, they can also be configured as
single or multiple goal-seeking agents and as such perform comparably with some recent experimental agents.

Received 26 February 2012; Revised 24 October 2013; Accepted 24 October 2013

Key words: communicative agents, continual planning, deliberate and opportunistic behavior, incomplete
knowledge, introspection, self-aware agents, self-motivated cognitive agents.

1. INTRODUCTION

Over the long term, we are interested in creating linguistically competent, intelligent,
human-like agents. Such agents will have to be able to converse, plan flexibly in an
incompletely known world, and make inferences over a substantial knowledge base, all
while pursuing their own rewards. Though many artificial intelligence (AI) systems have
demonstrated some of these abilities, none, to our knowledge, have integrated them all. We
present a simple initial framework and platform (see also Liu and Schubert 2009, 2010) for
defining such self-motivated cognitive agents in simulated “gridworlds” (worlds that may
contain various entities at various accessible places connected by paths) and exemplify this
framework with an agent dubbed ME (pronounced “em-ee” for Motivated Explorer). ME
can plan and think ahead (where actions can take up time and produce gradual change),
deal with unforeseen environmental events, make inferences about states (including its own
and other agents’ knowledge and wants), engage in limited question answering (QA) with
the user and other agents, and do so indefinitely and autonomously, driven by the expected
cumulative rewards or costs of its contemplated sequences of actions and anticipated
future states.

Unlike traditional planning agents, which are constrained to act and react in accordance
with user-specified goals, constraints, and preferences, agents defined in our framework are
self-motivated. In that respect, they resemble policy-driven agents, but at the same time,
they are cognitive agents, able to plan ahead—sufficiently well not only to “thrive” in their
worlds but also, with some minor tweaks, to solve classical STRIPS-like planning problems

Address correspondence to Daphne Liu, Department of Computer Science, University of Rochester, Rochester,
New York, USA; e-mail: daphliu2006@gmail.com

© 2014 Wiley Periodicals, Inc.

386 COMPUTATIONAL INTELLIGENCE

and more recent continual planning problems in incompletely known worlds, as will be seen
in Section 7), to entertain beliefs about themselves and other agents and to engage in simple
QA dialogues.

In Section 2, we give a general outline of what we mean by a self-motivated cognitive
agent and of our development framework for implementing such agents. In Section 3, we
provide some details of how actions are defined for an agent, the planning process, and the
somewhat altered syntax and meaning of action definitions when we are specifying “actual”
actions (as carried out when “running” the simulated world). In Section 4, we turn to the
other major aspect of the agent framework, namely, the reasoning (including introspection)
performed by the agent.

In Section 5, we instantiate the agent ME in a simulated world, for the purpose of
demonstrating and experimenting with our agent framework. The world is simple but suf-
fices for illustrating and supporting the points we wish to make. In Section 5.2, we provide
a range of examples of QA by ME (including questions involving attitudes) and report in
Section 6 the results of various “runs” of the agent in the simulated world. One set of runs
is aimed at demonstrating the opportunistic, future-directed behavior of the agent when all
its faculties are intact. In another set of runs, the agent is deprived of its ability to plan
and reason ahead (from another perspective, of its self-awareness), and this leads to the
expected deterioration in its behavior. In a third experiment, the agent is rendered doggedly
goal-directed (toward one specific consumption goal) by upward adjustment of the rewards
it subjectively assigns to the chosen goal and to types of actions and states that lead toward
it, while zeroing out most other reward estimates. This shows that such goal-directedness
will fail to exploit available opportunities and greatly reduce net utility (NU). In Section 7,
we explore the applicability of our agent framework to classical and continual goal-directed
planning, and in Section 8, we discuss related work on behavioral and game agents and
agents that reason and converse. We conclude with a summary of our work and discuss
future directions.

2. SELF-MOTIVATED COGNITIVE AGENT FRAMEWORK

We conceive of a self-motivated cognitive agent as one whose activity is governed
by never-ending planning and self-aware reasoning aimed at optimizing long-term,
cumulative rewards derived from the actions taken and states reached (as previously
suggested in (Morbini and Schubert 2008; Liu and Schubert 2009). We think of these
rewards (or penalties) as subjective, much as human beings experience pleasure from eat-
ing, companionship, sex, discovery, acquisition of goods, pastimes, and so on, and distress
from fatigue, injury, loss of possessions, and so on. Thus, a self-motivated agent, in our
sense, does not pursue goals for their own sake, but rather for their anticipated contribution
to the sum of an agent’s subjective rewards over the long term. Hawes (2011) and similarly
Merricka and Shafib (2009), in discussing self-motivation, focus on the need for explic-
itly represented goals that can be created, reasoned about, chosen from, and translated into
behavior. While our framework provides these functions, we feel that the genesis of goals via
projected cumulative rewards and costs, and a model of self—that is, self-awareness—are
also essential ingredients.

An agent is not assumed to have complete knowledge about the world, either about
the current state or about exogenous events, but it should be able to observe new or
altered facts as it goes. By its nature, such an agent will manifest opportunistic, or situated
behavior; that is, as new facts become apparent to it, or actions fail, its continual planning
will take these into account so as to exploit newly recognized opportunities or avoid newly
recognized threats.

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 387

Accordingly, the framework and (Lisp-based) platform we have built treat planning
as continual construction, evaluation, and partial execution of sequences of potential
actions. The evaluation assumes that both actions and states can be intrinsically rewarding
or odious, where the extent of such utility or disutility can depend on the exact action
parameters involved and on arbitrary descriptive numerical features of the world and
the agent. Therefore, the design of the Lisp functions that measure action and state utility
is left open to the user. Actions and states with large anticipated utility will tend
to be favored by the planning process, which is designed to add up total utilities over
courses of action and propagate these back to allow a current choice of action that
is seemingly optimal “in the long run.” Rewards and costs need not be limited to actions
and states that are intrinsically rewarding or odious but may perfectly well be associated
with actions or states that tend to foreshadow good or bad outcomes. One can imag-
ine adding a learning component to this scheme, where only intrinsically pleasant
or unpleasant actions or states initially have non-null utilities, while other actions and states
gain or lose utility because experience indicates that they lead to favorable or unfavorable
consequences. However, our most immediate focus has been on basic cognitive equipment,
not on learning.

To qualify as a cognitive system, an agent should be able to plan and reason
with an expressively rich language. We might have chosen a situation calculus-based
framework such as Golog (e.g., Reiter 2001), but the complexity of regression planning
by theorem proving in the situation calculus (which is how Golog programs are inter-
preted) would have limited the complexity of agents and worlds that could be practically
implemented; besides, Golog is geared toward achievement of externally supplied goals
rather than reward optimization. Instead, for ease of use in implementing a set of oper-
ators and for planning control and efficiency, we chose a STRIPS-like representation of
actions and states, with allowance for quantitative preconditions and effects (including
variable elapsed time), handled by a very simple, general procedural attachment syntax.
Moreover, the logic of state descriptions allows for propositional attitudes such as knowing-
that, knowing-whether, and wanting. This is essential for formalizing knowledge-acquisition
actions, such as asking a question, and for answering questions about the agent’s own
attitudes. Details of the action representation and planning process are deferred to the
next section.

As mentioned in Section 1, the current framework places agent ME and other objects
(and possibly other agents) in a simulated gridworld of named points (locations) and con-
nections (roads). The primary functions for defining the entities (with associated properties)
in a world, and an initial state, are the following:

(def-roadmap points roads)
(def-object obj-type properties)
(place-object name obj-type point associated-things

curr-facts propos-attitudes)

In def-roadmap, the points are arbitrary names, and the roads are sequences of type
(road-name point0 dist1 point1 dist2 point2 : : :). In def-object, obj-type is a predicate such
as piano or sasquatch, and properties are also predicates, presumed to apply to all objects
of that type, such as is_playable, is_animate, or (has_IQ 50). These properties are mapped
to implicative clauses such as

((sasquatch ?x) => (is_animate ?x)).

The place-object function serves to introduce an entity of type obj-type into the world,
positioning it at point. It also allows specification of objects that the new entity “has” (its

388 COMPUTATIONAL INTELLIGENCE

associated things), arbitrary ground facts about it, and propositionl attitudes (in the case of
animate agents) such as (knows Grunt (that (has ME Banana1))). ME is also introduced
with the place-object function, but the name is recognized as referring to the main actor in
the world, planning actions to optimize cumulative rewards.

There is also a general knowledge repository, *general-knowledge*, to which the
user can add arbitrary implications with positive antecedents and a positive consequent,
with allowance for knows that predications and some other epistemic predications;
for example,

((is_animate ?x) => (can_talk ?x)),
((knows ?x (that ?p)) => ?p).

These clauses are used for bounded forward inference in elaborating world state
descriptions.

While ME is mobile and capable of exploring the world and interacting with the user
and other entities, we generally assume that other entities are stationary and merely reactive
in their interactions with ME. (However, in Section 7.3, we adapt our framework to a class
of multiagent problems.)

ME’s knowledge base is automatically initialized so that it contains the geographical
knowledge about the world and the general quantified conditional facts. Its world model is
also augmented with specific facts about itself, its initial location, and about the entities at
that location. Notably, ME has only partial knowledge about the world, even about entities
at its current location. In particular, the designer of ME’s world may mark certain predicates
as being occluded for ME, and these are predicates for local facts that the designer wants
to regard as not immediately perceptible to ME. For example, the predicate is_in might be
occluded; thus, if (is_in key1 box1) holds, ME does not know this even when standing next
to box1. Similarly, knows would generally be occluded, so that what another agent at ME’s
location knows is not apparent to ME. However, there are two types of exceptions. First,
if a certain argument (usually the subject) of the predicate is ME, then predication is not
occluded to ME. For example, self-referential facts such as (has ME key1) and (not (knows
ME (whether (is_edible fruit3)))) would be evident to ME (and thus added to ME’s world
model), despite the general occlusion of has and knows. Second, ME may find out and
remember a fact that would otherwise be occluded, perhaps because it asked a question, read
a book containing the fact, or inferred it.

There are two separate views in the gridworld: the simulation (“God’s-eye view”) and
ME’s knowledge base, which, unlike the former, is very incomplete, containing only what
ME can perceive locally (subject to partial occlusion) or has learned through previous per-
ceptions, questioning of others, or inference. The only exceptions are (a) that the gridworld
layout is known to ME at initialization, (b) that ME has general knowledge about entity
types and their properties, and (c) that ME has knowledge about its own action capabilities.
The knowledge gained by ME when it reaches a new location or when the situation changes
(e.g., rain and fire) is intended as our model of ME’s perceptions, and it is the only channel
through which ME gains knowledge about the existence of particular objects with particular
non-occluded properties at particular locations in the gridworld.

The incompleteness of ME’s knowledge has several important consequences for
the design of the cognitive agent framework. One is that a distinction needs to be made
between the simulated world and ME’s model of it, in terms of both the effects and
the termination conditions of actions (which may be determined by external events,
not anticipated by ME). Another is that under conditions of incomplete knowledge, ME
cannot use a full closed-world assumption (CWA) and thus must be careful not only in
its evaluation of the truth or falsity of action preconditions and effects but also in its

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 389

introspections concerning what it knows and does not know. Finally, in such a setting, ME
is apt to benefit from continual (re)planning, because every step can bring unanticipated
opportunities or hazards.

3. ACTIONS, PLANNING, AND SIMULATION

Operators are defined for ME in a STRIPS-like syntax, with a list of parameters, a set
of preconditions, and a set of effects; an action also has an anticipated reward value and
an expected duration. As an example, consider the drink operator in Figure 1 with formal
parameters ‹h for ME’s thirst level and ‹x for the item to be drunk. From ME’s perspective, if
it is thirsty and possesses a potable item, then ME can drink it for 1 time unit and completely
relieve its thirst.

