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Although many different vision
algorithms and systems have
been developed, the integration
into a complex intelligent control
architecture of a mobile robot
remains in most cases an open
problem. In this paper, we describe
the integration of different
vision-based behaviors into our
architecture for sensorimotor
systems. This raises new questions
and requires the consideration

of significant constraints that are
often not in the main focus of vision
but nonetheless play a major role
for the overall success. By means
of different scenarios like person
tracking, searching for different
objects, and achieving different
object configurations within stock
areas, the structure of the vision
system and the interaction with the
overall architecture is explained.
The interaction of vision-based
modules with the task-level control
and the symbolic world model is
an especially important topic. The
architecture is successfully used on
different mobile robots in natural
indoor environments.
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1 Introduction

Integration of vision modules into a control architecture for an autono-
mous mobile robot is more difficult than just adding the vision compo-
nents. This is due to the high bandwidth of vision sensors, which require
a task-specific configuration of vision-based behaviors. Another impor-
tant aspect is the lack of processing power on a mobile robot, which
often prevents the use of existing powerful algorithms or requires them
to be adjusted to the specific needs of a mobile platform. Therefore, inte-
grating vision-based behaviors into an intelligent architecture for mobile
robots is not only adding different components, but it affects many parts
of the architecture itself. Until integration of vision algorithms becomes
a topic, many often-neglected aspects turn out to be significant chal-
lenges. This in many cases requires the first approach to be modified
with respect to changed priorities.

In this paper, we describe aspects of the integration of vision modules
into a robot control architecture. The focus is not only on architectural
aspects and problems arising from the interaction of vision modules
with the overall system, but also on details of the final algorithms used
to meet the requirements of a mobile platform and to achieve the re-
quired robustness. It turned out that, in many cases, the task-dependent
configuration of vision mechanisms including an appropriate setting of
parameters is a crucial point for achieving robust vision-based behav-
iors. In this point the vision mechanisms benefit from the overall sys-
tem architecture. The architecture supports a declarative representation
and a task-dependent configuration of modules taking into account re-
source constraints and conflicts among competing settings. Thus, even
complicated relationships between parameters can be conveniently rep-
resented. A single vision approach has to cope with all kinds of vision-
related tasks, but we can improve the robustness of the vision-based
tasks by selecting adjusted settings and algorithms.

The mobile robot described in this paper is used as a demonstrator
within the SFB 527. The SFB (collaborative research center) is a basic
research project on the integration of symbolic and subsymbolic infor-
mation processing in adaptive sensorimotor systems. In particular, vision
plays a central role, because camera systems’ high bandwidth of data
contain a rich variety of relevant information for the tasks of a mobile
system. It is, therefore, an important source of information.

The paper is organized as follows. First, we describe the main parts
of the currently used architecture and the integration of vision-based be-
haviors into the overall system. Then we describe in more detail two
main vision-based behaviors that are particularly important for the tasks
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Figure 1. Architecture overview.
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the system can perform. The first one is used to detect and locate differ-
ent objects within a natural indoor environment (to be used, for exam-
ple, within a cleanup procedure, putting different objects into wastebas-
kets). The second behavior is to track and follow a person. This behavior
is useful for service robotic applications in which a person is guided by
a mobile robot or in which a person shows the robot where to execute
a specific task. Finally, a scenario is presented in which the robot has
to achieve different object configurations in several stock areas. This re-
quires the close interaction of different modules with the vision system.

1.1 System Overview

The basic idea of the system architecture is described in [16]. At the
implementation level, this architecture currently comprises three layers
as shown in figure 1. The subsymbolic level, where real-time capabili-
ties are an important topic, consists of continuously working modules.
Many skills of the robot are implemented at this level including, for ex-
ample, algorithms for motion control and map building. Those modules
work on raw sensor data and generate commands for the actuators. In
some sense, they contain no state and just build a reactive system that
has to be configured appropriately. The second layer is the execution
layer, which is responsible for appropriate configuration and synchro-
nization of the activities of the subsymbolic level. It supervises tasks
performed on the subsymbolic level. In particular, it selects appropriate
parameters for skills taking into account the current execution context.
It works on only discrete states that are used to synchronize real-world
execution with the symbolic task description. Because the outcome of a
selected behavior could be different from the expected one, a simple lin-
ear sequence of primitive behaviors is not sufficient. The execution layer
must conditionally select appropriate behaviors for the current situation.
The third layer contains time-consuming algorithms. Normally, different
transitions occur at the execution layer while the deliberation layer tries
to generate a solution. One of the modules at this layer contains the
symbolic planner. The generated plans describe the desired plot only at
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a very abstract level and constrain the selection of execution possibili-
ties at the execution layer. The subsymbolic level is often called the skill
layer and the intermediate level the sequencing layer.

1.2 Related Work

Because in this paper both the architecture of the mobile robot and
the vision component is part of the reported work, we describe related
work in both areas. Due to space restrictions, we concentrate on person-
following approaches in the field of vision because the algorithms used
in the other vision modules are mainly off-the-shelf and differ particu-
larly with respect to the integration into the system architecture.

