
Article 1

Active Knowledge-
Based Scene Analysis

D. Paulus
U. Ahlrichs
B. Heigl
J. Denzler
J. Hornegger
M. Zobel
H. Niemann

Videre: Journal of Computer Vision Research

Quarterly Journal

Winter 2000, Volume 1, Number 4

The MIT Press

Videre: Journal of Computer Vision Research (ISSN 1089-2788) is a
quarterly journal published electronically on the Internet by The MIT
Press, Cambridge, Massachusetts, 02142. Subscriptions and address
changes should be addressed to MIT Press Journals, Five Cambridge
Center, Cambridge, MA 02142; phone: (617) 253-2889; fax: (617)
577-1545; e-mail: journals-orders@mit.edu. Subscription rates are:
Individuals $30.00, Institutions $125.00. Canadians add additional
7% GST. Prices subject to change without notice.

Subscribers are licensed to use journal articles in a variety of ways,
limited only as required to insure fair attribution to authors and the
Journal, and to prohibit use in a competing commercial product. See
the Journals World Wide Web site for further details. Address inquiries
to the Subsidiary Rights Manager, MIT Press Journals, Five Cambridge
Center, Cambridge, MA 02142; phone: (617) 253-2864; fax: (617)
258-5028; e-mail: journals-rights@mit.edu.

© 2000 by the Massachusetts Institute of Technology

We present a modular architecture
for image understanding and active
computer vision that consists
of three major components:
sensor and actor interfaces
required for data-driven active
vision are encapsulated to hide
machine-dependent parts; image
segmentation is implemented in
object-oriented programming as
a hierarchy of image operator
classes, guaranteeing simple and
uniform interfaces; knowledge
about the environment is
represented either as a semantic
network or as statistical object
models or as a combination of
both; and the semantic network
formalism is used to represent
camera actions that are needed in
explorative vision.

We use these modules to create
two application systems. The
emphasis here is object localization
and recognition in an office room:
An active purposive camera
control is applied to recover
depth information and to focus
on interesting objects, and color
segmentation is used to compute
object features which are relatively
insensitive to small aspect changes.

Keywords: Computer vision
system, object-oriented design,
object recognition, scene analysis,
mobile systems, knowledge-based
analysis.

Active Knowledge-Based Scene Analysis
D. Paulus1,2, U. Ahlrichs2, B. Heigl2,
J. Denzler2, J. Hornegger2,
M. Zobel2, H. Niemann2

1 Introduction
Autonomous mobile systems with visual capabilities are a great chal-
lenge for computer vision systems because they require skills for the so-
lution of complex image-understanding problems, such as driving a car
[52] or exploring a scene [56]. In this contribution, we present a vision
system that provides mechanisms for knowledge-based image under-
standing and active computer vision. It combines and links various mod-
ules for low-level image processing, image segmentation, and high-level
image analysis. We combine data-driven and knowledge-based tech-
niques in such a way that a goal-directed exploration guided by the
explicitly represented knowledge is possible. The major goal here is to
explore a scene with an active camera device. This can also be used
in autonomous mobile systems that navigate and act based on visual
information, such as the system described by Schlegel et al. in “Integrat-
ing Vision-Based Behaviors with an Autonomous Robot.” Autonomous
systems need an explicit representation of camera actions and search
strategies. A literature review in [8] on the topic of knowledge-based
image analysis gives a comprehensive discussion of the state of the art.
Image analysis systems have also have been reported, for example, in
[29, 30] and in the other contributions to this volume. In [29] as well
as here, semantic networks are used as a formalism for knowledge rep-
resentation. We now use this formalism for the unified representation
of objects, scenes, camera actions, and strategies to provide flexible and
exchangeable strategies for active vision and scene exploration.