The syntax is essentially that of PDDL (McDermott et al. 1998; Fox and Long 2003),
the prevailing standard for defining planning domains, especially for systems participating
in international planning competitions. We do not make use of conditional effects (which
in principle can be dispensed with through the use of multiple variants of actions) and
quantified (8 and 9) preconditions and effects. On the other hand, our framework allows
for incompletely known worlds, expansion of state descriptions via forward inference, and
propositional attitudes of knowing-that, knowing-whether, and wanting, which are essential
for a self-aware, communicative agent.

A plan consists of a sequence of actions. An action—an instance of an operator—is
created by replacing its formal parameters with actual values obtained by unifying the oper-
ator preconditions with the facts in ME’s conception of the current state along with the
permanently true facts. ME considers taking an action in a given state only if it believes its
preconditions to be true according to its model of that state; ME considers such an action
applicable although it might not elect to perform this action in that state. ME accomplishes
planning by first doing a forward search from a given state s, followed by back-propagation
to s of the anticipated rewards and costs of the various actions and states reached, to deter-
mine a/the seemingly best sequence of actions (i.e., the best plan for securing cumulative
rewards). The forward search is bounded by a prespecified search beam, which specifies
the number of lookahead levels (the length of the contemplated sequences of actions), the
branching factor, and the allowable operators at each level. (We generally found that plan-
ning about 3–5 steps ahead (but up to 8 for Towers of Hanoi with 4 disks—see Section 7.1),
with branching factors of around 3–5 (perhaps declining with depth) gave good trade-offs
between speed and behavioral optimization in our test domains.) Informed by the projective
lookahead, ME will then execute the first action of a/the seemingly best plan and update its

FIGURE 1. The drink model operator (“make-op” creates a Lisp structure with the fields shown, and “setq”
sets “drink” to that structure).

390 COMPUTATIONAL INTELLIGENCE

FIGURE 2. The drink actual operator.

knowledge with the action effects and its new observations of non-occluded, local facts. It
is then ready to plan forward from the new state.

We wished to make it as easy as possible for users not only to create the world’s
geography, objects, and actions as conceptualized by the main agent but also to create the
“actual” world, that is, the simulation. We therefore devised a semantically transparent syn-
tax for defining actual action types rather similar to ME’s models of these actions, but
allowing for stepwise updates for multistep actions and possible interruptions by exogenous
events.1

Consider the following example of the actual, stepwise version of the drink operator in
Figure 2.

In the simulation, actual actions and exogenous events (also defined with the same syn-
tax) may be tracked in parallel in unit time steps. For actual initiation of an action attempted
by ME, the startconds must hold. (Exogenous events are initiated independently of ME, e.g.,
by including a random start condition such as (D 1 (random 3)), tested at each time step.)
An active actual action will continue for another time step if and only if none of its stop
conditions as given by stopconds are true in the current world state. If at least one of them
is true in the current world state, then the action will terminate immediately. In either case,
the world state will be updated, by computing the effects as given by deletes and adds, fol-
lowed by bounded forward inference in conjunction with general world knowledge. At the
same time, ME’s world model will be updated by computation of ME’s observation of the
non-occluded, local facts in the new state.

When an action comes to a stop, whether successfully or unsuccessfully, ME performs
its plan search and chooses a step to execute, as already described. This is what makes
its planning situated, or opportunistic, or robust in the event of failure—it always bases its
choice of the next action on a seemingly best course of action that starts in the situation
at hand.

We emphasize that model operators, which reflect ME’s understanding of its own
actions, are used by ME in its forward projection, whereas the actual operators are used in
the simulation. The latter are not planning operators but, in effect, state-change operators
that reflect what happens if ME performs certain actions or exogenous events occur. Natu-
rally, the changes wrought by these operators are necessarily “successful”—the gridworld
never fails to reflect the changes that actions/events cause. The state of the simulated world
is complete (within the confines of the gridworld), whereas the models entertained by ME

1 Interested readers can contact the authors to request the gridworld manual, in which syntactic details of operators, the
Horn-like knowledge representation, and careful discussions of operational semantics are provided.

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 391

are not. Furthermore, the only communication channel between the simulated world and
ME’s model is ME’s perception of the simulated world.

Note that preconditions and effects (in both model operators and actual operators)
follow a conventional logical syntax of predications and terms, where predications may
be negated and terms may be constants, variables (parameters), or functional expressions
(allowing for certain reified propositions or questions, as specified later). Some of the func-
tional terms and predicates may be evaluable by attached procedures—a common technique
in reasoning systems (e.g., Dornhege et al. 2008). This technique is used in preconditions
and effects (and value and duration—reward calculations and elapsed time calculations—if
applicable) of both the model actions and the actual actions, and it enables not only quan-
titative reasoning but also dialogue (e.g., in QA). Predicates and functions evaluable by
associated procedures includeC, �, �, =, <, <D, >, >D,D, and random, and user-defined
predicates or function names ending in ‹.

The system will evaluate the evaluable expressions when verifying preconditions and
when applying effects (and when contemplating the NU and duration, if applicable). For
example, (is_tired_to_degree ME (+ ?f (* 0.5 (elapsed_time?)))), an effect of walk.actual,
specifies that the increase in ME’s fatigue level as a result of the walking action will be half
the distance it walks, where the user-defined function (elapsed_time?) returns the time ME
has spent on the current walking action assuming ME walks 1 distance unit per time step in
the simulated world.

Not only does procedural attachment handle quantitative preconditions and effects
(and the value and duration of an action, if applicable) but it also straightforwardly
handles side effects such as ME producing a printed answer to a question. For instance,
consider the operator for answering a yes–no question by the user in Figure 3. In the pro-
cess of instantiating the effect (knows USER (that (answer_to_ynq? ?q))) of this operator in
ME’s knowledge base, the evaluable term (answer_to_ynq? ?q) is evaluated by applying the
user-defined LISP function answer_to_ynq? to the value bound to variable ?q. The function
consults ME’s knowledge base to determine an appropriate answer, such as (not (can_fly
guru)) for the question (can_fly guru), and also outputs this answer to the user. Note that the
particular effect stored for this example would be (knows USER (that (not (can_fly guru)))),
which correctly anticipates the user’s resultant state of mind (assuming that the user “trusts”
ME’s answers).

4. REASONING ABOUT WORLD STATES AND MENTAL STATES

ME does not in general know all the current facts. Apart from geographical facts,
it does not know the facts at other, unvisited locations, and even facts at visited locations
may be occluded or may have changed. Among the occluded facts, we would normally
have possessions and propositional attitudes of other entities (whereas ME presumably

FIGURE 3. The answer_user_ynq model operator.

392 COMPUTATIONAL INTELLIGENCE

knows all of its own possessions and attitudes). Many traditional planning systems
make a CWA, according to which absence (or non-inferrability) of a positive fact
from the world model is viewed as supporting the negation of that fact. For example,
if the world model does not contain (has guru key1), the negation (not (has guru key1)) is
assumed. However, this amounts to a tacit assumption that all positive facts (at least for the
predicates of interest) are provided by ME’s world model, contrary to the observations just
made. Therefore, ME can only use a restricted version of the CWA; we do not want to aban-
don the CWA altogether, as it would be very inefficient to enumerate and maintain the very
large number of negative predications that hold even in simple worlds.

Specifically, ME uses the CWA for every non-epistemic literal in which ME is the first
(“subject”) argument. (Epistemic literals, discussed in the following text, are ones with
predicate knows, any subject, and a that-clause or whether-clause as object.) For example,
ME takes statements such as that ME is hungry, or has money, or likes Guru, or wants to
answer the user’s question, and so on, to be false unless the corresponding positive literal
appears in the current state. In other words, for such self-referential sentences, ME’s positive
self-knowledge is assumed to be complete. However, when the literal concerns a non-ME
subject, ME requires explicit negative knowledge to draw a negative conclusion, except for
the following two cases, where it applies the CWA:

(1) literals about road connectivity and navigability (and even here the CWA could easily
be weakened); for example, the absence of (road path5) from ME’s knowledge base,
regardless of whether (not (road path5)) is present, would suffice for ME to conclude
that path5 is not a road;

(2) when (a) the subject is a local entity colocated with ME or one ME has visited, and
(b) the predicate is non-occluded; for example, a literal expressing that the piano is
at ME’s current location would be considered false unless explicitly present in ME’s
representation of the current state.

In all other cases concerning a non-ME subject, the mere absence of a literal from the
world model is not interpreted as supporting its negation; in such cases, the negation may
be explicitly known, or else its truth value may simply be unknown.

Algorithm 1 in Figure 4 formally summarizes the method of judging the truth value
of a non-epistemic ground atom. A negative literal is judged to be true, false, or unknown
accordingly as the atom that it negates is judged to be false, true, or unknown.

Epistemic literals require special treatment, because an agent that is committed to a
proposition should also be committed to the proposition that it knows that and that
it knows whether , without having to assert these conclusions separately. Similarly, if it
is committed to the falsity of , then it should also be committed to the falsity of the
proposition that it knows that and to the truth of the proposition that it knows whether .
And finally, if it committed to neither the truth nor falsity of , it should be committed to
the propositions that it does not know whether , does not know that , and does not know
that not .

Thus, ME judges the truth value of epistemic literals by an introspection algorithm
rather than closed-world inference. The algorithm deals with both positive introspection
(about knowledge ME possesses) and negative introspection (about knowledge it lacks). In
particular, in the evaluation of a predication of form (knows SUBJ (that // (e.g., (knows
ME (that (can_talk guru)))) with being a literal, the algorithm considers the two cases
SUBJ = ME and SUBJ ¤ME. In the first case, ME recursively determines whether the literal
 that is the object of knows-that is true, false, or unknown and judges the autoepistemic
predication to be true, false, or false, respectively.

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 393

FIGURE 4. Evaluating non-epistemic atoms using a restricted CWA.

In the case SUBJ ¤ME, ME judges the epistemic predication as true if the predication
is explicitly available in its world model, or SUBJ is identical to the subject of (thus
making an assumption that other agents are similar to itself in having complete positive
self-knowledge—a type of simulative inference), and false otherwise. The latter assumption
implies that other agents know only what ME knows they know.2

The method for predications of form (knows SUBJ (whether // is much the same.
However, in the case of SUBJ = ME, when is found to be true, false, or unknown, the
autoepistemic predication is judged to be true, true, or false, respectively. In the case SUBJ
¤ ME, ME again judges the epistemic predication as true only if SUBJ is identical to
the subject of , and false otherwise. The method of evaluating epistemic predications is
depicted in Algorithm 2 in Figure 5.

These inference capabilities are especially important in two respects. First, they are
instrumental in ME’s attempt to confirm or disconfirm action preconditions, including
knowledge preconditions in actions such as asking an agent whether is true (namely, not
knowing whether is true but believing that an agent knows whether is true). Second, the
inference capabilities are crucial in answering questions. Given a question, ME will either
inform the user if it does not know the answer or otherwise verbalize its answer(s) as English
sentence(s). Extensive examples of ME’s dialogue with the human user are in Section 5.2.
They include knows-whether, knows-that, yes/no, and wh-questions in a simple simulated
world setup in Section 5.1.

A more fine-grained type of restricted CWA, called the local closed world (LCW), was
introduced by Golden, Etzioni, and Weld (1994) and later adopted by Bacchus and Petrick
(1998). This allows specification of the formulas that are subject to the CWA. While we

2 This negative closure assumption could be weakened, but we were more concerned with realistic epistemic modeling
of ME than of other agents. For a formal treatment of simulative inference, see Kaplan and Schubert (2000).