1.2.1 Architecture

The kind of architecture we use is very similar to 3T [2]. This is not
surprising because this kind of architecture seems to be extremely well
suited to implement an intelligent control architecture for a mobile
robot. The main strength of this kind of architecture is that, by di-
viding the whole system into three layers, each layer is significantly
easier to implement than the whole system. Another important topic
is that the sequencing layer allows abstraction from details that would
complicate the planning layer. This is the key to bridge the gap be-
tween the skill layer and the deliberative layer. With respect to vision, a
three-layer architecture provides the glue component to bridge the gap
between low-level building blocks (like filter operators) and the rep-
resentation of required parameters for task-dependent configurations.
Implementations of multilayer architectures are different with respect to
the algorithms used at each layer. The sequencing layer often consists of
a variant of the RAP system [7]. Recently, new programming languages
like ESL [8] have been proposed, but they are not especially designed
to be used with a symbolic planner. A very good overview on multilayer
architectures is given in [14]. An unsolved topic, however, is the kind
of interaction between different layers. Therefore, many existing lay-
ered architectures are different with respect to this point. In particular,
the interaction of vision-based behaviors like object recognition with the
geometric and symbolic world model of the robot is still challenging.

1.2.2 Person following

Much work in the field of person detection and tracking is based on
vision systems using stationary cameras [21]. Many of the approaches
assume a stationary background because moving objects are detected by
subtracting two frames [4, 17]. Other methods require that the tracked
person is never occluded by other objects [1]. Therefore, they are typi-
cally not suitable for person following on a mobile robot because, at the
same time the robot tracks the person, it has to move into the person’s
direction to stay close enough.

Many approaches can be classified regarding the kind of models that
are used. Models range from complex 3-D models [9] to simpler 2-D
models [17, 21]. The basic idea is to use deformable models to represent
the boundary of the segmented body. Even those approaches assume one
or more static cameras.

Several approaches use color-based image segmentation for object-
ground separation [1, 3]. Persons to be tracked are represented by a
collection of color blobs. A color-based system, able to track colored
blobs in real time, is presented in [22]. It is implemented on a mobile
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robot that locates a person in dynamic environments but requires the
individual to wear a shirt of one of four predefined colors. Drawbacks are
that the approach is not adaptive to illumination changes and, because
it relies solely on the color and does not consider any shape, it requires
that the person can be uniquely identified by color. Therefore, the color
should not occur in the background.

A model-based approach for object tracking using two-dimensional
geometrical models can be found in [11]. A binary contour model is
matched against the current edge image using the Hausdorff distance,
and a successive match leads to an update of the contour model. This ap-
proach adapts to continuous deformations of the person’s image during
movement, thus overcoming the difficulties that person tracking imposes
on rigid-model approaches. The main drawback of this approach is its
computational complexity. Without any restrictions in the search space,
it seems to be unsuitable for real-time application.

2 Details of the Architecture

Although the basic architecture is based on a well-known three-layer
model, there are significant differences that mainly concern the inter-
action between different layers. These differences are described in more
detail in this section.

The basic entity of the robot software is a module, which is equivalent
to a process and consists of different threads. The external interface of
a module is built using predefined communication templates. The soft-
ware framework SMARTSOFT [20] also defines the basic internal structure
of each module, which allows any communication details to be com-
pletely hidden from the module implementation and ensures standard-
ized module interfaces. This includes a configuration interface for each
module (used, for example, by the execution layer to coordinate module
activations). The modules form a client-server architecture and can be
distributed transparently over different computers.

The execution layer is very similar to the RAP-system [7]. It has
knowledge about default execution of different tasks. By appropriately
configuring the modules at the subsymbolic level, different behaviors
can be realized using the available modules. Different behaviors can be
built based on a limited set of skills. The configuration of a behavior not
only consists of activating and deactivating skills. Moreover, because the
whole system is based on a client-server architecture, module intercon-
nections can be changed online. We do not use a precompiled wiring
of data flow between modules. This is particularly relevant for the vi-
sion modules for which a basic set of operators has to be connected in
the appropriate way to achieve the currently required image-processing
pipeline.

The execution layer ensures that bounded resources are allocated ap-
propriately and constraints of behaviors are met. Then the subsymbolic
layer has to operate within the boundaries of the configuration. Once
enabled, such a configuration is active as long as no ending condition
becomes true. It is assumed that each skill is able to detect any malfunc-
tion or condition where its usage is not appropriate. This is also known
as the concept of cognizant failures [15].

Events are used to report any relevant change of state, which also
includes the successful completion of a task. Because verifying the event
condition often requires skill-specific data, events are not standalone
or equivalent to skills but part of a skill. This allows the inclusion of

Integrating Vision-Based Behaviors with an Autonomous Robot

35



VIDERE 1:4

extended status information about the situation that fired the event.
If events are separated from skills, many private details of modules
have to be exported to events. Events are also relevant for the vision
modules, where, once configured, image-processing pipelines can run
autonomously until a specified condition becomes true (which is then
reported to the sequencing layer).

Another important detail concerns transient conditions, which can oc-
cur when switching between configurations and have to be avoided. For
example, having activated the path planner together with the event no
path available before the mapper can provide the requested part of
the map would fire the event unmeant. Therefore, the skill interface has
been redesigned to provide more options to specify the order of skill acti-
vation and deactivation than the original RAP system. For example, each
module has an uniform finite-state automation to ensure that parameter
settings are done only when not affecting any calculations.

The currently used syntax to represent task networks is very close to
the RAP notation. The main differences are the kind of interface to the
subsymbolic level and the structure of the knowledge base. The knowl-
edge base is organized as a frame system with single inheritance of
object features. This allows a more structured representation (which is
important as soon as the knowledge base grows). The knowledge base is
separated from the agenda interpreter and is accessed by a very simple
tell-and-ask interface. Therefore, different kinds of knowledge represen-
tations can be used without reimplementing the whole execution layer.
The agenda interpreter has been extended to handle some more ordering
constraints in task nets like try-in-order or parallel-or. These modifica-
tions allow a more convenient formulation of task nets. A consistent
representation of different configurations and activation sequences is
achieved by using unified module structures.