Configuring or implementing image-processing systems is a time-
consuming task that requires specialized knowledge on the effects of
image-processing algorithms as well as knowledge about the imple-
mentation and interfaces. Clearly, software engineering is required for
the application programmer of image-processing systems. A software
system for image understanding usually has a considerable size. The
major problems in software design of general imaging systems are that,
on the one hand, highly runtime-efficient code and low-level access
to hardware is required, and that, on the other hand, a general and
platform-independent implementation is desired that provides all data
types and functions also for at least intermediate-level processing, such
as results of segmentation. Today’s software engineering is closely cou-
pled with the ideas of object orientation and genericity which can help
simplify code reuse; if applied properly, object orientation unifies in-
terfaces and simplifies documentation by the hierarchical structure of
classes. A key mechanism of object-oriented programming is polymor-
phism [6]. In this article, we give examples of how polymorphism can
simplify image-processing programs and how it can keep the required

1. paulus@informatik.uni-erlangen.de

2. Lehrstuhl für Mustererkennung (LME,
Informatik 5) Martensstr. 3, Universität
Erlangen-Nürnberg, 91058 Erlangen
http://www5.informatik.uni-erlangen.de
Copyright © 2000
Massachusetts Institute of Technology
mitpress.mit.edu/videre.html

VIDERE 1:4 Active Knowledge-Based Scene Analysis 6

efficiency. Genericity provides an alternative solution to software en-
gineering problems [28]. Both concepts are available in C++ [50].
Object-oriented programming has been proposed for image processing
and computer vision by several authors, in particular in the context of
the image-understanding environment [21]; this approach is mainly
used to represent data. We also use object-oriented programming for
operators and devices.

In section 2, we outline the general structure of our system and the
object-oriented implementation. In section 3, we describe modules that
are provided by the system; the emphasis is on the knowledge represen-
tation for computer vision and on the extension of the semantic network
formalism to represent strategies and camera actions. We outline the
object-oriented implementation. We apply these modules in section 4
to two problems in computer vision.

The goal of our example application in section 4.1 is to explore an
office room. Objects are hypothesized in the image using color. Their 3-D
position is estimated from a coarse 3-D map computed from trajectories
of colored points that are tracked during a translational motion of the
active camera. The objects are chosen in such a way that they cannot
be distinguished solely by their color. Closeup views are captured and
segmented into color regions and features of these regions are subject
to matching with the knowledge base. If objects are not found in the
scene, the camera is moved based on action descriptions found in the
knowledge base.

In section 4.2, we describe a recent research project in the area of
visual guided autonomous mobile systems. First results for visual self-
localization based on color histograms in natural office scenes are pre-
sented.

We conclude with a summary and future directions in section 5.

2 System Architectures
The need for a flexible, knowledge-based, computer vision system with
real-time capabilities at least for low-level processing lead to AN IMage
AnaLysis System (ANIMALS, [35, 37, 38]) which is implemented in
C++. It provides modules for the whole range of algorithms from low-
level sensor and actor control up to knowledge-based analysis.

2.1 Data Flow for Knowledge-Based Analysis
The general problem of image analysis is to find the optimal description
of the input image content that is appropriate to the current problem.
Sometimes, this means that the most precise description of the image
data has to be found; in other cases, a less exact result that can be
computed faster will be sufficient. In many image-analysis problems,
objects have to be found in the images and described by terms that fit to
the application.

These general problems can be divided into several subproblems. Af-
ter an initial preprocessing stage, images are usually segmented into
meaningful parts. Various segmentation algorithms create initial sym-
bolic descriptions of the input data [31] which we call segmentation
objects [35]. Models in a knowledge base containing expectations on the
possible scene in the problem domain are matched with segmentation
objects to provide a final symbolic description. This is best achieved if

VIDERE 1:4 Active Knowledge-Based Scene Analysis 7

Figure 1. Data flow in an image-
analysis system. Models

Model

Images
Objects

Generation

Description

Segmentation

Camera
Feedback

AnalysisSegmentation

the representation for the models is similar to the structure of segmenta-
tion results. A definition fulfilling this similarity constraint is shown for
segmentation objects and for semantic networks in [31].