394 COMPUTATIONAL INTELLIGENCE

FIGURE 5. Evaluating epistemic atoms using introspection.

could implement this approach, ours has the advantage of simplicity and was adequate for
our experiments.

Besides its capacity for inferentially checking action preconditions and answering
questions, ME also performs bounded forward inference for any state that it reaches in
its simulated world or in its lookahead, based on all of its current factual knowledge and
all of its general quantified knowledge. For example, from (knows guru (that p)), ME can
infer both p and (knows guru (whether p)); from (sasquatch moe) and general knowledge
((sasquatch ?x) => (has_IQ ?x 50)) where variable ‹x is assumed to be universally
quantified over the domain, ME can infer that (has_IQ moe 50).

5. AN EXPERIMENTAL AGENT

We implemented an example world with the ME agent in our self-motivated cognitive
agent framework to demonstrate ME’s QA as well as the benefits of ME’s self-awareness
and opportunistic behavior due to its deliberate, reward-seeking planning. We describe the
simulated world, and how we implemented QA, in the ensuing two subsections.

5.1. Simulated World

ME is situated in a simulated world that is simple yet sufficiently complex to illustrate
the distinctive features we mentioned. The simulated world consists of five named loca-
tions, connecting roads, and both animate entities (agents) and inanimate entities (objects)
at various locations. Figure 6 depicts the simulated world. Specifically, road path1 connects
locations home, school, and gym; road path2, locations home, plaza, and school; and road
path3, locations home, company, and school. Additionally, each road segment is annotated

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 395

FIGURE 6. The experimental world.

with its length in units. At the outset, object pasta_ingredients, of cost 2:0, object pepper-
oni_pizza, edible and of cost 6:0 by virtue of being of type pizza, and apple_juice, potable
and of cost 2:0 by virtue of being of type juice, are all at plaza; agents ME and guru, both
communicative by virtue of being agents, are at home and school, respectively; object piano,
playable by virtue of being of type music_instrument, is at home; and object self_note,
readable by virtue of being of type note, is at company. Only predicates contains, knows,
is_edible, and is_potable are designated as being occluded.

Initially, ME is penniless, has no swimming or cooking knowledge, is not tired, and
has a hunger level of 4:0 and a thirst level of 2:0. In addition to knowledge of the road
network and the existence of the object piano at home and its playability, ME knows whether
piano is playable, the cost and location of pasta_ingredients, that self_note is readable and
at company, and nothing more. self_note contains three pieces of knowledge, namely, that
guru can talk, knows whether apple_juice is potable, and knows whether pepperoni_pizza
is edible.

The kinds of behavior we wish to enable in this simulated world include indulging
in various pleasurable activities such as eating, drinking, cooking, swimming, and play-
ing the piano. However, actions have preconditions; for example, eating and drinking
require food to be at hand and knowledge about edibility and potability of certain items,
cooking requires cooking knowledge as well as suitable ingredients and being at home,
and swimming requires swimming knowledge and being at the gym. In turn, finding out
about edibility and potability may require reading and/or consultation of the guru; obtain-
ing ingredients for cooking may require buying them; and acquiring cooking and swimming
skills by taking lessons may require working for money; we therefore enable all these
activities, too.

To ensure that ME will have a general disposition toward action, we do not limit its
reward system to bodily indulgence. Rather, ME reaps positive rewards from all of its
activities, including answering user questions, working for money, and taking cooking and
swimming lessons. The only contributors to negative utility are hunger, thirst, fatigue,
boredom, and financial loss, but of course, these are inevitable consequences of the pas-
sage of time or (in the last case) of purchases. Because in the stated initial conditions ME is
penniless and can neither cook nor swim, we should expect to see behavior where ME works
for money repeatedly, uses the earned money to take swimming and cooking lessons and

396 COMPUTATIONAL INTELLIGENCE

buy ingredients, and eventually cooks meals, and of course partakes repeatedly of other
rewarding activities—eating, drinking, sleeping, swimming, playing the piano, and answer-
ing user questions.

ME has the following operators (where the anticipated rewards are indicated paren-
thetically) at its disposal: walk (5—ME’s fatigue level), eat (4 * ME’s hunger level), drink
(4 * ME’s thirst level), work_and_earn_money (10), buy (7—the cost of the purchase), cook
(7 * ME’s hunger level), swim (12), read (7 per piece of knowledge contained that ME
does not know), play (3), answer_user_ynq (10), answer_user_whq (10), ask+whether (5),3

take_swimming_lesson (10—ME’s fatigue level), take_cooking_lesson (10—ME’s fatigue
level), and sleep (4 * ME’s fatigue level).

In addition to the rewards and penalties associated with actions, there are also rewards
for getting from a less desirable state to a more desirable one (e.g., where ME has a new
possession) and penalties for getting from a more desirable state to a less desirable one (e.g.,
where ME is more fatigued). Generally, only a small number of utility points are involved,
but reaching a state where the user knows the answer to a question earns 50 points, while
continuing to leave a question unanswered costs 20 points.

Any potentially multistep action is subject to possible interference by two types
of exogenous events, namely, fire and rain, although only fire may disrupt the action (e.g.,
traveling). A spontaneous fire has a 5% chance per time step of starting; once started, it has
a 50% chance per time step of dying by itself, and it is extinguished as soon as there is rain.
Spontaneous rain has a 33% chance of beginning; once it has begun, it has a 25% chance
of stopping.

5.2. Question Answering

ME’s QA behavior is handled uniformly via ME’s planning and procedural capabilities.
Accordingly, the projective lookahead identifies a seemingly best action for ME to take at
each step; thus, to answer a user question, ME must choose to do so as a/the seemingly most
rewarding action. In support of our vision of ME as a dialogue agent, we induce its curios-
ity and helpfulness by making ME favor acquiring knowledge and answering questions as
rewarding actions.

Using interface command (listen!), the user can enable transmission of yes/no or
wh-questions or knowledge tidbits to ME. While ME cannot help “hearing” a question
posted to it via (listen!), its response, if any, is dependent on its deliberations. The effect on
ME when the user subsequently supplies a fact or question is just the appearance of the new
fact, or the user’s desire for an answer to the question, in its KB; its inferences and planning
are affected accordingly.

Knowledge tidbits are supplied as ground predications or negated ground predications
and are rejected by the system (with an appropriate message) if inconsistent with the actual
world. Supplying a fact already known to ME has no effect (except to produce a message).

Given a yes/no question of the form (ask-yn q), ME must consider two cases. If ME
knows either q or:q to be true, then ME will impart that knowledge as an English sentence.
On the other hand, if ME knows neither q nor :q to be true, then it must be that q is about a
nonlocal entity or about an occluded property of a local non-ME entity, and ME informs the
user accordingly. The example in Figure 7 illustrates ME’s responses for the two cases of
yes/no questions. (For the user’s convenience, question input uses predicate infixing, i.e., the
subject precedes the predicate, as in English.) .goŠ/ is a command that activates ME for one

3 The use of “_” and “+” in action names and predicates is aimed at facilitating verbalization in English; here, the “+”
indicates that (ask+whether x y) should be verbalized as “ask x whether y”.

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 397

FIGURE 7. Answering yes/no questions.

planning and action cycle, that is, ME will consider its applicable actions in the current state
and evaluate contemplated action sequences, select a/the seemingly best action to perform,
and then perform the chosen action to achieve the effects and derive further inferences.

A wh-question is posed in the form (ask-wh r), where r is a formula (with the subject
preceding the predicate) that must have at least one variable (with initial character “?”). For
instance, (ask-wh (?x is_at ?y)) poses the question “where is every entity located?” while
(ask-wh (not (?x is_bored))) corresponds to the question “who is not bored?.” In computing
the answer(s) to r (converted to predicate prefix form), ME attempts to unify r with facts
in ME’s current knowledge base; for each set s of bindings found for the variables in r , ME
formulates the corresponding answer by replacing the variables in r with bindings in s. As
Figure 8 illustrates, ME uses the restricted CWA (Section 4) in verbalizing its responses.

Figure 9, including knows-whether and knows-that questions, is a concatenation of
several dialogue exchanges between ME and the user, showing only ME’s actions to answer
user questions and ME’s corresponding verbalized English answers. For clarity, we further
annotate some action–answer pairs with justifications for the answers. These examples

FIGURE 8. Answering wh questions.

398 COMPUTATIONAL INTELLIGENCE

FIGURE 9. Answering questions using introspection.

demonstrate ME’s ability to introspect positively and negatively using the restricted CWA
(Section 4).

6. RESULTS

We present empirical results of three distinct cases illustrating the advantages of ME’s
self-awareness and opportunistic behavior, resulting from its self-motivated, deliberate,

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 399

continual planning, in the context of the simulated world described in Section 5.1. The first
case is ME’s default, self-aware, and opportunistic behavior; the second case, its unthinking
and non-self-aware behavior after ablation of its projective lookahead; and the third case, its
purely goal-directed behavior by ablation of its opportunistic tendencies.

With the exception of the purely goal-directed case, each case includes 10 indepen-
dent runs of 40 steps apiece, where at each step, ME chooses and executes a/the next best
action. All runs were conducted on a Linux machine at 2.015 GHz with 2 Gb of RAM.
The lookahead used in each case is three levels (i.e., three steps into the future from the
current state) and has branching factors of 5, 4, and 3 at the three successive levels. Vari-
able behaviors could result from random occurrences of fire and rain or from randomly
and with uniform probability selecting a best action (among equally attractive best action
candidates) to perform at a step. Therefore, we show the average in comparing these three
different cases.

6.1. Opportunistic Behavior

We report experiments in which ME exhibits (default) opportunistic and foresighted
behavior with all its faculties intact. The success of a run is measured in terms of the NU,
accumulated over the entire sequence of actions and corresponding states attained.

For the opportunistic case, we conducted 10 independent runs of ME’s opportunistic
behavior, using a three-level lookahead with branching factors of 5, 4, and 3 for the three
successive levels. Each run was for 40 steps. ME achieved an NU of 1260.85 averaged over
the 10 runs ranging from 1204.5 to 1389.0.4

As an example, Figure 10 shows ME’s sequence of actions for one run, where ME’s NU
was 1288.0. Here, an expression of form ((pred arg1 : : : argn) i j k) records time step i of
action (pred arg1 : : : argn/, along with the anticipated number of time steps j , and the start
time k in the simulated world. To save space in listing a multistep action (i.e., one that ran
for more than one time step), we only enumerate its first step and its final step on the same
line; for example, the action (WORK_AND_EARN_MONEY 4.0 0.0 1.0) on the second line,
running for five time steps, has exactly one pair of listings on the second line. On the other
hand, one-step actions such as (READ 6.5 SELF_NOTE COMPANY) on the third line have
exactly one listing.

We reiterate that ME’s chosen seemingly best action need not be considered imme-
diately rewarding by ME; however, it is chosen because it constitutes the first action in
the/a most rewarding sequence of actions (plan) that ME can foresee as executable and
attainable from ME’s current state. For instance, although ME might not receive a reward
for walking from home to plaza, ME may very well foresee a substantial reward result-
ing from traveling to plaza to buy pasta_ingredients, taking pasta_ingredients back home,
cooking with pasta_ingredients to produce pasta, and ultimately eating the cooked pasta.
Therefore, the use of a reasoned projective lookahead enables ME to exhibit both foresight
and opportunism in its behavior.