As interface to the symbolic planner, an abstract STRIPS-like [6]
description of the tasks available at the execution layer is used. With the
current implementation, the planner is called from the execution layer
for specific, predefined problems. Whenever the planner operator occurs
within a task net, the agenda interpreter calls the symbolic planner
together with the appropriate part of the knowledge base. Because we
know for which problems we call the symbolic planner, we can also
define which part of the knowledge base has to be transformed into the
planner representation for each problem instance. The generated plan
defines the expansion of the planner operator and substitutes it in the
task net. A typical subproblem solved by the planner is generating a
sequence to get a specific box out of a stack of boxes. The currently
used planner is IPP [12, 13]. Of course, this kind of planner interface
is one of the simplest, but it has specific advantages as well. By selecting
only problem-relevant parts of the knowledge base and hiding from the
symbolic planner as many details as possible, the planner is able to
produce plans within a reasonable time.

Some of the currently implemented modules at different layers are
shown in figure 2. Many modules at the subsymbolic layer deal with
motion control and map building. Another important module is self-
localization, which ensures that the position error of the robot stays
within certain boundaries [10]. Details of the motion-control skills can
be found in [18]. The vision system consists of two different modules:
The first module is able to search and locate different objects, whereas
the second module is able to track a person. The vision modules are
highly configurable by the sequencing layer and are used in combination
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Figure 2. Modules at different layers.
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with other modules of the skill layer to build complete behaviors. With
respect to vision, the symbolic description provided by the sequencing
layer of all the different constraints and parameter settings significantly
eases the consistent administration of the various task-dependent config-
urations. In particular, the declarative representation of configurations is
very useful to easily reuse basic building blocks for different tasks. Vision
algorithms especially often require a very accurate situation-dependent
adjustment of parameters which can be handled conveniently within the
knowledge base. The execution layer, the knowledge base, and the sym-
bolic planner are each implemented in a separate module.

3 Model-Based Object Recognition

The vision component is used to detect and locate different objects in
a natural indoor environment. One task includes cleaning up an area,
which means that, while moving around and exploring the workspace,
objects have to be recognized on the fly. The objects are regular and
complex everyday objects like a trashcan, but normally with a relatively
simple background. Significant difficulties arise from the moving robot
and the movements of the pan-tilt unit that are necessary to fully explore
the actual workspace. The movement of the robot also requires the
adaptation to changing illumination conditions. The following section
describes details of the object recognition-process, which is specifically
adjusted to the requirements of a mobile robot.

3.1 Interface of the Vision Module

In figure 3, the structure of the vision module is shown. The vision
module always has to be connected to the image server. Depending
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Figure 3. Structure of the vision
module.
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on the current behavior, it is also connected to the server of the pan-
tilt unit (ptu) and the base server, which provides the current robot
position. The vision server itself can provide heading information for
other modules when tracking an object. The client interface allows the
selection of different behaviors which either require an object list or an
object identifier. The object list consists of different object types together
with object attributes and restricts the behavior to objects matching the
list. The more attributes specified for an object the more restricted the
behavior is. If, for example, specifying (search (type ball)), all balls are
searched. If specifying (search (type ball)(color red)), only red balls are
searched. The object list consists of class descriptions of objects and must
not be confused with object instances. An object instance is referenced
by the object identifier.

Some more details of the interface of the vision module are shown
in figure 4. Commands are used to set the configuration for the next
behavior. Events are generated by the vision system as soon as impor-
tant changes occur that have to be reported to the execution layer for
task-coordination purposes. Requests are used to ask for attribute values
of a specific instance referenced by its identifier. Updates are generated
autonomously by the vision module depending on the selected behav-
ior. For example, while tracking an object, the position of this object is
continuously provided to subscribed clients. Normally, the motion con-
trol uses this information to move the robot into the desired direction.
In figure 5, the configuration sequence for searching red balls and blue
trashcans is shown in detail. After being activated, the behavior quits as
soon as one matching object is found. In this case, an event is generated
reporting the object identifier of the found object.

The following behaviors are implemented in the vision server and pro-
vide basic capabilities that can be used to realize more-complex vision-
based tasks. The kind of behaviors are directly related to the robot’s tasks
and are based on the same basic building blocks. They are mainly differ-
ent with respect to their internal course of processing steps and reported
events.
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Figure 4. The vision module
interface.

Figure 5. The search behavior.
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search objectlist Search the specified objects and stop searching as soon
as one matching object is found. This skill can be used
in parallel to exploration skills to search a complete
area.

track objectid Track the specified object but without providing
heading information for motion control. This skill
allows the continuous update of an object position,
therefore keeping its identifier even when the object is
moving.

follow objectid Follow the specified object, and stop the robot if the
object is reached or lost. If lost, search for it using
the pan-tilt unit. This configuration is used together
with the motion control to form an object-following
behavior.

fullsearch objectlist Use the pan-tilt unit to fully explore the visible
area without moving the robot. This skill reports
all matching objects.

reset Reset the vision module.
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3.2 Object Classification

The vision module uses a model base to perform object recognition. Each
object type is specified by a set of feature values. Features used to de-
scribe objects include form descriptors (rule-based form classifiers) and
color (color thresholds, color histograms). Because object recognition
must be fast and robust on a mobile platform, we can use only compu-
tationally inexpensive features. However, these have to be discriminant
with respect to the occuring objects. Approved features are:

size Number of pixels belonging to the object
realsize Real visible area of the object

boundingbox Image coordinates of the upper-left and the lower-right
corner of the color blob

eccentricity =~ Measures the eccentricity of the object. The range is
between 0 and infinity. (The value 1 signifies a perfectly
round object.)