Modern architectures for image analysis incorporate active compo-
nents such as pan/tilt devices or cameras on a robot. Such devices lead
to feedback loops in the course from image data to image descriptions. A
top-level view of the main components in our image analysis is shown in
figure 1; data is captured and digitized from a camera and transformed
to a description that may cause changes in camera parameters or tuning
of segmentation parameters. Models that are collected in the knowledge
base are created from segmentation results (in section 3.3) or at least
have similar structure (in section 3.6). These models are used for the
analysis. Image-processing tasks are shown in oval boxes; data is de-
picted as rectangles.

The dotted lines in figure 1 indicate that a control problem has to be
solved in active vision or active exploration resulting in a closed loop
of sensing and acting. Information is passed back to the lower levels of
processing and to the input devices; this way, parameters of procedures
can be changed depending on the state of analysis (or the values of
the camera and lens can be modified). Changes to parameters of the
image-input process, selection of appropriate algorithms, and parameter
control for both are summarized under the term action.

2.2 Examples of Other Software Environments
From the variety of software systems for image processing and analysis,
we choose two well-known examples.

A group of leading experts in image analysis combine their efforts
for a common image-understanding environment [21]. The system
was planned as a basis for image processing, computer vision, and
knowledge-based image analysis. The system covers all areas of imaging
with many applications; because there are many contributors and the
goal is to use an object-oriented implementation, a large set of ideas
has to be united into a common hierarchy of classes. The design goals
are object-oriented programming, graphical interfaces, extensibility and
program exchange, and performance evaluation.

Real-time processing was explicitly excluded from the original goals
[21, p. 160]. In the present version, no classes are provided for devices
such as cameras. This environment is applied, for example, in [24] to
the analysis of satellite images.

The other widely used system is Khoros [41], which provides a nice
graphical user interface for image-processing systems. The data-flow
architecture of the system facilitates complex combinations of image-
processing modules. Data structures beyond images and matrices are

VIDERE 1:4 Active Knowledge-Based Scene Analysis 8

not available to the user. Therefore, knowledge-based processing is not
integrated in the system.

Real-time processing as well as symbolic data structures are crucial for
active exploration. Both systems would have to be modified or extended
to be used for our purpose of active scene exploration and robotics. Our
system, which is described next, provides general interfaces to devices
used in active vision as well as interfaces to knowledge-based analysis.
The design goals noted above are valid for this system as well. How-
ever, the graphical user interface is decoupled from the algorithmic part
because it is not required in some real-time applications.

2.3 Object-Oriented Design for Image Analysis
The algorithms and data structures of our system are implemented in a
hierarchy of picture processing objects (HIPPOS, written as ı̌ππ ç [35,
38]), an object-oriented class library designed for image analysis that is
based on the NIHCL C++ class library [20]. In [38], the data interfaces
were defined as classes for the representation of segmentation results.
The segmentation object (SegObj in figure 2) [38] provides a uniform
interface between low-level and high-level processing; its components
can be arbitrary objects resulting from point, line, region, or surface seg-
mentation. Images, segmentation objects, and additional classes for rep-
resentation of segmentation results (such as chain codes, lines, polygons,
and circles) are derived from the HipposObj (top of figure 2). In [4], this
system is extended to a hierarchical structure of image processing and
analysis classes and objects (cmp. [7]). Objects are the actual algorithms
with specific parameter sets that are also objects (OperatorOpt in figure
2, [4]). Classes as implementation of algorithms are particularly useful,
when operations require internal tables that increase their efficiency (be-
cause tables can then be easily allocated and handled). The basic struc-
ture of the class hierarchy for line-based image segmentation is shown in
figure 2. On a coarse level, operators for line-based segmentation can be
divided into edge detection, line following (for example, EdgesToSegObj
in figure 2), gap closing, and corner and vertex detection. For each pro-
cessing step (implemented here as a class), there exists a large variety of
choices in the literature. When the whole sequence of operations is sub-
jected to optimization—either manually or automatically—it is crucial
to have similar interfaces to exchangeable single processing steps, such
as several corner-detection algorithms. As shown here, this is greatly
simplified by object-oriented programming and polymorphic interfaces.
Only the type of input and output data has to remain fixed for such a
system. This is guaranteed by the abstract classes directly derived from
the class Operator; for example, the EdgesToSegObj defines the interface
for the conversion of edge images to segmentation objects.

