
Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 1

8/31/2018 CSC 2/456 1

CSC 2/456: Operating Systems

Instructor: Sandhya Dwarkadas

TAs: Zhuojia Shen, Mohsen Mohammadi

Prerequisites

• CSC 252 or equivalent

• C/C++ programming experience on Unix 

systems

2

Meaning of Prerequisites

• You understand basic processor organization 

• You are aware of virtual memory and its support

• You can read assembly language code

• You can write assembly language code

• You understand bit-wise operations (AND, OR, 

XOR)

• You can write C code that manipulates pointer-

based data structures (e.g., linked lists, trees, 

etc.)

3

8/31/2018 CSC 2/456 4

General Course Information

 Course Web page: 
• www.cs.rochester.edu/u/sandhya/csc256

 Course-related announcement/correspondence:
• Blackboard Discussion Board 

 Texts
• Tanenbaum et al, “Modern Operating Systems”
• Silberschatz et al, “Operating System Concepts”



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 2

Linux Kernel Books

• Understanding the Linux Kernel by Bovet and 

Cesati

• Professional Linux Kernel Architecture by 

Mauerer

• Linux Kernel Development by Love

5

Unix API Books

• Advanced Programming in the UNIX 

Environment by Stevens and Rago

• Available online via the library

6

8/31/2018 CSC 2/456 7

Assignments and Exams

 Tentatively 5 programming assignments

 Modify Linux kernel internals

 Midterm and final

 Homework/quizzes/other

 Other: participation in class discussions, presentations

 “CSC456 Part” in assignments

 C programming

 Class presentation and end-of-term survey paper for 
CSC456 students

Grading for CSC 256

8

Homeworks
10%

Programming
50%

Midterm
20%

Final 
Exam
20%



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 3

Grading for CSC 456

9

Homeworks
10%

Programming
50%

Midterm
15%

Final 
Exam
15%

Term paper/seminar
10%

If you don’t have a 

Unix account, 

please get one 

ASAP!

10

8/31/2018 CSC 2/456 11

Computer-System Architecture

8/31/2018 CSC 2/456 12

What is an Operating System?

• Software that abstracts the computer hardware

– Hides the messy details of the underlying hardware

– Presents users with a resource abstraction that is 

easy to use

– Extends or virtualizes the underlying machine

• Manages the resources

– Processors, memory, timers, disks, mice, network 

interfaces, printers, displays, …

– Allows multiple users and programs to share the 

resources and coordinates the sharing



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 4

8/31/2018 CSC 2/456 13

Why Study Operating Systems?

• Learn to design an OS or other computer systems

• Understand an OS
– Understand the inner workings of an OS

– Enable you to write efficient/correct application code

8/31/2018 CSC 2/456 14

System Calls and 

Interfaces/Abstractions

• Examples: Win32, POSIX, or Java APIs

• Process management 

– fork, waitpid, execve, exit, kill

• Exceptions, interrupts (events)

– signals

• File management

– open, close, read, write, lseek

• Directory and file system management

– mkdir, rmdir, link, unlink, mount, umount

• Inter-process communication

– sockets, pipe, ipc (msg, shm, sem)

Reasons for Abstractions

• Reduce functional complexity

• Provide single abstraction over multiple devices

• Resource sharing

15

Objectives when Sharing 

Resources

• Efficiency

• Fairness 

• Security/protection 

16



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 5

8/31/2018 CSC 2/456 17

Perspectives of the Computer

Application

Software

System

Software

Hardware

(a) End User

View

(b) Application

Programmer View

(c) System 

Programmer View

Application

Software

Application

Software

System

Software

System

Software

Hardware Hardware

cut
save

print

send
malloc()

fork()

open()
read-disk

push-bits-into-NIC

start-printer

8/31/2018 CSC 2/456 18

System Software

• A general piece of software with common 
functionalities that support many applications

• Examples

– C compiler and library functions

– Shell – command line interpreter

– A window system

– A database management system

– The operating system

 A thin layer of software that operates directly on the 
raw hardware

8/31/2018 CSC 2/456 19

The Structure of Computer Systems

Loader

OS
Database

Management

System

Window

System

Application

Programmer

S
y
st

em
 S

o
ft

w
ar

e

Libraries

Compiler

Hardware

Command

Line

Interpreter

Libraries
Libraries

Software API

8/31/2018 CSC 2/456 20

Disk Abstractions

load(…);

seek(…);

out(…);

void write() {

load(…);

seek(…)

out(…)

}

int fprintf(…) {

...

write(…)