theta Angle between the major axis
fill Size (bounding box)/size (blob)

It depends on the object which features are necessary for classifica-
tion, and not all features are used with all objects. According to the tasks
to be performed by the robot, the following objects are currently sup-
ported. Not all combinations of objects and colors can be recognized.

object Dbottle, ball, trashcan, cylinder, balloon, block, door,
door plate, palette, table, notype

color red, green, blue, yellow, brown, orange, pink,
lightgreen, white, black, lightorange, turquoise,
lightblue, nocolor

The classification process works as follows. If an object is specified,
the corresponding feature values are looked up in the model base. These
values form an object-specific classifier that decides whether this object
is in the image. In our scenario, only colored objects exist. The col-
ortype nocolor means that the object can have any of the above colors.
Therefore, if an object only is specified by type, all supported colors are
checked. Colors can be defined in different ways, for example, as upper
and lower bounds in RGB or in NCC color space. Classification consists
of three steps (also shown in figure 6).

1. color segmentation
2. feature extraction

3. classification with object-specific classifiers based on extracted
features

The classification process mainly relies on color. Color proves to be
a robust feature to select regions of interest to perform the computa-
tionally more expensive steps. This aspect is particularly important on a
mobile platform. In many cases, two other features besides color (such
as size and eccentricity) are sufficient for the discrimination of a small
set of objects. Depending on the object, nearly all features vary—also
as a result of the perspective—with the distance to the robot. Therefore,
the boundaries of the feature values used for classification have to be se-
lected depending on the distance between object and camera. Because
we assume that all objects rest on a flat floor (ground-plane constraint),
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Figure 6. Procedure of object
classification.

VIDERE 1:4

color blobs shape
(yellow, red) features
trashcan
classifier
yellow | shape feature
extraction .
image color bott °
. classifier
object(trashcan, yellow) segmentation have f
object(ball, red) shape 'eature
object(bottle, yellow) extraction ball
classifier

the tilt angle directly corresponds to the object distance and is used for
selecting appropriate boundaries for the classification process. A feature
provides good discrimination information if it differs significantly for dif-
ferent objects over all tilt angles.

If the command (search (type ball)(color red), (type trashcan)(color
yellow)) is given, a new image is shot. First, all red color blobs are
detected by a simple color thresholding. After thresholding, the shape
features for these blobs are computed. If a blob is smaller or bigger
than a given threshold, it is deleted. If the shape of the blobs fulfill the
criteria for balls, a ball with its attributes and coordinates is added to
the object database. The same procedure then starts from the beginning
for all other objects specified in the objectlist.

3.3 Object Database

The object database plays an important role in the interface of the vi-
sion modules with other parts of the architecture. The object database
maintains markers for those objects that already have been seen. It is
therefore used to generate “hints” regarding where to expect an object
and what it should look like. This allows the generation of updates for
the overall knowledge base when a new object arises or an expected
object cannot be acknowledged. This in particular is a basic problem
regarding the integration of object recognition with a world model re-
gardless of the object recognition itself because the vision system always
has only a partial view of the world. In the object database maintained
by the vision module, each object instance has a unique object identifier.
An entry in the object database contains the following information.

identifier Unique identifier of this instance
objectclass The object type
objectcolor The color of the object

features All computed features

pos3d Cartesian 3-D world coordinates

pos2d Polar coordinates

distance Distance to the camera

refpoint Location of the spatial reference point in relation
to the floor

If a behavior with an object list is executed, the vision system nor-
mally generates a new unique identifier for each matching object. The
only exception is when an already known object falls into an object-
dependent circular region around the object’s position. If the object type
and the attributes besides position are compatible, the old identifier is
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Figure 7. Update of the object
database.
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reused and the object’s position is updated. If the objects are not com-
patible, the old identifier is deleted and a new entry is generated.

Figure 7 shows an example of the update process when performing a
fullsearch for balls. The object database assumes a red ball at position A
and a blue ball at position B. The current situation is a red ball at position
A, ayellow ball at position B, and a green ball at position C. The object at
position D is not inside the field of view and is therefore not considered.
Because the object type and attributes at position A are compatible, the
red ball is kept in the object database and only its position is updated.
Although the object type at position B is compatible, the color attribute
does not match. Therefore, the object identifier 2 is deleted, and the
new identifier 3 is introduced. Because the object at position C is new,
the object identifier 4 is introduced.

Each assertion or deletion in the object database is reported to the
knowledge base. In the above example, one has to delete the entry with
the vision object identifier 2 and assert new entries for the objects with
the vision object identifiers 3 and 4. The knowledge base maintains only
references to objects and symbolic descriptions of object attributes. For
example, the geometric model of a bottle is private to the vision system
and of no use at the symbolic level. The bottle model is totally different
in the module that has to plan grasping operations. The symbolic level
maintains only the links to the distributed representations.

4 Person Following

Because the person-following behavior includes a moving platform, the
person-tracking approach has to cope with varying illumination condi-
tions and a changing background. It must also be able to track differ-
ent persons. Furthermore, the available processing power is limited and
has to be shared with other modules. To fulfill these requirements, we
use a combination of a fast color-based approach with a contour-based
method. The color-based method provides regions in which the compu-
tationally expensive contour-based approach is applied. A startup phase
is used to generate both the color and the contour model of the person
to be tracked. During the tracking phase, these models are continuously
updated.