Many operations in image processing can be structured hierarchically
in a straightforward manner. Some edge-detection operators can be spe-
cialized to edge mask operators; one of them is the Sobel operator class.
Filters can be linear or nonlinear; morphological operations are one type
of nonlinear operators; the median is one special case of this type. Such
operators can be implemented in a hierarchy of classes for operations
(cmp. [7, 17]). Objects are the actual algorithms with specific parame-
ter sets that are also objects [4]. Classes as implementation of algorithms
are particularly useful when operations require internal tables that in-
crease their efficiency. Using inheritance and virtual functions in C++
for the interface declaration, possible new derived classes are forced to

VIDERE 1:4 Active Knowledge-Based Scene Analysis 9

Figure 2. Part of a class hierarchy
for image operators from [4] in UML
notation.

FindVert

minLength

upper,lower
ClGap
width

HystNMU

Theta, minSeg
SplitAndMerge

minK, maxK
Sobel CornerH

minDist

CornerK
minK, maxK

ShenCastan

Input, Output Options
apply

SegObj

EdgesToSegObjEdgeDet

HipposObjImage

SegObjEdgToSegObj SegObjToSegObj

CornerDetect

OperatorOpt Operator

obey the interface definition. The call to a newly integrated operation in
an existing program can thus be performed with small changes—or even
without the need of changing the existing program syntactically. This
greatly simplifies the extension and modification of image-analysis sys-
tems. When, instead of operator classes, function definitions collected in
an interface definition, new implementation for similar purposes (such
as a new edge detector as an alternative to an existing one) may change
the type and number of parameters compared to another existing func-
tion. If this function is now to be integrated into an existing program,
the old calling syntax has to be replaced by the new one. If it is desired
to have the alternative of calling one or the other function, the code will
not only have to be changed but extended. Both is mostly avoided by the
operator hierarchy, yet providing exactly the same functionality without
loss of runtime efficiency. An example is given in section 3.4.

Several segmentation algorithms implemented in our system operate
on graylevel, range, or color images using the interfaces provided by the
segmentation object. To give an example, the application in section 4.1
works on color images and applies a split-and-merge algorithm extended
to color images. The result is represented as a segmentation object con-
taining chain code objects for the contours of the regions. The major
advantages of operator classes for segmentation and image processing
can be summarized as follows.

Algorithms can be programmed in an abstract level referencing only
the general class of operations to be performed; extensions of the
system by a new derived special operator will not require changes
in the abstract algorithm.
Such an extension cannot change the interface which is fixed by
the definition in the abstract base class. This guarantees reusable,
uniform, and thus easy-to-use interfaces.1 In figure 2, this is shown
for the edge detectors (Sobel and ShenCastan) and for two different
corner detectors (from [4]).

1. Of course, this is not always possible.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 10

Information about the operator that is actually used is available. For
example, a program may just reference a filter object; during run-
time, it will be decided which concrete filter should be used. When
evaluating the performance of a system, several possible implemen-
tations of one algorithm can be tested, and the program reports
which implementation was used.

In section 2.4, we argue that these advantages produce no additional
runtime overhead. Similar hierarchies as the one in figure 2 exist for
filters and for region-based segmentation.

2.4 Software Experiments and Experience
Our system is compiled and tested for various hardware platforms, in-
cluding HP (HPUX 9.07 and 10.20, both 32-bit and 64-bit versions), PC
(Linux), SGI (IRIX 6.5) and Sun (Solaris).

The NIHCL class library served as a tool for most of the general
programming problems, such as dictionaries, lists, and external data
representation. It is available for all platforms listed above. STL was not
available when the system was initiated in [38]2 but has now been used
as well.