The relatively high NU here compared with the NU for single-minded goal pursuit
(discussed later) results from ME’s seizing various favorable opportunities encountered
while exploring the simulated world. The opportunities seized include working to earn
money, sleeping to relieve fatigue, playing piano to assuage boredom (boredom is an
assumed effect of reading, though ME is not initially bored), taking cooking lessons to learn
to cook, and several others.

4 The average runtime per step was slightly under 0.12 s (as noted on a 2.015 GHz Linux machine with 2 Gb of RAM).

400 COMPUTATIONAL INTELLIGENCE

FIGURE 10. Example of an opportunistic run.

6.2. Unthinking, Non-Self-Aware Behavior

To simulate unthinking, non-self-aware behavior, we suppressed ME’s projective
lookahead and instead made ME randomly choose applicable actions (with uniform
probability) in any given state, without consideration of consequences or anticipated utility.
We can interpret the resulting behavior as showing the consequences of abandoning self-
awareness. After all, much of ME’s self-awareness is composed of ME’s knowledge about
its own situation and about its action preconditions and effects, and its anticipation of the
situations it may get into when performing a sequence of actions, and of the rewards and
penalties associated with those situations and actions.

The average NU over these 10 runs of 40 steps apiece is �627:65, and ME’s behavior
was extremely haphazard, yielding greatly varied NUs ranging from �1465:0 to �56:0.
The average NU here, though unreliable, is significantly lower than in the opportunistic,
reasoned, self-aware case in Section 6.1. Perhaps more importantly, the very low NU val-
ues obtained in some cases show that the unthinking behavior is extremely risky. These
results are unlikely to surprise the reader, but they are not a foregone conclusion: One can
certainly imagine environments in which random behavior is as good as any other. However,
it is precisely in worlds where certain formally statable regularities constrain the situa-
tions encountered by an agent and the effects produced by its actions that thinking and
self-awareness are beneficial.

6.3. Goal-Directed Behavior

For a self-motivated, reward-seeking agent to single-mindedly pursue a particular goal,
when it could exploit various other intrinsically rewarding actions and states, it must in fact

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 401

be “deluded”: It must operate as if the goal were much more rewarding than the pleasurable
actions and states it is forgoing. However, the only way to implement such a delusional
agent and observe its actions, while not changing its basic reward-seeking architecture, is to
change the rewards that the ME believes it will reap.

Thus, to simulate purely goal-directed behavior, we skewed MEs “subjective” rewards
and penalties for actions and states away from their true values in the lookahead cal-
culation (while evaluating actual rewards just as in the opportunistic case). Specifically,
to make eating self-prepared pasta ME’s sole goal, we used the following distorted set-
tings, favoring courses of action leading to the goal: (a) The anticipated rewards of eat,
take_cooking_lesson, buy, cook, and work_and_earn_money are each set to 50, while the
anticipated rewards of all others are nullified; and (b) the acquisition of cooking knowledge,
money, pasta_ingredients, and pasta in a state reached are rewarded, and so is the consump-
tion of pasta or pasta_ingredients in a state reached, and so is any decrease in hunger in
a state reached, while an increase in hunger in a state reached is penalized, and all other
changes in a state reached are ignored.

We had to assign positive values to actions and states that are needed to reach the goal
of eating pasta, rather than simply rewarding the latter. The reason is that nontrivial problem
solving in combinatorially complex domains is impractical without heuristics. Most practi-
cal planners use heuristics that either estimate the distance to the goal or (inversely) measure
the similarity of a given state to the goal state. The method we have employed here is partic-
ularly simple, because it merely biases the agent toward types of actions likely to lead to the
goal. This is sufficient to solve the pasta-eating problem, even though the solution is 14–25
steps long (e.g., involving multiple cooking lessons).

Given the goal of eating self-cooked pasta, ME’s sequence of at least 14 actions was
generally found with few missteps. The NU was either 197 or 187 in all cases (because of a
random route choice) and 193 on average. Figure 11 shows a run that yielded an actual NU
of 187.0.

The rationale behind ME’s sequence of actions to reach the goal is easily understood by
considering them anti-chronologically. To eat ME-cooked pasta, ME must cook to produce
pasta. Because cooking pasta required the use of pasta_ingredients, which ME did not
initially possess, ME must travel to plaza, the initial location of pasta_ingredients, and buy
pasta_ingredients there. Similarly, we find that ME must travel to company and work to earn
money and initially must travel to school to take a sufficient number of cooking lessons.

The disutility of ME’s growth in hunger and fatigue (ignored in its “delusional” state)
was partly responsible for the low average NU (193.0), compared to the average of 1260.85
in ME’s opportunistic behavior in Section 6.1. As enumerated at the end of that section,
instead of doggedly pursuing the sole goal of eating pasta, ME was able to correctly eval-
uate and exploit additional opportunities, such as sleeping to relieve fatigue, playing piano

FIGURE 11. Example of a goal-directed run.

402 COMPUTATIONAL INTELLIGENCE

to assuage boredom, taking swimming lessons to learn to swim, gaining knowledge from
reading and from guru, and eating and drinking foods other than pasta. The results establish
that ME benefits from awareness and exploitation of opportunities for immediate rewards,
and not just distant ones.

7. COMPARISONS WITH SOME CLASSICAL, CONTINGENT,
AND CONTINUAL PLANNERS

While we emphasize that our framework is intended as a platform supporting certain
types of cognitive agents that use planning to accumulate utility, rather than as a platform
supporting state-of-the-art goal-directed planners, it is nonetheless of interest to make
some comparisons with classical planners and more recent conformant, contingent, and
continual planners.

7.1. Classical Planning

Classical planners (e.g., Weld 1999) are purely goal-directed, aiming all their actions
at attainment of some future goal state. While they may attempt to minimize the cost of
reaching a goal state, they have no notion of intrinsically rewarding actions or situations that
could be exploited along the way to the goal. They are also apt to assume that the planner’s
knowledge of the search space to be explored is sufficiently complete in all the relevant
respects to allow advance “mental” construction of a complete plan that probably leads to
the goal state.

This is rather different from planning in everyday life (including dialogue interactions),
where unanticipated events and situations, presenting new opportunities for rewards or
new risks or costs, can arise regularly. That is why allowing for opportunistic responses
to situations encountered in the “world” was an essential desideratum in the design of
our framework.

However, ascertaining that classical planning problems can be tackled within our frame-
work would provide evidence for the versatility of our reward-based framework. We thus
undertook experiments using the classical Logistics domain and the 3-disk and 4-disk
Towers of Hanoi problems. In these problems, inept moves can easily undo gains made
previously, making them combinatorially more complex than the example of goal-directed
behavior (aimed at pasta eating) we previously illustrated in our more stable Gridworld.
(Note that in the pasta-eating task, the various preparatory steps have persistent effects:
Once ME has gained some cooking knowledge, this knowledge is not lost; once ME has
pasta ingredients, this remains true till the ingredients are used to make pasta; and so on.)
The encoding of the problems is based on a fixed locale, as if the agent were perform-
ing paper-and-pencil problem solving; also the full CWA holds. The issue requiring some
thought is how to incorporate search heuristics into our agent’s view of the world, which is
reward based, not directly goal driven.

In the Logistics world, there are two cities, each containing an airport and a post office.
At least one truck serves each city, and an airplane, located at either of the airports, can
commute between the cities. The goal is to deliver one or more parcels to designated loca-
tions. We experimented with problems requiring from 3 to 13 steps. Our approach was to
use a uniform A*-like heuristic, (under)estimating the remaining number of steps. An effec-
tive way of incorporating the heuristic function into the agent’s reward system is to make
dual use of it: In any state, the agent receives a negative reward proportional to its estimate
of remaining distance to the goal state, and for any action, it receives a negative reward if
the action fails to reduce that estimated distance. Seemingly helpful actions carry 0 reward,

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 403

and we also allow a 0-reward do-nothing action that prevents pointless vehicle movements
once the goal is achieved. With this setup and compiled Lisp, our agent solved each of five
Logistics problems requiring 3, 6, 9, 10, and 13 steps in under 0.4 s on a standard desktop
computer, employing a 2-step search horizon.

We implemented the 3-disk and 4-disk versions of the Towers of Hanoi puzzle. A weak
yet sufficient heuristic we adopted looked solely at the positions of disks on peg 3 in any
given state, rewarding each disk that is in its final place in the disk stack on peg 3, and
symmetrically punishing undoing a disk that is already in its final place in the stack of disks
on peg 3. The rewards and symmetric penalties are proportional to the size of the disk. The
only available actions were a 0-utility move action and a 1-utility do-nothing action, with
the latter being applicable only when all disks have been correctly placed on peg 3.

For the 3-disk version, we instituted a 4-step search horizon with the best 3-action
breadth at each depth, and our agent invariably reached the goal state in the optimal 7 steps,
without missteps and taking only about 0.31 s (averaged over 20 runs). For the 4-disk ver-
sion, using an 8-step deep search horizon with the best 3-action breadth at each depth, our
agent always reached the goal state in the optimal 15 steps, without missteps and taking
about 55.35 s (averaged over 20 runs). The average 55.35 s for 4-disk seemed rather slow,
but understandably so, because the forward search tree at each step contained up to 9840
states, implying rampant duplication of the 81 distinct states in this puzzle.

We could have obtained faster solutions by avoiding state duplication in the forward
search. However, our goal was merely to demonstrate that our agent framework is flexible
enough to allow representation and solution of classical planning problems, rather than to
match the performance of state-of-the-art algorithms such as Graphplan, SATPLAN, and
FF. We also note that the avoidance of state duplication is more of an issue in solving com-
binatorial puzzles than in guiding the behavior of a reward-seeking agent in a world where
rewards are distributed over many states. For example, the optimal behavior for an agent
similar to the one in our cooking world may well be to loop indefinitely through a sequence
of actions and states where the means for earning rewards are repeatedly acquired, deployed,
and depleted.

7.2. Continuous Planning: The Colorballs-n-x Problem

Our framework shares an affinity with conformant and contingent planners (e.g., Baral
and Son 1997; Bonet and Geffner 2000; Bryce, Kambhampati, and Smith 2006) in looking
beyond the flawed presupposition made by most classical planners of possessing correct and
complete world information. Conformant and contingent planners emerged to tackle plan-
ning in the presence of incomplete information, namely, uncertainty about the initial state or
action effects. Albore, Palacios, and Geffner (2009) extended the approach of Palacios and
Geffner (2007) to translate a contingent planning problem P into a classical planning prob-
lem to then be solved by a classical planner (e.g., FF), although assuming that P involves
uncertainty in the initial state only and that all actions are deterministic. The resulting
Closed-Loop Greedy (CLG) planner introduced in (Albore et al. 2009) can be used either
online to capture single executions or offline to construct full contingent plans.

Contingent planners typically rely on constructing full contingent plans that will assure
mapping of an initial belief state into the target belief state, despite the incompleteness of the
beliefs involved. However, the size of the solutions, exponential in the number of possible
observations, is often a computational bottleneck. The data in the second to seventh columns
in Table 1 were extracted from (Albore et al. 2009) running on a Linux machine at 2.33 GHz
with 2 Gb of RAM with a cutoff of 45 min and 1.8 Gb of memory. Each time column shows
the total time taken in seconds by the corresponding planner on a particular Colorballs-n-x

404 COMPUTATIONAL INTELLIGENCE

problem, and each #acts column displays the total number of actions in the solution. Notably,
Contingent-FF (Hoffman and Brafman 2005) failed to solve three problems after spending
45 min on each, Pond 2.2 (Bryce et al. 2006) failed to solve two problems after exhausting
the available memory on each, and CLG also timed out on Colorballs-10-2 after 45 min.