4.1 Color-Based Person Tracking

We developed two color-based methods which can be used interchange-
ably. Further details can be found in [19]. Both methods are based on the
NCC color space, where the intensity information is removed. The two
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Figure 8. Startup following behavior.

VIDERE 1:4

methods are different with respect to the representation of the person-
specific color model. In contrast to many other approaches that use algo-
rithms to detect skin color, we pursue an approach relying on the color
of the persons clothes. Skin-color algorithms normally do not work with
black people and are not view invariant.

4.1.1 Modified NCC method

We first extended the approach presented in [22] to allow tracking
of any unicolored shirt. As shown in figures 8 and 9, the person is
presented to the robot, and a predefined region is used to generate the
person-specific color model. The thresholds (r;, ry, g1, gn) for the red and
green color band are computed as r;/, =, F o, and g/n = pg F 0,
respectively. We assume a normal distribution of the color values of each
color band. The thresholds define a rectangular area in the NCC color
space describing the color distribution to be tracked.

During the tracking phase, the current image is transformed into a
binary image. A pixel is set to 1 in the binary image if the correspond-
ing NCC color value is within the rectangular area specifying the color
model. The center of gravity of the largest blob in the binary image de-
termines the position of the person to be tracked.

4.1.2 Histogram-based method

Because the modified NCC method can track only unicolored shirts, we
introduced color histograms. Based on an image representation in the
NCC color space, we compute a 2-D histogram hyp in which hap(7, 8)
specifies the number of image pixels with the color value (7, g) (figure
10). To detect and locate the person in the image, the histogram values
are backprojected on the image. The pixel value p(x, y) in the backpro-
jection image with the color value (7, g) is set to the histogram value
of (7, 8) : p;z =hap(7, g). The resulting image specifies the frequency
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Figure 9. Predefined region to extract
color model.

Figure 10. Normalized 2-D his-
togram of red and green color bands.

that the image point p(x, y) belongs to the tracked person. Subsequently,
pixels with low probability values are eliminated. The target position is
estimated by a weighted center of gravity in the backprojection image.
This is shown in figure 11 where the person is wearing a two-colored
shirt. As long as the person’s shirt has the same major color distribution
regardless of a frontal or dorsal view, tracking is unaffected by the person
presenting either view.
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Figure 11. Backprojection image.

4.2 Contour-Based Approach

While the presented color-based approaches are fast and fairly robust
against shape changes of the person, they are not always sufficient. If
different persons wear similar-colored dresses, further information is
needed. Therefore, we developed a method based on the approach in
[11] that allows us to track nonrigid objects. A contour model consisting
of a set of edge pixels describes the shape of a person.

4.2.1 Detection of the sought object

In the first step, the RGB image is converted to a graylevel image which
is fed into a Canny operator [5] to generate a binary edge image. Let I,
be the binary edge image taken at time step ¢+ and M; be the model at
time step r represented by a binary edge image. The model may undergo
certain transformations g(M;). We allow just translations in the image
space. Then the sought object is detected by matching the current model
g(M;) against the next image I,,1. To estimate the similarity between
model and edge image, we use the generalized Hausdorff-distance [11]
as a distance measure.

hi(g(Mp), Iy1) = KUy, min [g(p) —q]| m
g€l

Minimizing h; over all transformations, g(.) provides the translation of
the model M; that leads to the best match. Let g* be the transformation
that minimizes (1) and d be the minimal distance.

d =mingehi(8(My), I141) )

Descriptively this means that at least K points of the transformed model
g(M,) lie at most a distance d away from any point of the image I;.

4.2.2 Contour model generation and update

The initial contour model is generated by a startup step. All edges within
a predefined rectangular area are defined to belong to the initial contour
model of the presented person. To be able to handle shape changes, the
model has to be updated. The new model M, is built from the points
of the image I,,; whose distance to a point of the transformed model
g(M;) do not exceed a threshold §. The parameter § controls which

VIDERE 1:4 Integrating Vision-Based Behaviors with an Autonomous Robot 45



Figure 12. Combined color- and
contour-based approach.

Figure 13. Mask image.
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shape changes are allowed within one timestep. That also covers small
rotations and size variations.

M1 =1{q € ;41| min ||g*(p) — qll <8} 3)
PEM;

4.3 Combination of Color-Based and Contour-
Based Approach

Because the contour-based approach is computationally too expensive,
we combine it with the color-based one. The color-based approach is
used for detecting regions where it is reasonable to apply the contour-
based approach. Figure 12 depicts our concept.

To update the contour model, the result of the color segmentation
is used to mask the edge image. A binary image representing the blob
belonging to the detected person is first dilated (figure 13 shows the
dilated blob image) and a rectangular region is added for the persons
head. This considers the characteristic shape of the head and shoulders
when generating the initial model (although the color distribution is
generated only from the body). This binary mask is used to eliminate
edge pixels belonging to the background. In figure 14, the updated
contour model is shown. Masking the edge image before updating the
contour model prevents the unlimited growth of the contour model.
(This has been a problem with the original contour-based approach.) In
addition, masking the edge image allows the model to regenerate when
a partial loss of the model occurs.
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Figure 14. Model update.

Figure 15. Distance calculation.
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4.4 Implementation

To implement the person-following behavior on our mobile robot, con-
trol commands for the robot’s actuators have to be generated. After de-
tecting and locating the sought person within the image, we use a very
simple camera model to implement a reactive following behavior. The
video cameras of our robot are mounted on a pan-tilt unit (ptu) with
two degrees of freedom. The ptu is used to implement a gaze holding
behavior, steadily holding the person in the center of the image. To com-
pute the control commands for the ptu, we assume a known focal length
f and size of the CCD-Chip. A camera’s field of view y is computed as

Yo =2 arctan(%ﬁem) horizontally and vertically. The ptu-angles are
B _
modified by o, = sz al yx Where xp denotes the number of columns and

x the estimated center of gravity of the person in the image. These di-
rections are used as input for other modules that are responsible for
generating collision-free motions.