Operator classes are invoked by virtual function calls. This overhead
in comparison to direct function calls is negligible, as long as the op-
eration to be performed is nontrivial (as is the case in the examples).
Pixel access—of course—may not be programmed by virtual function
calls. This would slow down processing too much. Instead, the concept
of genericity is used here (provided by templates in C++). Safe and effi-
cient pixel access without any runtime overhead is provided as described
in [35]. The application in section 4.2 shows that real-time processing
for low-level vision is possible using this approach.

3 Modules of ANIMALS
Various modules for common computer vision algorithms are provided
in AMIMALS. These modules were implemented for several applications.
Because all segmentation algorithms use the common interface for data
exchange provided by the segmentation objects, the compatibility is
high. This flexibility first requires additional effort for portable software.
In the long run, it reduces the effort of software maintenance. In addi-
tion to data algorithms that were represented by classes in section 2.1,
devices are also encapsulated by classes in section 3.1.

3.1 Sensors, Actors, and Calibration
Due to the variability of the hardware connected with an image-analysis
software system, interfaces to several types of frame grabbers, cameras,
lenses, stereo devices, and so forth have to be provided by the system.
In order not to burden the programs by a large number of switches, all
these special devices are encapsulated as classes that share their com-
mon behavior in a base class. Whereas the internal implementation may
be sophisticated and thereby provides the required performance, the
user interfaces for these classes are simple in C++. For example, the
vergence axis of the stereo head is equipped with a stepper motor, as is
the pan axis of a surveillance camera. Both motors have completely dif-
ferent control syntax. They can, however, be encapsulated in an abstract

2. The first classes in C++ for this system were written in 1988; some of them are still
used.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 11

Figure 3. Class hierarchy for motors
used in active vision systems.

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

PanTiltDevice

getAxis

IP_DEV

Motor Axis

inc, move, homeinc, move, home

zoom, focus

SMotor

pan, tilt,

CanonCam

StepMapTab StepMapTabStepMapTabStepMapTabStepMapTabStepMapTab

inc, move, home

position

TRCZoomR CanonAxis TRCAxisCanonZoom TRCZoomLTRCFocusLTRCFocusRCanonFocus

TRCTiltAxis

pan, tilt
cameraL, cameraR

TRChead

CanonPanAxis TRCPanAxis TRCVergenzLAxisTRCVergenzRAxisCanonTiltAxis

“stepper motor object” (SMotor in figure 3), which can be assigned the
desired position by the assignment operator in C++. Thus, both axes
are now addressed by the same syntax, and the functions using them are
much more portable. An example for the efficient use of a generic im-
plementation for an actor, which relates the two applications in section
4.1 and section 4.2, is given at the end of section 4.2.

Initialization of frame grabber cards usually requires many function
calls and choices from many parameters. This is easily hidden in a class
for a frame grabber object which provides default values. The basic
functionality such as the selection of the image size is provided by an
abstract base class that releases the application programmer from the
machine-dependent part of the code or image input.

Calibrating zoom lenses is a complex problem because the motors
used in consumer cameras will not always lead to accurate positions.
For the object-localization system in section 4.1, we need the enlarge-
ment factor related to a given position of the zoom stepper motor. The
calibration according to [55] is hard to do fully automatically because
a calibration pattern has to be chosen that is visible and that provides
stable segmentation data for all possible focus and zoom settings.

In a simple approach, we investigated the enlargement for two
slightly different zoom settings for an image’s arbitrary lines, defined
by two corresponding points each. The corresponding points are found
by tracking color points (section 3.5) during zooming. To compute the
factor from the smallest focal length to a given position, all intermediate
results have to be multiplied. Naturally, this approach is not very robust
because local errors accumulate. We took the logarithm of the factors
and approximated these values by a regression line (figure 4, left). The
enlargement factors are computed by the exponential function (figure
4, right). The focal length of the minimal zoom position has been de-
termined using a calibration pattern. All other focal lengths equal the
product of the enlargement factor and the minimal focal length. In the
experiments in section 4.1, this method provided reasonable accuracy.