We conducted our experiments on a similar Linux machine at 2.40 GHz with 2 Gb of
RAM. The numerical data we show in Table 1’s last two columns under the planner heading
SCAF, standing for our self-motivated cognitive agent framework, are the averages over 50
randomly generated configurations matching the particular Colorballs-n-x settings. In the
scenario world, the agent’s goal in its n by n gridworld is to carry each of the x balls from
its initial position to its goal position based on the ball’s color in the gridworld, and each ball
is of one of the only four possible colors red, blue, yellow, and green. The agent’s repertoire
of action operators is composed of the following:

� walk from a location to one of its adjacent locations, with an expected NU increase equal
to the agent’s degree of happiness;

� pick-up a ball from a location other than the four color-based goal positions, with an
expected NU increase of 100;

� put-down-red, put-down-blue, put-down-yellow, put-down-green, that is, put down a ball
of the appropriate color, where this yields a 100-point utility gain if carried out at the
target location for that color;

� announce-success when the agent has placed all balls in their designated color-based
locations, with an expected NU increase of 100.

Other than the anticipated utility values of actions operators, states present no anticipated
values to the agent in the Colorballs gridworld. Our agent uses a 3-step deep search horizon
with a branching factor of 4 at each step, but aside from this projective lookahead, our agent
uses absolutely no heuristics or additional search strategies.

Table 1 shows results for five instances of Colorballs-n-x, each averaged over 50 trials.
(All times in this and subsequent tables are in seconds.) The results compare very favorably
with the other three contingent planners, which either timed out after 45 min (indicated
by T) or exceeded available memory (indicated by M) on several problems.

Table 2 shows the noteworthy performance of CLG on a set of Colorballs-9-i prob-
lems, in online mode (as opposed to contingent plan construction mode). Table 3 shows our
empirical data on the same problems; again, averaging was carried out over 50 randomized
runs per Colorballs instance. Our runs take several times longer (by a factor that diminishes
as the number of balls increases). Our advantages are that no translation is required for the
scenario world and that the file size of our scenario world for each Colorballs-9-i problem is

TABLE 1. Working with or without Full Contingent Plans (T, timeout; M, memory exceeded).

Contingent FF Pond CLG SCAF

Problem time #acts time #acts time #acts time #acts

cb-4-1 0.27 277 0.98 102 0.35 295 6.31 22.18
cb-4-2 35.88 18,739 40.92 1897 18.83 20,050 8.70 36.14
cb-4-3 T 1063.11 28,008 1537.99 1,136,920 11.72 45.14
cb-10-1 T M 415.73 4445 313.89 246.94
cb-10-2 T M T 696.27 484.64

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 405

TABLE 2. CLG in Execution Mode on Colorballs-9-i .

CLG in execution mode

Translation Search #acts

Problem time size (MB) avg max avg max

cb-9-1 20.9 16.5 1.21 7.80 33.7 197
cb-9-2 56.4 33.7 4.84 25.70 57.1 288
cb-9-3 113.7 51.4 46.26 122.19 76.3 367

TABLE 3. Our Framework on Colorballs-9-i .

SCAF

Run time #acts

Problem avg min/max avg min/max

cb-9-1 150.30 4.57/516.61 168.5 5/543
cb-9-2 281.38 16.37/642.90 239.12 11/552
cb-9-3 345.33 62.60/799.17 333.58 51/694

under 16 KB (including coding comments)—as i increases by 1, an additional (place-object
: : :/ call suffices. However, our higher run times and number of actions indubitably included
meandering actions that repeatedly visited the same states. Again, as we noted earlier in our
Towers of Hanoi discussion, this kind of behavior is often beneficial for a reward-seeking
agent, the kind exemplified by our framework. However, the aforementioned results again
demonstrate the versatility of our framework, showing that it even enables solution of prob-
lems that thwart state-of-the-art contingent planners that must build full contingent plans.

7.3. Continuous Multiagent Planning: The Multiagent-n-x-b Traveling Domain

Recent years have seen growing interest in continual planning, which interleaves
planning, execution, and monitoring in a dynamic, only partially observable, multiagent
environment. Brenner and Nebel (2009) introduced a simulation environment for Contin-
ual Multiagent Planning, called MAPSIM, in which an agent can directly execute planned
actions in a simulation, acquire perceptions specified by the planning domain ontology,
and use these perceptions for plan monitoring and replanning. The authors implemented
each agent as an individual and independent MAPSIM process, and thus, each agent knows
only about its own goal state and its own perceptions. They also devised a Multiagent-n-
x-b domain, similar to the grid domain in the International Planning Competitions. In the
Multiagent-n-x-b domain, there is an n by n grid with b blocked locations, which cannot
be traversed by any agent, and there are x agents, each of which is to travel from its initial
location to its goal location in the gridworld.

To assess the capabilities of our framework in this domain, we made some extensions
to allow for coexisting self-motivated agents, where each has its own set of parameters,
knowledge base, model of the world, and so on—that is, all the components and capabilities
of a separate gridworld agent, but sharing the “actual” world with the other agents.

406 COMPUTATIONAL INTELLIGENCE

In the Multiagent-n-x-b domain, each agent starts out unaware of the existence of any
other agents (let alone their locations), unaware of any blocked locations, but knowledgeable
only about the adjacency information of locations in the gridworld (i.e., which are the four
neighbor locations for each location), about its initial location and co-located local entities,
and what its goal location is. All agents take turns identifying and executing a seemingly
best action for their own utility optimization. Because at most one agent is allowed to occupy
a location, immediately prior to identifying and executing a seemingly best action, the agent
will do a look-around solely to learn whether each adjacent location is occupied (i.e., either
one of the b blocked locations or occupied by at least one entity). Despite this look-around,
the agent still may not know of all the entities at an adjacent location until it actually reaches
it. Furthermore, the look-around gives the is_occupied? information of its adjacent locations
only, not that of all the locations in the gridworld; thus, the agent may still retain absolutely
no or outdated is_occupied? information of all other locations.

Each agent can stay put at any step, but this is dispreferred to walking unless the agent
has reached its goal location, at which point staying put earns a large utility increase. Each
agent’s repertoire of action operators is composed of the following:

� walk from a location to one of its unoccupied adjacent locations, with an expected NU
increase either of 10 if the new location is the agent’s goal location or of 0 otherwise;

� stay-put, with an expected NU increase of 10 if the current location is the agent’s goal
location or of �1 otherwise.

Other than the anticipated utility values of actions operators, states present no anticipated
values to the multiple agents in this domain. Each agent uses a four-step deep search hori-
zon with branching factors of 4, 4, 3, and 2 at successive steps; aside from this projective
lookahead, each agent uses no heuristics or additional search strategies.

Table 4 shows our results for the Multiagent-n-b-x domain, for 22 different setting of
the n-b-x parameters, again with averaging over 50 randomized instances each (avoiding
unsolvable configurations).

Once an agent reaches its goal location, it much prefers staying put to walking about.
As in Brenner and Nebel (2009), there is no inter-agent communication, coordination,
or collaboration; thus, it is possible for an agent to become trapped at a non-goal loca-
tion when all its adjacent locations are occupied (i.e., either being a blocked location or
occupied by another agent similarly trapped itself or already in its goal location). Accord-
ingly, using our knowledge of the size of the configuration, we imposed a sufficiently
large upper bound on the number of actions and cutoff time limit for each agent, to
filter out theoretically workable configurations where some agent(s) ultimately became
trapped. Consequently, for each problem, the average, minimum, and maximum figures
were based on those 50 configurations where all agents could in principle and, actually did,
finish successfully.

Brenner and Nebel (2009) stated that they placed a 10-min time limit on their runs,
counting a run as successful if all agents reached their respective goal locations within
that time and unsuccessful otherwise. They then normalized the success rate relative to
the success rate for the version where all agents had perfect knowledge of the entire grid
occupancy—the version that invariably gave the best performance. Thus, we cannot infer
what absolute success rates were attained.5 However, because the agents in their runs that

5 Our efforts to obtain this information were unsuccessful.

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 407

TABLE 4. Our Framework on 22 Multiagent-n-x-b Problems.

SCAF

Run time #acts

Problem avg min/max avg min/max

ma-6-4-10 15.63 2.19/63.10 70.86 10/288
ma-10-1-5 41.75 0.52/338.04 47.56 1/385
ma-10-1-10 53.92 0.95/350.07 78.1 1/426
ma-10-1-15 64.61 0.93/397.89 80.28 1/519
ma-10-2-5 68.21 3.5/377.52 78.95 4/444
ma-10-2-10 93.17 4.17/617.31 112.12 5/749
ma-10-2-15 112.56 3.22/705.74 143.62 4/945
ma-10-3-5 132.55 12.34/434.68 156.0 13/527
ma-10-3-10 135.54 9.53/668.54 166.3 11/877
ma-10-3-15 160.32 6.27/772.98 202.26 7/907
ma-10-4-5 165.31 10.99/817.93 193.68 12/960
ma-10-4-10 191.31 10.42/877.08 231.72 12/1050
ma-10-4-15 239.05 13.37/628.09 280.18 15/773
ma-10-5-5 255.41 27.44/730.04 301.82 33/885
ma-10-5-10 310.90 22.07/800.67 385.58 27/960
ma-10-5-15 282.47 16.5/878.35 358.92 20/1162
ma-10-6-5 291.59 29.02/697.70 350.1 36/828
ma-10-6-10 320.61 71.90/978.49 325.58 59/945
ma-10-6-15 351.49 37.79/1021.05 366.84 39/1038
ma-10-7-5 374.32 127.78/1077.98 380.32 127/980
ma-10-7-10 429.75 61.48/1050.73 442.54 77/1077
ma-10-7-15 491.94 82.75/1531.86 498.02 88/1658

could see only the immediately adjacent locations succeeded at a rate of only 37–62% rela-
tive to the full visibility case (and thus at a lower rate absolutely), it is safe to say that many
of their runs failed within the 10-min time bound. Their focus apparently was less on run
times and more on showing that a certain amount of forgetfulness (e.g., only remembering
information gained over the last 5 steps) is helpful when the world is imperfectly known,
presumably because remembering locations of other agents is deceptive—they also are
in motion.

If we assume that the one example Brenner and Nebel display (a 6 by 6 grid with 4
agents and 10 blocked locations) is somewhat typical, then our run times fall far below
their 10-min time limit. In fact, for that particular world, ma-6-4-10 in Table 4, our agents
finished on average in 15.63 s (and the worst time was 63.10 s); and even for a 10 by 10 grid
with up to 7 agents, our average run times were well under the 10-min mark. Our results
are thus surprisingly good, especially because the planning technique employed in Brenner
and Nebel (2009) is quite sophisticated, somewhat resembling Hierarchical Task Network
planning (as discussed toward the end of that article).

Having shown that our agent framework has the flexibility to hold its own against recent
continuous planners, we should reiterate that our framework provides a range of features
beyond simple planning, including a degree of self awareness and a QA ability.

408 COMPUTATIONAL INTELLIGENCE

8. RELATED WORK ON AGENT SYSTEMS

We now relate our agent framework to (noncommunicative) cognitive robots and behav-
ioral agents and to previous agent systems that combine planning, reasoning, and dialogue
to some degree. We also discuss some general architectural proposals for autonomy and
self-awareness.