For holding a given distance between target and robot, we use a
method based on the disparity between two simultaneously shot images.
The conjugate pair we use are the centers of gravity of the segmented
color blobs in both images. Our model is shown in figure 15. The dis-
tance z can be computed as z = which is precise enough for a

xX|—xp°
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Figure 16. Distance calculation
through blob height.
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simple distance estimation to decide if the robot has to accelerate or
decelerate. If the person is lost more than five times in sequence, a stop
command is sent to the motion control. After redetection, the motion
control receives new goal information.

A second approach requires only a single camera. The distance to the
person being tracked is calculated from the size of the segmented color
blob. Because different-colored shirts of several persons are almost iden-
tical with respect to their height, we use the assumption of a known
height to calculate the distance to the object from monocular images. We
use only the blob’s height because the height (in contrast to the width)
hardly changes when the person moves. This works fine as long as the
segmentation of the color blob is appropriate. Figure 16 shows the strat-
egy calculating the distance to the object. As experiments confirm, as-
suming shirts to be 350 mm high provides good distance measurements
also for different persons wearing different shirts. With this information,
distance calculation reduces to a simple triangle calculation:

blobheight

= i le ——————
@ = openiig ang eimageheight

assumed size

tan o

5 Integration on the Robot

5.1 Person Following

At the execution layer, the capabilities of the person-following module
are modeled as two different behaviors. A behavior can be executed by
putting it on the agenda of the execution layer. The startup behavior
allows the model of the person to be built (figure 8). The task net
for this behavior provides the following individual steps. First, speech
output is used to ask the person to stand in front of the camera and
to acknowledge this by speech input. The startup step is then executed
within the person-following module. An event reports the result, and
speech output is used to inform the person. In case of success, a unique
identifier is provided to reference the person, and the startup step is
finished.
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Figure 17. Person following.

Figure 18. Data flow during person

following.
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The person-following behavior expects the identifier of the person
presented before. Executing the person-following behavior includes a
more complicated configuration at the skill level. The person-following
module gets images from the image server and provides the ptu with
control commands. The motion controller is provided with the distance
to, and direction of, the person relative to the robot. This module gets
laser scans and tries to move into the proposed direction without colli-
sion. Speed is adjusted to the distance between the person and the robot.
Different events are used to synchronize execution with the descrip-
tion in the sequencing layer. The person-following module can report
whether the person has been lost. In this case, the robot stops but tries
to reacquire the person. The motion controller, for example, can report
that no path is available. The appropriate event-handling procedure is
invoked within the task net at the execution layer. The person-following
behavior is shown in figure 17, the data flow among involved modules
in figure 18.

5.2 Vision Module

The capabilities of the vision module are also represented by different
behaviors at the execution layer. Each behavior includes a task net and a
description of the configuration of the skill level. The task net describes
the different execution steps and specifies how to handle events reported
from the skill level. Depending on the behavior, different skills are in-
volved and different events can occur.

As an example, figure 19 shows the task net of the vision-based
object approaching behavior. The error-handling code is not included in
this example. The behavior requires an object identifier to be specified
(which references a knowledge base entry). First, the follow-object
behavior moves close to the expected object location as provided by the
knowledge base. Then, the search-object behavior is used to confirm
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Figure 19. Task net for approaching
an object.
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(define-rap (goto-object ?objectid)
(method
(context (object ?type ?objectid ?color ?approach-distance))
(task-net
(sequence

(tl (follow-object ?objectid))
(t2 (search-object ?type ?color => ?object))
(t3 (move-to-object-blind ?object ?approach-distance))

the expected object. If the object is near the expected position, the
current object position is updated in the knowledge base. Because the
object is out of sight when the robot has to move very close to it, the last
step is a blind move to the updated position.

6 Experiments

The overall system is being used in our everyday office environment,
where it has to fulfill different tasks. A RWI B21 system is used as the
mobile platform. The robot is equipped with two color cameras with
several automatic image-acquisition features that are activated during
normal operation. All computations are performed onboard by two dual
Pentium Pro 200 MHz systems running Linux. Normally, one processor
handles the vision algorithms, and the other modules are distributed
over the other processors.

6.1 Person Following

Using 192 x 144 images (color resolution of 8 bits per band) for person
following, the cycle time is approximately 1 sec. for the combined color-
and contour-based approach. This cycle time is achieved with the inte-
grated system in which other tasks of the robot are running in parallel.
Our robot successfully tracked different persons through our building at
speeds up to 400 mm/s. The average speed normally is approximately
300 mm/s; the average length of a run is 5 min.

We carried out several experiments to show the performance and pos-
sible failure situations. The person-following behavior has been tested
with several people wearing different shirts. A part of their NCC color
representation is shown in figure 20. Using solely the NCC or histogram-
based method, a person is lost only when he or she is occluded by other
objects in the scene longer than five frames, when an object with the
same color enters the scene and this color blob is larger than the shirt’s
blob, or when the person moves too fast and leaves the camera’s field
of view. Figure 21 shows two people wearing similar green shirts. Their
representation in NCC space is shown by the two solid overlapping boxes
in figure 20. A segmentation result from a tracking sequence is shown
in figure 22. In this case, the left blob denotes the person who had to
be tracked. Because the new blob is larger than the original one, the fo-
cus of attention jumped to the wrong color blob. Subsequently, the robot
tracked the wrong person when relying solely on a color-based approach.
The same error occurs when the background contains large color regions
with almost the same color as the person’s shirt.