The results of the calibration algorithm is recorded together with the
stepper motor object (SMotor) which is part of a pan/tilt unit (a Canon

VIDERE 1:4 Active Knowledge-Based Scene Analysis 12

Figure 4. Logarithm of local en-
largement factors and estimated
enlargement factors.

.

0.003

0.0025

0.002

0.0015

0.001

0.0035

0.0005
10008006004002000

Regression line

0.004

Zoom setting

Log of local enlargement
.

.

1

2

3

4

5

6

10

11

9

8

0 800

7

1000600400200

Enlargement

Zoom setting

Figure 5. Localization of objects by
histogram backprojection according
to [51].

Given: image histogram T = [Tl]l=1 . . . NL of an object,

Wanted: object position (it , jt)

Compute color histogram S= [Sl]l=1 . . . NL of given image

FOR Each bin l ∈ {1, . . . , NL}
Ql =min{ Tl

Sl
, 1} (compute ratio histogram Q= [Ql]l=1 . . . NL)

FOR All positions (i, j) in the image

gi,j :=Qζ(fi,j), where fi,j denotes the color vector at position (i, j)

h := D ∗ g, where ∗ denotes convolution

(it , jt) := argmaxi,j (hi,j)

pan/tilt device CanonCam in figure 3, which has a tilt axis Canontilt-
Axis). (This axis contains the calibration information StepMap as a table
mapping the step number to an angle.) Persistent storage of this object
records all available calibration information.

3.2 Color
Many algorithms in ANIMALS operate on color images as well as on
graylevel images. Color provides simple cues for object localization be-
cause it is insensitive to aspect changes of moderate angles. Color his-
tograms are used in [51] to form hypotheses for the position of an object
in the 2-D projection in an image. A color image [fij]1 ≤ i ≤M, 1 ≤
j ≤ N is searched for an object which is characterized by its histogram
T = [Tl]l = 1, . . . NL in some quantization NL. In addition, the approxi-
mate size of the object in the image is needed for the algorithm; this size
is represented by a mask Dr covering the object. The function ζ maps a
color vector f to an index l = 1, . . . NL in the histogram and thus permits
us to use arbitrary quantizations. The principle of the algorithm is shown
in figure 5. The histogram S of the image is used to produce an output
image B of the size of the input image; internally, an intermediate image
A of the same dimension is used.

Color histograms for different color spaces are again represented as
classes. Backprojection is a method of a common base class for these
histograms. This means that the algorithm in figure 5 can mostly be
programmed as it is shown in the mathematical notation, which does
not mention any particular color space.

3.3 Statistical Object Recognition
In a Bayesian framework for 3-D object recognition using 2-D images
[1, 25], statistical model generation, classification, and localization is
based on a set of projected feature vectors O. We assume that the image

VIDERE 1:4 Active Knowledge-Based Scene Analysis 13

Figure 6. Object (left) segmented to
lines and vertices (center) and points
(right).

[fi,j]1≤ i ≤M, 1≤ j ≤N is transformed into a segmentation object of 2-
D feature vectors O = {Ok ∈R2|1≤ k ≤Nm} consisting of points (such as
corners or vertices) or lines that can be detected by several combinations
of segmentation operators from the class hierarchy shown in figure 2 (for
example, by the operator EdgeToSegObj). Results are shown in figure
6. Model densities of 3-D objects appearing in images embody three
principal components:

the uncertainty of segmented feature vectors,
the dependency of features on the object’s pose, and
the correspondence between image and model features.