8.1. Cognitive Robots

First, we consider the area of cognitive robotics (e.g., Fritz and McIlraith 2008;
Levesque and Lakemeyer 2008; Sardiña et al. 2004), a term used by many to distinguish
robots that reason symbolically from ones more focused on proficient motion or manip-
ulation (Section 8.2). Foundational work in this area has addressed challenging issues in
planning, including conditional and sensing actions, iteration, incomplete knowledge, qual-
itative user preferences, uncertainty or nondeterminism, exogenous events, and reasoning
about the planning agent’s own mental states, to be anticipated as a result of contemplated
actions. A noteworthy tool in some of this work has been the Golog agent programming
language (Reiter 2001), which layers formal procedural constructs on top of the Situation
Calculus.

However, in practice, cognitive robots have mostly (though not exclusively) been con-
cerned with motion planning aimed at externally supplied goals. While they allow for
incomplete advance knowledge of the disposition of obstacles and target objects, there is
typically no significant capacity for general reasoning about mundane objects or about their
own or other agents’ mental states.

The earliest example of a cognitive robot was Shakey (Nilsson 1971, 1984), which used
the STRIPS planner and resolution theorem proving to solve problems involving navigation
through various rooms and moving around boxes; it could also explain its actions (by ref-
erence to its goal stack). Examples of later cognitive robots, with emphasis on navigation
and manipulation planning, were Diablo (Baral et al. 1998), RHINO (Burgard et al. 1999),
DORO (Carbone et al. 2005), ARMAR (Krüger et al. 2011; Petrick et al. 2010), and sev-
eral SplinterBot mobile robots programmed as cognitive robots (e.g., Laird, Derbinsky, and
Voigt 2011). Several of these robots (Diablo, DORO, and the Splinterbot robots at CMU)
were concerned with “tidying-up” (of colored blocks) or “rescue” tasks; all performed sym-
bolic motion planning, and several augmented their map knowledge as they moved about.
RHINO, a “museum tour guide,” was impressive in its ability to deal with unpredictably
moving humans, communicate its current goals through a display, and appropriately play
prerecorded messages. A particularly interesting recent robot is Leonardo (Breazeal, Gray,
and Berlin 2009), which can perform certain cooperative tasks and rule-learning tasks
in table-top worlds of children’s blocks, boxes, and visual barriers. This engaging robot
uses propositional STRIPS-like goal-directed schemas, accumulates quasi-symbolic, time-
stepped trajectory knowledge about objects (e.g., (block, red, triangle)) it perceives with the
help of reflective markers, and also ascribes goal schemas and trajectory knowledge to its
human collaborator. It has been used for mind modeling experiments and for learning rules
such as “put a marble on each blue block and each red block” based on an automated or
human demonstration. In terms of behavior and elementary mind-modeling, Leonardo is
perhaps the most interesting cognitive robot, but its knowledge representations are narrower
in scope than those in Golog-based or other logic-based robots.

The capabilities of these robots evidently intersect those of agents in our framework,
and many of them address issues such as uncertainty, physical perception, and behavioral
learning that our framework currently excludes. However, robot development requires heavy
investment in the design of perceptual and motion capabilities. This leaves less scope for

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 409

developing more general reasoning or planning capabilities, such as are needed in modeling
a world containing various types of objects with various types of properties and uses, and
agents whose beliefs, wants, and intentions need to be taken into account.

8.2. Behavioral Agents

A “behavioral” agent is one whose activities are determined by immediate environ-
mental features and the agent’s own current state. Their relevance to our enterprise lies
in their reactivity, in the sense that they exploit opportunities or avoid threats as they
arise. However, they generally lack symbolic reasoning and planning, apart from, perhaps,
exploratory look-ahead in the state space. We have already noted that reinforcement learn-
ing (RL) agents are of this type. While RL agents learn a behavioral policy as a result of
extensive exploration and the concomitant reward/punishment experience, such a policy is
simply a way of reacting to the current state. The disadvantage of this way of coping with
an environment containing risks and opportunities is that it does not scale up well to com-
plex worlds (one in which a wide variety of entities and situations may be encountered, so
that the number of successors of a state can be extremely large) and that learned policies
are very domain specific. The advantage of deliberation—symbolic thinking—is precisely
its generality.

Autonomous agents in game worlds are typically programmed as purely behavioral
agents. Some may be endowed with a planning capability, in some limited sense. For exam-
ple, agents described in Dinerstein et al. (2008) are able to choose a motion trajectory as
a function of features of the current situation (where the motion sequences are learned by
segment extraction from demonstrations by a “teacher”). The camera-equipped table-soccer
machine KiRo (Tacke, Weigel, and Nebel 2004), like some game agents, considers multi-
ple action sequences it might carry out (or that might occur if the opponent gains control of
the ball) and evaluates their expected utility before choosing an action. Some game agents
(e.g., Davies and Mehdi 2006) may make use of ideas from the intelligent agent literature
(such as the belief–desire–intention (BDI) model—see Section 8.4) but, in practice, remain
rule-based (navigate to a health pack when in diminished health, attack enemies when in
good health, etc.). Techniques tend to be very domain specific, with no provision for cog-
nitive, let alone reflective, capabilities or intelligent verbal interaction (but see Magnusson
and Doherty (2008), discussed in Section 8.3).

Most humanoid robots, despite their life-like features, are also purely behavioral and,
as such, incapable of using or acquiring symbolic knowledge. For example, the control
structure of MIT’s Kismet robot (Breazeal and Brooks 2004), a predecessor of the Leonardo
robot, consists of a hierarchy of IF-THEN rule sets, where the IF-part of each rule tests
for perceptual inputs and internal state parameters, and the THEN-part selects a successor
rule set, where the rule sets bottom out in modes of behavior such as looking happy or sad,
turning toward or away from a person or object, or making sounds to attract attention. The
humanoid robots in research labs and commercial enterprises worldwide are too numerous
to mention, but while there are some moves toward higher cognitive functions, the main
emphasis continues to be on improved perceptual and motion capabilities, while interactions
with objects and humans is preprogrammed and, in the case of verbal interaction, scripted.

8.3. Agents that Plan and Communicate Verbally

Several agent systems and frameworks more nearly resemble ours than any of the
planning systems, cognitive robotics projects, or behavioral agent systems mentioned
earlier.

410 COMPUTATIONAL INTELLIGENCE

A remarkable early system was Winograd’s SHRDLU (Winograd 1972), which not only
was able to plan and act in a simulated world of children’s blocks on a table but did so while
taking instructions and answering questions in English via a keyboard interface. Its QA
and planning capabilities within its blocks domain were quite advanced, thanks to its pro-
ceduralized linguistic and planning knowledge. Unfortunately, the complexity and lack of
transparency of the procedural representations, and the subtlety of procedural interactions,
seems to have forestalled follow-up work targeting broader or more ambitious domains.

An even more impressive agent with planning and dialogue capabilities was Vere
and Bickmore’s Homer (Vere and Bickmore 1990), a small simulated robotic submarine
navigating a two-dimensional Seaworld. The agent could form and execute plans to navi-
gate to particular places, pick up and deliver parcels, “take pictures” of objects in passing,
and infer larger-scale event types (such as passing an object) from multiple smaller-scale
ones (such as having the object ahead of it at one point and behind it at another). Like
SHRDLU, it could take instructions and report its plans, actions, and observations in English
but used a larger vocabulary (about 800 words) and showed a somewhat greater degree of
self-awareness.

Compared with SHRDLU’s and Homer’s sophisticated goal-directed planning in geo-
metrical worlds, and their advanced English capabilities, our Gridworld agents are certainly
less fully developed. However, our project was never concerned with engineering an elab-
orate simulation nor, at this point, complex linguistic skills, but rather with providing a
flexible framework for defining self-motivated agents that can effectively reason about their
world (including themselves), can use their knowledge to plan for long-term cumulative
rewards, and can answer simple questions about their world and themselves. Thus, we (as
well as some undergraduates in our courses) have been able to implement various kinds
of self-motivated agents and even classical planners and multiagent worlds (as seen ear-
lier) in our framework. The English QA capabilities, though elementary in form, allow for
inference, cover both “physical” properties and mental attitudes, and are easy to extend to
new domains. Though SHRDLU and Homer were important AI milestones, their domain-
specific procedural aspects (in both planning and dialogue) shackled them to their particular
domains and forfeited a property that (as John McCarthy maintained) seems crucial for
scaling up AI: elaboration tolerance.

Two more recent, highly developed agent projects that overlap conceptually with ours
are the GLAIR/Cassie project (Shapiro 1998; Shapiro and Bona 2010) and the TRIPS
project (Ferguson and Allen 1998). Cassie, as a virtual agent or as a Nomad robot, operated
in a world of large colored cubes and balls, interpreted as other robots and two people. It
could follow commands such as “Go to the green robot” and “Follow Bill,” commented on
its actions by saying, for example, “I found Bill. I went to Bill. I am near Bill. I am fol-
lowing Bill,” and it could answer questions such as “Who are you?” and “Who have you
talked to?” (thus exhibiting basic self-awareness). Its planning relied on formal rules such
as that if an agent is to follow an object, then it needs to find the object, so as to be look-
ing at it, and then go to it so as to be near it. The acting executive described in (Shapiro
and Bona 2010) performs goal regression, though the various versions of Cassie seem to
have relied mostly on predefined plans and on policies about when certain acts should be
performed. The knowledge representation is partially equivalent to first-order logic but
allows (unquoted) formulas as terms, leading to an approach to modals not unlike ours.
The GLAIR architecture is more ambitious than ours, in its allowance for perceptual and
motor layers beneath the conscious level, and Cassie features an episodic memory allow-
ing QA about past interactions. The latter remains an unimplemented goal in our Gridworld
framework, though our group has previously demonstrated episodic memory in a related
QA system focused on self-awareness (see Schubert (2005), which draws on earlier work

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 411

by Kaplan (1999); see also Morbini and Schubert (2008). Distinctive characteristics of our
framework again include the forward-directed, reward-optimizing planning, the systematic
elaboration of world descriptions through forward inference, and the use of the restricted
CWA to allow uniform handling of properties of objects at hand (or at a remove) and of
attitudes, for both inference and QA.

The TRIPS system (Ferguson and Allen 1998) is the result of many years of develop-
ment. It stands out as an end-to-end system that not only performs problem solving and
planning in a fairly complex simulated world but does so collaboratively, interacting with
human users via spoken language. A display shows the island and routes being followed,
highlights salient entities, shows the speech recognizer output, and allows for certain GUI
interactions. The planner is geared toward the evacuation domain, but many operations relat-
ing to the construction of a shared plan, such as proposing, accepting, or rejecting potential
actions, modifying aspects of actions, and retracting parts of plans, are relatively domain-
independent at an abstract level. The use of generic components has allowed Allen’s research
group to rather quickly develop new prototype applications, such as patient health monitor-
ing (Ferguson et al. 2010) and collaborative learning of Web tasks (Jung et al. 2008). Of
course, nobody yet knows how to achieve broad-coverage, domain-independent language
understanding; thus, TRIPS employs production-system-like heuristic rules to map prelim-
inary logical forms derived from parse trees into plausible intentions underlying the user’s
utterances. The intentions are typically to propose an addition to, or alteration of, the current
plan, or to ask a question.

Our Gridworld framework certainly lacks TRIPS’s focused collaborative problem-
solving and linguistic skills and well-developed virtual and prototype application domains
and interfaces. However, it has the distinctive features we have pointed out before:
It makes uniform inferential use of general, logically represented knowledge for planning
and QA (while reasoning in TRIPS consists primarily of instantiating recipes that promise
to achieve some current objectives), allows for reasoning about its own and other agents’
attitudes, and acts to try to maximize its own future rewards. Also, the transparent declara-
tive form in which knowledge and plans are represented make instantiation of new agents
quite simple.