…

}

(a) Direct Control (b) write()

abstraction

(c) fprintf()

abstraction

Application

Programmer

OS Programmer



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 6

8/31/2018 CSC 2/456 21

Under the Abstraction

• functional complexity

• a single abstraction over multiple devices

• replication → reliability

• resouce sharing

8/31/2018 CSC 2/456 22

Resource Sharing

…Program Pi

OS Resource Sharing

Pi Memory

Pk Memory

Pj Memory

…
Time-multiplexed 

Physical Processor

Program Pj Program Pk

Space-multiplexed 

Physical Memory

Extended machine interface (resource abstraction)

8/31/2018 CSC 2/456 23

Objectives of Resource Sharing

• Efficiency

• Fairness 

• Security/protection 

8/31/2018 CSC 2/456 24

Evolution of Modern OS

Modern OS

Batch

Timesharing

PC & Wkstation

Distributed OS

Real-Time
Memory Mgmt

Protection

Scheduling

Files

Devices

Memory Mgmt

Protection

Scheduling

Human-Computer

Interface

Client-Server Model

Network Protocols

RT Scheduling

Small Computer

Power Management



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 7

8/31/2018 CSC 2/456 25

History

• Machine language

• Batch systems (mainframes)

• Multiprogramming and time sharing

• Graphical user interfaces, virtual memory, 

protection, network/distributed operating 

systems

8/31/2018 CSC 2/456 26

Examples of Modern OSes

• UNIX variants (e.g., Mac OS X, FreeBSD, AIX, Solaris, 
Linux) -- have evolved since 1969

• Windows 78/10//NT/2K -- has evolved since 1989

• Smartphone Oses: Android, iOS, … (most based on Unix 
family)

• Other OSes –
– microkernel
– extensible OS
– virtual machines
– sensor OS
– Software isolated processes
– special-purpose OS – for highly concurrent Internet 

servers
– still evolving …

8/31/2018 CSC 2/456 27

Operating Systems Concepts

• Processes

• Memory management

• File systems

• Device management

• Security/protection

Processes

• Definition: A process is an instance of a running

program.

• One of the most profound ideas in computer 

science

• Not the same as “program” or “processor”

• Program = Set of Instructions

– May not be running

• Processor = Hardware that executes programs

2

8



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 8

Processes

• Process provides each program with two key 

abstractions:

– Logical control flow: each program seems to have 

exclusive use of the CPU

– Private address space: each program seems to have 

exclusive use of main memory

• How are these illusions maintained?

– Process executions interleaved (multitasking)

– Address spaces managed by virtual memory system

29

Process Control Block (PCB)

OS data structure (in kernel memory) 

for maintaining information associated 

with each process.

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• Information about open files

Pointer for Linked List

Process State

Process ID (pid)

Program Counter

Registers

Exit Status

…

30

Procfs: The /proc filesystem

[Killian’84]

• Processes as files: a pseudo-file system

– a file system interface to kernel in-memory 

data structures 

• Linux implementation originated with Bell Labs’ 

Plan 9

• Hierarchical file system

– Each live process has its own directory 

(numbered with pid)

– Non-process-related system information in 

named files: e.g., cpuinfo, meminfo
8/31/2018 CSC 2/456 31

Process Creation
• When a process (parent) creates a new process (child)

– Execution sequence?

– Address space sharing?

– Open files inheritance?

– … …

• UNIX examples

– fork() system call creates new process with a duplicated copy of 

everything

– exec() system call replaces process’ memory space with a new 

program

• Typically used after a call to fork

– Child and parent compete for CPU like two normal processes

32



Operating Systems 8/31/2018

CSC 256/456 – Fall 2018 9

The fork() system call

Duplicates a process

Linked List Ptr

Process State

Process ID (pid)

Program Counter

Registers

Open Files

…

Linked List Ptr

Process State

Process ID (pid)

Program Counter

Registers

Open Files

… 33 8/31/2018 CSC 2/456 49

Assignment #1

• Exclusively outside of the OS

• Part I: observing the OS through the /proc virtual 
file system

• Part II: building a shell (command-line interpreter)
– Support foreground/background executions

– Support pipes

8/31/2018 CSC 2/456 51

Disclaimer

• Parts of the lecture slides contain original work from Gary 
Nutt, Andrew S. Tanenbaum, Dave O’Hallaron, Randal 
Bryant, and Kai Shen. The slides are intended for the sole 
purpose of instruction of operating systems at the 
University of Rochester. All copyrighted materials belong 
to their original owner(s). 