Small amounts of varying illumination due to passing beneath lamps
or moving next to windows have been handled robustly by removing
intensity from the RGB color values. Figures 23 and 24 show different
lighting conditions that can be handled without problems. However,
errors due to strong illumination changes may still occur.
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Figure 20. Several shirts in NCC NCC-Space
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Figure 21. Two people wearing
similar-colored shirts.

Confusions due to persons wearing similar-colored shirts may not
occur when using the combined color- and contour-based approach.
Swapped persons are always detected by the contour-based approach
due to their changed outline. Figure 26 shows a contour model derived
from the original image shown in figure 25. One disadvantage, however,
is the easy loss of the person’s contour model as shown in figures 27
and 28. In this case the person to be tracked was occluded by another
person which led to a loss of the model. Therefore the system reports a
lost person event, stops, and requests a new startup procedure. Altogether
this method is much more reliable referring to confusions of persons.

Because the person-following behavior is monitored by the execution
layer, losing the sought person can be handled. In such a case, speech
output is used to ask the person to present him- or herself once more
to acquire a new model. The coordination is accomplished by task nets,
in which context-dependent execution orders can be expressed comfort-
ably. As one cannot always prevent the person-following behavior from
becoming confused by dynamic obstacles or other similar persons, task
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Figure 22. Segmented blobs leading
to confusion.

Figure 23. People staying in bright
light.

Figure 24. People staying in the dark.
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nets are an easy way to specify how to cope with such situations as long
as such situations are detected reliably. In particular, speech output is
very helpful in interaction with people as the robot can ask the tracked
person to present himself again in a suitable way to recapture the person.

In figure 29, the accuracy of distance measurement with stereo cam-
eras is shown. The stereo distance measurement works fine as long as
the segmentation is appropriate. Appropriate segmentation denotes that
the center of gravity of both blobs (left and right camera) mark the same
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Figure 25. Original image.

Figure 26. Contour model extracted

from the original image.

Figure 27. Partly occluded person.
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point on the object’s surface. If this corresponding pair differs, the dis-
tance measurement leads to wrong results. Also, changing illumination
conditions can affect the color blob segmentation so that the correspond-
ing blobs do not have the same shape (which leads to an erroneous
distance measurement).

Both stereo and monocular approaches provide distance measure-
ments with similar accuracy sufficient for our person-following behavior.
The stereo approach is computationally more expensive but does not
need the assumption of a known object height. The monocular approach
has its advantage in speed but one has to cope with distance-estimation
errors resulting from the height assumption. This assumption leads not
to a bigger variance but to an always too small or too large distance. The
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Figure 28. Loss of the person’s
contour model.

Figure 29. Accuracy of distance
measurement with stereo cameras.
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absolute value is not critical because the distance is used only to control
the acceleration behavior of the robot.

The distance measurement fails when background blobs with similar
color exceed the size of the shirt’s color blob. (This is a rare event
because the robot’s motion control always ensures that the robot resides
nearby the person, guaranteeing the shirt’s blob is the largest in the field
of view.)

6.2 Vision Module

Typical tasks involving the vision module are collecting objects (figure
30) in a certain area and putting them into appropriate trashcans (fig-
ure 31). The vision module has to look for objects and trashcans while
exploring the area. Each recognized trashcan is stored in the knowledge
base, which allows the robot to move to the nearest trashcan as soon
as an object has been found and picked up. The robot drives with 200
mm/s when searching for objects. Using the ptu to scan the workspace,
it takes approximately 6 sec. to inspect an area of 30 sq m. To pick up
an object, the robot has to approach it in such a way that the gripper
is placed correctly. This is done by a tracking behavior, in which the vi-
sion module provides heading information for the motion controller. An
event signals when the object has been reached and can be picked up.
The coordination of the different steps is accomplished by the execution
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Figure 30. Some example objects.

Figure 31. Putting a ball into a
trashcan.

\

layer guided by the task net. Depending on the required behavior, differ-
ent configurations of the vision module and other skills are selected and
synchronized by events.

Some of the objects detectable by the vision system are shown in
figure 30. The discrimination performance of the used features with
respect to our objects is now discussed in more detail. A feature provides
useful discrimination information if the feature value curve with respect
to the tilt angle has a big distance to curves of other objects over all
tilt angles. The correlation between the tilt angle and different approved
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Figure 32. Shape feature curves.
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features for the ball, trashcan, and cylinder is shown in figure 32. The
object size in figure 32(a) is defined as the size of the color blob after
the color segmentation and is measured in pixels. For many objects, the
size is already sufficient for classification. The dashed lines in figure 32
show the upper and lower bounds of the feature values of an object
that is assumed to be a cylinder. It’s obvious that further information
is needed for a robust classification of cylinders in this case. The object
eccentricity, shown in figure 32(b), provides the necessary information.
The eccentricity values of cylinders and trashcans differ strongly over
all tilt angles. If color, size, and eccentricity do not allow objects to
be discriminated, we use further features like the x size and y size of
the bounding box, also shown in figure 32(c) and 32(d). Noticeable are
the fluctuations of the feature value curves, which result from changing
illumination conditions during measurement.