Another interesting recent line of work tackles agent design with formal tools that
include a temporal action logic (TAL) equipped with natural deduction rules for planning
and QA and an incremental chart parser for a small fragment of English that offers a
few alternative continuations to the user after each word that is typed in (Magnusson and
Doherty 2008; Magnusson, Landén, and Doherty 2009). TAL is extended so as to allow rep-
resentation of beliefs, inform acts, and request acts using quoted sentences. The first of two
systems briefly described in these papers is a quest game scenario where the user-controlled
avatar encounters two characters from whom he makes a profit by buying lumber from one
and selling it to the other. The avatar and two characters interact linguistically and plan and
act, answering questions about what objects they own and their prices, offering to buy or
sell objects (and doing so), moving to a new location, chopping down trees, and reporting
on locations and “what happened.” The second system is concerned with a search and res-
cue scenario for an autonomous helicopter. The agent makes such plans as flying to a cell
(on a grid), scanning it, and reporting the body count detected by the scan; the latter may
require requesting another mobile agent to relay the report.

This work is impressive in its use of the extended TAL (which also involves use of
occlusion for nonmonotonic reasoning) and the implementation of interacting agents capa-
ble of simple planning (including replanning) and physical and speech acts in their worlds.
The use of quotation is similar to our use of reification operators, and as in our system,
there is limited forward inference as well as deductive QA. Some differences from our work

412 COMPUTATIONAL INTELLIGENCE

are that the agents are given simple goals (such as possession of lumber) rather than being
self-motivated in our sense. The handling of agent interactions via utterances interpreted
as speech acts is more advanced than in our framework; on the other hand, our framework
allows for questions that are explicitly about knowing, knowing-whether or knowing-that.
Perhaps most importantly, our approach to planning based on STRIPS-like operators and
a partial CWA seems to enable implementation of considerably more complex scenarios
(such as our main example as well as the classical and continual planning examples) than
the TAL-based approach.

8.4. Some General Architectures for Intelligent Autonomous Systems

Finally, we comment on the relationship between our agent framework and some
well-known architectural proposals for intelligent agents. One such proposal is the BDI
architecture of Bratman (1990), which emphasizes the pragmatic advantages of committing
to a plan, thereby limiting the possible futures that need to be thought about by an agent in
its effort to fulfill its desires. Motivation in our agents is in a sense more fundamental than
in BDI agents: Rather than taking desires to be primary, they ground desires (and along
with them, plans and intentions) in a system of rewards and penalties. Thus, our agents may
be deflected from their current plan of action by new opportunities and threats, even if the
current plan still seems successfully executable.

Various types of decision-theoretic agent architectures (e.g., Schut and Wooldridge
2001) model agent behavior as a mapping from percepts and internal states to actions,
where—much as in our conception—the goal is to optimize the utility of an agent’s his-
tory, as determined by the values (to the agent) of the environmental states reached. While
in principle such a perspective allows for arbitrary internal processing by the agent (limited
only by its programming language, its software and hardware architecture, and the need to
act promptly), it tends to promote behaviorist rather than cognitivist approaches to agent
construction. Typically, problems similar to those we considered in Sections 7.2 and 7.3 are
addressed (often allowing for stochastic environments), and techniques such as metacontrol,
intention reconsideration, and POMDPs are employed. However, in our view, the decision-
theoretic aspects of action selection are ultimately far less important in intelligent behavior
than the knowledge on which the decisions are based. We do not know of any decision-
theoretic agents that plan to achieve high utilities, and reason and answer questions about
the world and themselves, at the level of our agents.

Several architectural frameworks bear the imprint of Allen Newell’s cognitive
perspective (Newell 1990). One is Soar (Laird, Newell, and Rosenbloom 1987), a pro-
gramming environment for building rule-based expert systems, equipped with a working
memory, semantic memory, and episodic memory (as in the SplinterBot cognitive robot
mentioned earlier). As an agent architecture, Soar lends itself well to carrying out multi-
ple tasks in time-shared fashion and thus has been used in various simulation-like studies
for single and multiple agents, such as collision avoidance for autonomous air vehicles,
or simulation of events such as fire, smoke, and flooding on ships in a naval fleet. The
architecture seems less well suited to complex reasoning, planning, and dialogue, in part
because productions—such as the procedural knowledge employed in SHRDLU and other
early agents—are apt to encode knowledge in a rather opaque way and in part because the
knowledge representations traditionally used in semantic and episodic memory are gener-
ally limited to simple attribute-value constructs, with no systematic allowance for logical
connectives, quantifiers, or semantically well-founded representations of attitudes and other
modalities. Thus, the kind of systematic, reasoned lookahead, and QA performed by agents
in our framework seems to us difficult to achieve within the Soar architecture.

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 413

Another architecture partially indebted to Newell is ACT-R (Anderson et al. 2004),
the product of a lengthy cognitive modeling tradition. The emphasis in this architecture is
on simulating human problem solving and learning in empirically testable detail. Interest-
ing models of performance on various memory tasks, learning tasks, and problem solving
tasks have been implemented within the ACT-R framework, and in recent years, there
has also been work on designing cognitive ACT-R-based agents. For example, Best and
Lebiere (2006) describe initial work on virtual agents intended to act as virtual oppo-
nents to military trainees in urban combat. Productions specify actions such as shooting
at or evading an enemy as a function of available escape routes, current goals, and the
agent’s assigned role. However, the agents are constrained by the coordinated behaviors
scripted by the programmers and by the goals assigned to them. They do not think ahead,
do not make knowledge-based inferences, and cannot in any genuine sense consider and
answer questions.

9. CONCLUSION AND FUTURE WORK

Our framework has demonstrated the feasibility of combining planning, inference, and
inferential QA in a completely self-motivated cognitive agent. ME, as demonstrated in our
main example, plans deliberately and continuously and acts opportunistically in accord
with its reasoned expectations about future rewards and penalties. It does so by drawing on
its specific and general knowledge about itself and its environment, including both intro-
spective (autoepistemic) knowledge and knowledge about mental states of other agents.
Additionally, ME can perform bounded forward inference using its current knowledge in a
given state. We also demonstrated the flexibility of our utility-based planning technique by
tackling some classical goal-directed planning problems and recently proposed problems in
continual goal-directed planning by single or multiple agents in incompletely known worlds,
showing that our approach is competitive in these areas.

Several extensions to the Gridworld framework would be desirable. One is allowance for
degrees of uncertainty about the truth of some predications and about the effects of actions.
Thus, in exploring future states, not only alternative actions but also alternative outcomes of
those actions (with probabilities) would be considered, and the plans formed would gener-
ally be conditional (contingency) plans. Also, if ME is uncertain whether the preconditions
of an action hold, it should nonetheless consider attempting that action, especially if the
potential rewards of success are high and the risks are low.

Conditional occlusion is another desirable enhancement to our currently implemented
notion of occlusion discussed in Section 2; for example, what is contained in a box might
be occluded if the lid is closed, but unoccluded if the lid is open. Instead of marking pred-
icates as definitely occluded, we would like to replace the notion of occlusion with explicit
metaknowledge. For example, the agent might have a metacognitive axiom to the effect that
if it can see the interior of a container and does not see a particular item in it, then that item
is not in the container (cf. Morbini and Schubert 2008).

A capacity for learning would be another desirable extension of the Gridworld frame-
work. This could be effected by experience-based modification of rewards for certain actions
or states that satisfy the preconditions of other, particularly rewarding actions. This would
be a form of RL, akin to the joy of anticipation (or dread) that humans (and other creatures,
such as Pavlov’s dog) can develop as a result of experience. Abstraction of macro-operators
from particularly rewarding sequences of actions (much as in the tradition of Fikes, Hart,
and Nilsson (1972)) is another possibility.

Our long-term vision is that of an explicitly self-aware and self-motivated conversa-
tion agent, communicating about the real world, not a simulated one, and perhaps at a later

414 COMPUTATIONAL INTELLIGENCE

stage equipped with perceptual and motor abilities. Work on plan-based dialogue has been
somewhat neglected over the past 20 years (since its beginning with Cohen and Perreault
(1979) and Allen and Perreault (1980)), but we believe that our ideas about rapidly adapt-
able continuous planning based on efforts to secure cumulative rewards and avoid negative
consequences can contribute usefully to this area. Planning would be driven by general ideas
about the effects and value of dialogue acts (at multiple levels of description) and by notic-
ing the relevance of certain dialogue acts in the current situation. Forward inference would
be used to predict indirect consequences of dialogue acts, including additions to the com-
mon ground, and expected rewards and risks. Rewards in this case would be, for example,
gaining desired information, approval or other forms of “social capital,” or more concrete
help or gains; negative consequences are also easily enumerated.

Another feature of Gridworld that seems transferable to future cognitive systems is the
method of reflective inference employed by the system and ascribed to other agents. The idea
that agents know what they know and do not know is of course familiar, but that an agent X
knows the truth or falsity of broad classes of statements whose subject is X is less familiar.
While this assumption cannot be made about all predicates (e.g., whether X hosts certain
microorganisms, whether X has read more novels than her neighbor, or will die within
20 years), it can be made about most attitudes (what X wants, likes, fears, hopes, expects,
intends, doubts, etc.), about major abilities (what devices X can operate, what languages X
can speak, what foods X can prepare, etc.), about ownership, friendship, acquaintanceship,
major life events, and much more.

ACKNOWLEDGMENTS

This work was supported by NSF grants IIS-0916599 and IIS-1016735. The authors
thank the anonymous referees for their extensive feedback, which led to significant
improvements in the paper.

REFERENCES

ALBORE, A., H. PALACIOS, and H. GEFFNER. 2009. A translation-based approach to contingent planning.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
Pasadena, CA, pp. 1623–1628.

ALLEN, J. F., and R. PERREAULT. 1980. A plan-based analysis of indirect speech acts. Computational
Linguistics, 6(3–4): 167–182.

ANDERSON, J. R., D. BOTHELL, M. D. BYRNE, S. DOUGLASS, C. LEBIERE, and Y. QIN. 2004. An integrated
theory of mind. Psychological Review, 111: 1036–1060.

BACCHUS, F., and R. PETRICK. 1998. Modeling an agent’s incomplete knowledge during planning and execu-
tion. In Proceedings of the 6th International Conference on Principles of Knowledge Representation and
Reasoning (KR 1998). Edited by A. G. COHN, L. K. SCHUBERT, and S. C. SHAPIRO. Morgan Kaufmann
Publishers: San Francisco pp. 432–443.

BARAL, C., L. FLORIANO, A. HARDESTY, D. MORALES, M. NOGUEIRA, and T. C. SON. 1998. From theory
to practice: the UTEP robot in the AAAI 96 and AAAI 97 robot contests. In Proceedings of the 2nd
International Conference on Autonomous Agents (Agents-98), St. Paul, MN, pp. 32–38.

BARAL, C., and T. C. SON. 1997. Approximate reasoning about actions in the presence of sensing and incom-
plete information. In Proceedings of the International Logic Programming Symposium (ILPS 1997), Port
Jefferson, NY, pp. 387–401.

BEST, B. J., and C. LEBIERE. 2006. Cognitive agents interacting in real and virtual worlds. In Cognition and
Multi-Agent Interaction: From Cognitive Modeling to Social Simulation. Edited by R. SUN. Cambridge
University Press: Cambridge, UK; pp. 186–218.

;

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 415

BONET, B., and H. GEFFNER. 2000. Planning with incomplete information as heuristic search in belief space. In
Proceedings of the 5th International Conference on Artificial Intelligence Planning Systems (AIPS 2000),
Breckenridge, CO, pp. 52–61.

