
Operating Systems 9/20/2018

CSC 256/456 1

9/20/2018 CSC 2/456 1

Last Class: Processes Vs. Threads

• Process

– Single address space

– Single thread of control for executing program

– State information
• Page tables, swap images, file descriptors, queued I/O requests, saved

registers

• Threads

– Separate notion of execution from the rest of the definition of a process
• Program counter, stack of activation records, control block (e.g., saved registers/state

info for thread management)

– Other parts potentially shared with other threads

9/20/2018 CSC 2/456 2

Processes and Threads
• Thread – a program in execution; without a dedicated

address space.

• OS memory protection is only applied to processes.

9/20/2018 CSC 2/456 3

Pthreads
• Each OS has its own thread package with different

Application Programming Interfaces  poor portability.

• Pthreads

– A POSIX standard API for thread management and
synchronization.

– API specifies behavior of the thread library, not the
implementation.

– Commonly supported in UNIX operating systems.

9/20/2018 CSC 2/456 4

Thread Creation

int pthread_create
(pthread_t *new_id,
const pthread_attr_t *attr,
void *(*func) (void *),
void *arg)

• new_id: thread’s unique identifier

• attr: ignore for now

• func: function to be run in parallel

• arg: arguments for function func

Operating Systems 9/20/2018

CSC 256/456 2

9/20/2018 CSC 2/456 5

Example of Thread Creation

void *func(void *arg) {

int *I=arg;

…..

}

void main()

{

int X; pthread_t id;

….

pthread_create(&id, NULL, func, &X);

…

}

9/20/2018 CSC 2/456 6

Pthread Termination

void pthread_exit(void *status)

• Terminates the currently running thread.

• Is implicit when the function called in

pthread_create returns.

9/20/2018 CSC 2/456 7

Thread Joining

int pthread_join(
pthread_t new_id,
void **status)

• Waits for the thread with identifier new_id to
terminate, either by returning or by calling
pthread_exit().

• Status receives the return value or the value
given as argument to pthread_exit().

9/20/2018 CSC 2/456 8

Example of Thread Creation

main()

pthread_

create(func) func()

pthread_

join(id)
pthread_

exit()

Operating Systems 9/20/2018

CSC 256/456 3

9/20/2018 CSC 2/456 9

Contention Scope

• Process contention scope – thread library schedules

user threads onto light-weight processes (kernel-level

thread)

– Use priority as defined by user – no preemption of

threads with same priority

• System contention scope – compete with all tasks and

schedule kernel thread on a physical CPU

• pthreads: PTHREAD_SCOPE_PROCESS,

PTHREAD_SCOPE_SYSTEM

– pthread_attr_setscope

– pthread_attr_getscope

9/20/2018 CSC 2/456 10

Pthread Attributes

• Pthread_attr_init(pthread_attr_t *attr), destroy –

initializes attr to default value

– Scope – pthread_attr_setscope (&attr,

SCOPE)

– Stack size – pthread_attr_getstacksize,

pthread_attr_setstacksize

– Priority

– Joinable or detached

9/20/2018 CSC 2/456 11

Issues with the Threading Model

• Thread-local storage – what about globals?

• Stack management

• Interaction with fork and exec system calls

– Two versions of fork?

• Signal handling – which thread should the signal be
delivered to?

– Synchronous

– All

– Assigned thread

– Unix: could assign a specific thread to handle signals

– Windows: asynchronous procedure calls, which are
thread-specific

9/20/2018 CSC 2/456 12

Multiprocessor Scheduling

• Disabling signals not sufficient

• Acquire scheduler lock when accessing any scheduler
data structure, e.g.,

yield:

disable_signals

acquire(scheduler_lock) // spin lock

enqueue(ready_list, current)

reschedule

release(scheduler_lock)

re-enable_signals

Operating Systems 9/20/2018

CSC 256/456 4

9/20/2018 CSC 2/456 13

CPU Scheduling

CS 256/456

Department of Computer Science

University of Rochester

9/20/2018 CSC 2/456 14

Context Switching

• Processes are managed by a shared chunk of OS code

called the kernel

– Important: the kernel is not a separate process, but

rather runs as part of some user process

• Control flow passes from one process to another via a

context switch.

Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

9/20/2018 CSC 2/456 15

Thread Scheduling: Transferring

Context Blocks

Coroutines

transfer(other)

save all callee-saves registers on stack, including ra

and fp

*current := sp

current := other

sp := *current

pop all callee-saves registers (including ra, but NOT

sp!)

return (into different coroutine!)