To show the robustness of our object classification method, we per-
formed several experiments. A typical location is shown in figure 33 and
is characterized by varying illumination conditions due to a mixture of
synthetic and natural light. The robot drove straight on with different
speeds. The objects shown in figure 30 were placed at different distances
to the robot’s path but in its field of view. The camera was fixed for all
experiments and looked sidewards and downwards with an angle about
30 deg. each. The task of the robot now was to continuously look for all
known objects within its field of view during its movement. The results
are based on 160 different runs each with five objects to be classified.
(The results are summarized in table 1.)

As one expects, the recognition rate decreases with increasing speed.
These results were obtained without using a gaze control to center on
found objects and to reclassify them because we wanted to quantify
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Table 1. Classification Results. Speed [mm/s] Rate of recognition [%]

0 98.0 %
100 96.1 %
200 85.7 %
300 76.9 %

Figure 33. Cylinder scenario.

(a) Approaching lot in stock 1 (b) Driving to stock 2

the robustness of the object-detection and classification process itself.
During these experiments, any object position in the image is allowed
including peripheral positions where objects are warped due to lens
distortions. During our experiments no false classification of detected
object occurred. (This was achieved by restricted settings of interval
boundaries in the classificator, which of course caused omitted objects.)
Therefore, the results in table 1 show the number of omitted objects
during our experiments. This result strongly supports the appropriate-
ness of the color-based selection of regions of interest and the tilt-angle-
dependent selection of interval boundaries to cope with sight-dependent
object appearances.

However, some critical problems can hardly be handled with our ap-
proach. Failures occur if objects overlap and the occluded object cannot
be seen completely. In this case, the computed feature values do not fit
the intervals stored in the model database and are therefore mainly omit-
ted. Another potential error is caused by the occlusion of an object with
the same color. In this case, the color segmentation merges both objects
to wrongly form a single large blob whose features are then calculated
for the following classification step. Those values normally do not fit any
of the known objects and again result in omitted objects. Because the
robot moves, occlusion is mostly only a temporary problem at a particu-
lar viewing angle. Problems are caused only if the objects are very close
to each other.

Another problem is raised by the robot’s motion. Depending on the
speed, the images are blurred and the feature values of the blurred color
blobs do not fit very well. The same problem occurs with reflections
caused by smooth surfaces of an object. This also leads to an irregular
blob shape with feature values that do not correspond to the reference
values. Further problems may appear if the illumination conditions vary
strongly. In this case, the color segmentation possibly fails. The color
segmentation is normally adjusted so that it is not so sensitive that it
omits a potential object. Against that, the subsequent classification step
is very restrictive.
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The experiments showed that the proposed classification method is
particularly suitable for a moving platform. It provides good recognition
rates in the static case and acceptable results in the dynamic case in
realtime. Therefore, we preferred it to other methods that provide a
better rate but are normally much slower.

6.3 Cylinder Scenario

Figure 33(a) and 33(b) show an integrated scenario. The robot has to
achieve different object configurations within the two stock areas. All or-
ders are given via speech input. An order is, for example, “Bring all blue
cylinders from stock 1 to stock 2”. If the order is specified completely, it
is translated into an agenda entry. In this particular case, the robot has to
drive in front of stock 1. Then the vision-based object classification is ac-
tivated to report the allocation of stock 1. Depending on the object type,
either a vision- or laser-based approaching behavior is used. Cylinders
are approached only with a laser-based maneuver because the final posi-
tion has to be within 1 cm for grasping. When moving to stock 2, motion
control has to consider the new shape of the robot. When reaching stock
2, free lots for placing the object are searched with the vision system. All
task-relevant expectations are verified by sensing behaviors before exe-
cuting a behavior relying on this information. This makes sure that, for
example, changes of stock allocations during task execution are recog-
nized and handled correctly. The overall coordination of single steps is
completely handled by the sequencing layer. This also includes the han-
dling of failure conditions and deciding when to stop execution because
the final configuration can’t be reached any longer.

7 Conclusion

We have described the vision modules on our mobile robot together with
the currently used overall system architecture. The three-layer architec-
ture supports the integration of different modules to form a complex
system that can execute a wide variety of different tasks. Practical ex-
perience showed that the requirements of a mobile platform and the
necessity to build an integrated system make specific demands on the
vision component. These requirements are best met by using simple but
robust approaches. Due to the high bandwidth needed by vision systems,
task-dependent behavior selection is crucial. By a context-dependent
configuration of vision-based behaviors, limited resources can be shared
adequately. Therefore, the vision components have to be highly mod-
ularized and have to provide a configuration facility. In particular, the
used architecture shows advantages with respect to the declarative rep-
resentation of different configurations and the consistent representation
of task-dependent parameter settings. This allows the integration of sev-
eral approaches with overlapping capabilities and specific advantages
that can be activated depending on the current situation, thus avoiding
the need for a single approach to handle all occuring situations.

The kind of integration described in this paper provides a very close
integration at the level of task execution and behavior coordination.
However, the interaction between the symbolic environment model and
the vision components has to be extended further. Currently, expected
objects can be confirmed by the vision system as long as they are within
the field of view. Also, newly seen objects or incompatibilities between
object attributes can be reported. The more difficult problem, however,
is to decide whether an expected object disappeared. This can be done
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only for objects in the field of view. For objects lying outside the field
of view, nothing can be said. Therefore, it is necessary to have a close
interaction with a geometric model that allows the determination of
which objects are expected to be visible. Hence, one part of our current
work within the SFB aims at a deeper integration of vision at the level of
map building and representation of the environment. Those questions
are particularly relevant to bridge the gap between standalone vision
algorithms and autonomous systems using vision as one of their basic
sensing capabilities.
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