BRATMAN, M. E. 1990. What is intention? In Intentions in Communication. Edited by P. R. COHEN, J. L.
MORGAN, and M. E. POLLACK. MIT Press: Cambridge, MA pp. 15–32.

BREAZEAL, C., and R. BROOKS. 2004. Robot emotion: a functional perspective. In Who Needs Emotions: The
Brain Meets the Robot. Edited by J.-M. FELLOUS, and M. A. ARBIB. Oxford University Press: Oxford,
UK Chapter 10.

BREAZEAL, C., J. GRAY, and M. BERLIN. 2009. An embodied cognition approach to mindreading skills for
socially intelligent robots. The International Journal of Robotics Research, 28: 565–680.

BRENNER, M., and B. NEBEL. 2009. Continual planning and acting in dynamic multiagent environments.
Autonomous Agents and Multi-Agent Systems, 19(3): 297–331.

BRYCE, D., S. KAMBHAMPATI, and D. E. SMITH. 2006. Planning graph heuristics for belief space search.
Journal of Artificial Intelligence Research, 26: 35–99.

BURGARD, W., A. B. CREMERS, D. FOX, D HAHNEL, G. LAKEMEYER, D. SCHULZ, W. STEINER, and
S. THRUN. 1999. Experiences with an interactive museum tour-guide robot. Artificial Intelligence,
114(1–2): 3–55.

CARBONE, A., A. FINZI, A. ORLANDINI, F. PIRRI, and G. UGAZIO. 2005. Augmenting situation awareness
via model-based control in rescue robots. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS-05), Edmonton, Canada, pp. 3699–3705.

COHEN, P. R., and R. PERREAULT. 1979. Elements of a plan based theory of speech acts. Cognitive Science,
3(3): 177–212.

DAVIES, N. P., and Q. MEHDI. 2006. BDI for intelligent agents in computer games. In Proceedings of the 8th
International Conference on Computer Games: AI and Mobile Systems (CGAIMS 2006), Louisville, KY,
pp. 104–107.

DINERSTEIN, J., P. K. EGBERT, D. VENTURA, and M. GOODRICH. 2008. Demonstration-based behavior
programming for embodied virtual agents. Computational Intelligence, 24(4): 235–256.

DORNHEGE, C., P. EYERICH, T. KELLER, S. TRÜG, M. BRENNER, and B. NEBEL. 2008. Semantic attach-
ments for domain-independent planning systems. In Proceedings of the 19th International Conference on
Automatic Planning and Scheduling (ICAPS 2009). Edited by A. GEREVINI, A. E. HOWE, A. CESTA, and
I. REFANIDIS. AAAI Press: Menlo Park, CA pp. 114–121.

FERGUSON, G., and J. F. ALLEN. 1998. TRIPS: an integrated intelligent problem-solving assistant. In
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998), Madison, WI,
pp. 567–572.

FERGUSON, G., J. QUINN, C. HORWITZ, M. SWIFT, J. ALLEN, and L. GALESCU. 2010. Towards a personal
health management assistant. Journal of Biomedical Informatics, 43(5): S13–S16.

FIKES, R. E., P. E. HART, and N. J. NILSSON. 1972. Learning and executing generalized robot plans. Artificial
Intelligence, 3(4): 251–288.

FOX, M., and D. LONG. 2003. PDDL 2.1: an extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20: 61–124.

FRITZ, C., and S. A. MCILRAITH. 2008. Planning in the face of frequent exogenous events. In Proceedings of
the 1st International Symposium on Search Techniques in Artificial Intelligence and Robotics (at AAAI08),
Chicago, IL, pp. 45–52.

GOLDEN, K., O. ETZIONI, and D. WELD. 1994. Tractable closed-world reasoning with updates. In
Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reason-
ing, Bonn, Germany, pp. 178–189.

HAWES, N. 2011. A survey of motivation frameworks for intelligent systems. Artificial Intelligence, 175(5–6):
1020–1036.

;

;

;

416 COMPUTATIONAL INTELLIGENCE

HOFFMAN, J., and R. BRAFMAN. 2005. Contingent planning via heuristic forward search with implicit belief
states. In Proceedings of the 15th international conference on automated planning and scheduling (ICAPS
2005), Monterey, CA, pp. 71–80.

JUNG, H., J. ALLEN, L. GALESCU, N. CHAMBERS, M. SWIFT, and W. TAYSOM. 2008. Utilizing natural
language for one-shot task learning. Journal of Logic and Computation, 18(3): 475–493.

KAPLAN, A. N. 1999. Reason maintenance in a hybrid reasoning system. In Proceedings of the 1st Workshop in
Computational Semantics (ICOS-1), Amsterdam, the Netherlands, pp. 83–94.

KAPLAN, A. N., and L. K. SCHUBERT. 2000. A computational model of belief. Artificial Intelligence, 120(1):
119–160.

KRÜGER, N., J. PIATER, C. GEIB, R. PETRICK, M. STEEDMAN, F. WÖRGÖTTER, A. UDE, T.
ASFOUR, D. KRAFT, D. OMRCEN, A. AGOSTINI, and R. DILLMANN. 2011. Object-action com-
plexes: grounded abstractions of sensory-motor processes. Robotics and Autonomous Systems, 59(10):
740–757.

LAIRD, J. E., N. DERBINSKY, and J. VOIGT. 2011. Performance evaluation of declarative memory systems in
soar. In Proceedings of the 20th Behavior Representation in Modeling & Simulation Conference, Sundance,
UT, pp. 33–40.

LAIRD, J. E., A. NEWELL, and P. S. ROSENBLOOM. 1987. SOAR: an architecture for general intelligence.
Artificial Intelligence, 33(1): 1–64.

LEVESQUE, H., and G. LAKEMEYER. 2008. Cognitive robotics. In Handbook of Knowledge Representation.
Edited by F. VAN HARMELEN, V. LIFSCHITZ, and B. PORTER. Elsevier: Amsterdam, the Netherlands
pp. 869–886.

LIU, D. H., and L. K. SCHUBERT. 2009. Incorporating planning and reasoning into a self-motivated, com-
municative agent. In Proceedings of the 2nd Conference on Artificial General Intelligence (AGI 2009),
Arlington, VA, pp. 108–113.

LIU, D. H., and L. K. SCHUBERT. 2010. Combining self-motivation with logical planning and inference in
a reward-seeking agent. In Proceedings of the 2nd International Conference on Agents and Artificial
Intelligence (ICAART 2010), Vol. 2, pp. 257–263.

MAGNUSSON, M., and P. DOHERTY. 2008. Temporal action logic for question answering in an adventure game.
In First Conference on Artificial General Intelligence (AGI-08), vol. 171 of Frontiers in Artificial Intelli-
gence and Applications. Edited by P. WANG, B. GOERTZEL, and S. FRANKLIN. IOS Press: Amsterdam,
the Netherlands pp. 236–247.

MAGNUSSON, M., D. LANDÉN, and P. DOHERTY. 2009. Logical agents that plan, execute, and monitor
communication. In 2nd Workshop on Logic and the Simulation of Interaction and Reasoning (LSIR-2),
Pasadena, CA, pp. 53–88.

MCDERMOTT, D., M. GHALLAB, A. HOWE, C. KNOBLOCK, A. RAM, M. VELOSO, D. WELD, and D. WILKINS.
1998. The planning domain definition language manual. In Technical Report CVC 98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, Yale University, New Haven, CT.

MERRICKA, K., and K. SHAFIB. 2009. Agent models for self-motivated home-assistant bots. In International
Symposium on Computational Models for Life Sciences (CMLS-09), Sofia, Bulgaria, pp. 131–150.

MORBINI, F., and L. SCHUBERT. 2008. Metareasoning as an integral part of commonsense and autocognitive
reasoning. In AAAI-08 Workshop on Metareasoning, Chicago, IL, pp. 155–162.

NEWELL, A. 1990. Unified Theories of Cognition. Harvard University Press: Cambridge, MA.

NILSSON, N. J. 1984. Shakey the robot. In Technical Report 323, AI Center, SRI International.

NILSSON, R. E., and N. J. FIKES. 1971. STRIPS: a new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2: 189–208.

PALACIOS, H., and H. GEFFNER. 2007. From conformant into classical planning: efficient translations that
may be complete too. In Proceedings of the 17th International Conference on Automated Planning and
Scheduling (ICAPS 2007), Providence, RI, pp. 264–271.

;

;

SELF-MOTIVATED, COGNITIVE, PLANNING AGENTS 417

PETRICK, R., N. ADERMANN, T. ASFOUR, M. STEEDMAN, and R. DILLMANN. 2010. Connecting knowledge-
level planning and task execution on a humanoid robot using Object-Action Complexes. In poster, 4th
International Conference on Cognitive Systems (CogSys 2010), Zurich, Switzerland.

REITER, R. (ED). 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems. MIT Press: Cambridge, MA.

SARDIÑA, S., G. D. GIACOMO, Y. LESPÉRANCE, and H. LEVESQUE. 2004. On ability to autonomously execute
agent programs with sensing. In Proceedings of the 4th International Workshop on Cognitive Robotics
(CoRobo-04), Valencia, Spain, pp. 88–93.

SCHUBERT, L. 2005. Some knowledge representation and reasoning requirements for self-awareness. In
Metacognition in Computation: Papers from the 2005 AAAI Spring Symposium. Edited by M. ANDERSON,
and T. OATES. AAAI Press: Menlo Park, CA pp. 106–113.

SCHUT, M., and M. WOOLDRIDGE. 2001. The control of reasoning in resource-bounded agents. Knowledge
Engineering Review, 16(3): 215–240.

SHAPIRO, S. C. 1998. Embodied Cassie. In Cognitive Robotics: Papers from the 1998 AAAI Fall Symposium,
Menlo Park, CA, pp. 136–143.

SHAPIRO, S. C., and J. P. BONA. 2010. The GLAIR cognitive architecture. International Journal of Machine
Consciousness, 2(2): 307–332.

TACKE, M., T. WEIGEL, and B. NEBEL. 2004. Decision-theoretic planning for playing table soccer. In
Proceedings of the 27th German Conference on Artificial Intelligence (KI 2004), Ulm, Germany,
pp. 213–225.

VERE, S., and T. BICKMORE. 1990. A basic agent. Computational Intelligence, 6(1): 41–60.

WELD, D. S. 1999. Recent advances in AI planning. AI Magazine, 20(2): 93–123.

WINOGRAD, T. 1972. Understanding Natural Language. Academic Press: Waltham, MA.

;

	TOWARD SELF-MOTIVATED, COGNITIVE, CONTINUALLY PLANNING AGENTS
	INTRODUCTION
	SELF-MOTIVATED COGNITIVE AGENT FRAMEWORK
	ACTIONS, PLANNING, AND SIMULATION
	REASONING ABOUT WORLD STATES AND MENTAL STATES
	AN EXPERIMENTAL AGENT
	Simulated World
	Question Answering

	RESULTS
	Opportunistic Behavior
	Unthinking, Non-Self-Aware Behavior
	Goal-Directed Behavior

	COMPARISONS WITH SOME CLASSICAL, CONTINGENT, AND CONTINUAL PLANNERS
	Classical Planning
	Continuous Planning: The Colorballs-n-x Problem
	Continuous Multiagent Planning: The Multiagent-n-x-b Traveling Domain

	RELATED WORK ON AGENT SYSTEMS
	Cognitive Robots
	Behavioral Agents
	Agents that Plan and Communicate Verbally
	Some General Architectures for Intelligent Autonomous Systems

	CONCLUSION AND FUTURE WORK