9/20/2018 CSC 2/456 16

Uniprocessor Scheduling

• Use Ready List to reschedule voluntarily (cooperative threading)

reschedule:

– t : cb := dequeue(ready_list)

– transfer(t)

yield:

– enqueue(ready_list, current)

– reschedule

sleep_on(q):

enqueue(q, current)

reschedule

Operating Systems 9/20/2018

CSC 256/456 5

9/20/2018 CSC 2/456 17

Preemption

• Use timer interrupts or signals to trigger involuntary
yields

• Protect scheduler data structures by disabling/reenabling
prior to/after rescheduling

yield:

disable_signals

enqueue(ready_list, current)

reschedule

re-enable_signals

9/20/2018 CSC 2/456 18

Process State
• As a process executes, it changes state

– new: The process is being created

– ready: The process is waiting to be assigned to a process

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

– terminated: The process has finished execution

9/20/2018 CSC 2/456 19

Queues for PCBs

• Ready queue –
set of all
processes ready
for execution.

• Device queues –
set of processes
waiting for an
I/O device.

• Process
migration
between the
various queues.

9/20/2018 CSC 2/456 20

CPU Switch From Process to

Process
When can the
OS switch the
CPU from one
process to
another?

Which one to
switch to? -
scheduling

Operating Systems 9/20/2018

CSC 256/456 6

9/20/2018 CSC 2/456 21

CPU Scheduling
• Selects from among the processes/threads that are ready to

execute, and allocates the CPU to it

• CPU scheduling may take place at:

1. Hardware interrupt/software exception

2. System calls

• Nonpreemptive:

– Scheduling only when the current process terminates
or not able to run further

• Preemptive:

– Scheduling can occur at any opportunity possible

9/20/2018 CSC 2/456 22

Scheduling Criteria
• Minimize turnaround time – amount of time to execute a

particular process (includes I/O, CPU, memory time, waiting
time in the ready queue)

• Maximize throughput – # of processes that complete their
execution per time unit

• Maximize CPU utilization – the proportion of the CPU that
is not idle

• Minimize response time – amount of time it takes from
when a request was submitted until the first response is
produced (interactivity)

• Waiting time: time spent in the ready queue

• Fairness: avoid starvation

9/20/2018 CSC 2/456 23

First-Come, First-Served (FCFS)

Scheduling

Process CPU Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The schedule is:

• Turnaround time for P1 = 24; P2 = 27; P3 = 30

• Average turnaround time: (24 + 27 + 30)/3 = 27

P1 P2 P3

24 27 300

9/20/2018 CSC 2/456 24

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1 .

• The schedule is:

• Turnaround time for P1 = 30; P2 = 3; P3 = 6

• Average turnaround time: (30 + 3 + 6)/3 = 13

• Much better than previous case.

• Short process delayed by long process: Convoy effect

P1P3P2

63 300

Operating Systems 9/20/2018

CSC 256/456 7

9/20/2018 CSC 2/456 25

Shortest-Job-First (SJF)

Scheduling
• Associate with each process the length of its CPU time.

Use these lengths to schedule the process with the
shortest CPU time

• Two variations:
– Non-preemptive – once CPU given to the process it

cannot be taken away until it completes
– preemptive – if a new process arrives with CPU time

less than remaining time of current executing process,
preempt

• Preemptive SJF is optimal – gives minimum average
turnaround time for a given set of processes

• Problem:
– don’t know the process CPU time ahead of time

9/20/2018 CSC 2/456 26

Example of Preemptive SJF

Process Arrival Time CPU Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• SJF (preemptive)

• Average turnaround time = (16 + 5 + 1 +6)/4 = 7

P1 P3P2

42 110

P4

5 7

P2 P1

16

9/20/2018 CSC 2/456 27

Priority Scheduling
• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority

– preemptive

– nonpreemptive

• SJF is a priority scheduling where priority is the predicted
CPU time

• Problem: Starvation – low priority processes may never
execute

• Solution: Aging – as time progresses, increase the priority of
the process

What Happened on the Mars

Pathfinder (1997)?

9/20/2018 CSC 2/456 28

Solution: Priority Inheritance [L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority

Inheritance Protocols: An Approach to Real-Time Synchronization. In IEEE

Transactions on Computers, vol. 39, pp. 1175-1185, Sep. 1990.]

Problem: Priority Inversion

https://cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft

Operating Systems 9/20/2018

CSC 256/456 8

9/20/2018 CSC 2/456 53

Disclaimer

• Parts of the lecture slides were derived from those by Kai
Shen, Willy Zwaenepoel, Abraham Silberschatz, Peter B.
Galvin, Greg Gagne, Andrew S. Tanenbaum, and Gary Nutt.
The slides are intended for the sole purpose of instruction
of operating systems at the University of Rochester. All
copyrighted materials belong to their original owner(s).