Due to the projection of the 3-D scene to the 2-D image plane, the range
information and the assignment between image and model features is
lost. The statistical description of an object belonging to class �k is de-
fined by the density p(O |Bk, R, t), and discrete priors p(�k), 1≤ k ≤K,
if only single objects appear, or p(�k1, �k2, . . . , �kq) for multiple object
scenes; the priors for the occurrences of an object are estimated by their
relative frequencies in the training samples. The parameter R denotes
rotation and projection from the model space to the image plane, and
t denotes translation. The parameter set Bk contains the model-specific
parameters that model the statistical behavior of features as well as the
assignment. In the special case of segmented point features, Bk statisti-
cally models the accuracy and stability of the detected object points.

Let us now assume that the parametric density of the model feature
ck,lk corresponding to Ok is given by p(ck,lk | ak,lk), where ak,lk are the pa-
rameters for the density function of the feature ck,lk. A standard density
transform results in the density p(Ok | ak,lk, R, t) which characterizes the
statistical behavior of the feature Ok in the image plane dependent on
the object’s pose parameters.

Using the robot or a camera mounted on some actor, we record a set
of images for which the parameters R and t are known from calibration
of sensor and actor. For a segmented point, it can be tested statisti-
cally that a Gaussian distribution adequately models the features. The
unknown parameters of the model density can be estimated by a max-
imum likelihood estimator. For object recognition and pose estimation,
the parameters R and t are unknown as well and have to be estimated.
Optimization classes (section 3.8) were developed for this application
[25].

Experimental evaluations compared standard methods for pose es-
timation with the introduced statistical approach. The statistical pose-
estimation algorithm requires 80 sec. using global optimization; to com-
pare, the alignment method [53] needs 70 sec. in average on an HP 735.
On a smaller sample of 49 images, the correct pose is computed for 45
images with the statistical approach; the alignment method failed for 11
images. In a test based on 1,600 randomly chosen views of objects, the

VIDERE 1:4 Active Knowledge-Based Scene Analysis 14

Figure 7. Number of points lost dur-
ing tracking by different methods;
1st: using the graylevel method; 2nd:
using the color method in the RG,
BY , WB color space; 3rd: using the
color method in RGB

7 85 6

Color Method in RGB

9

Color Method in (RG;BY;WB)

Gray–Level Method

0

20

40

60

80

43

120

100

recognition rates for the statistical approach were in the range of 95%
for 2-D recognition.

3.4 Point Tracking
In the previous section, interesting points were detected in an image
and used as features for object recognition. In section 3.1, points also
had to be detected and then tracked in an image sequence. The basic
idea in [49] is to select those points in a sequence of graylevel im-
ages that exhibit features for stable tracking. Thereby the two questions
formerly posed independently are now combined to one problem: the
question of which points to select and how to track. The method mini-
mizes a residue defined for a given window by approximating the image
function with the spatiotemporal gradient in the Taylor expansion. By
applying this method iteratively, the displacement is determined in sub-
pixel accuracy.

We extended this different method defined for real-valued image
functions to vector-valued ones by substituting the gradient by the Ja-
cobian matrix. Another extension to the original method is to restrict
the search space of corresponding points only to a given orientation as-
suming pure translational camera movement. In this case, the Jacobian
matrix is substituted by the directional derivative for the orientation vec-
tor of the epipolar line; this line links each pixel to the epipole. In the
case of restricted search space, the criterion for point selection results
in a large gradient in the search direction. Therefore, a large number of
points can be selected.

The criterion for tracking has been adapted for both extensions. The
use of color values shows that more points can be selected and the
tracking is more stable (figure 7). Better and more robust tracking is
possible in RGB than, for example, in the perceptually motivated RG, BY ,
WB color space or in graylevel image sequences; the number of points
lost during tracking in RGB is more than 20% smaller than for graylevel
images [22].

The computing times on an SGI O2 for a window size of 5× 5 and an
image sequence of 31 frames in PAL resolution are 90 sec. for graylevel
images and 187 sec. for color images.

The times for feature selection and point tracking increases linearly
with the number of pixels within the window. Therefore, it is a proper
decision to choose a small window size, color tracking, and the RGB
color space for reliable results and fast computation.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 15

The general class implementing the point tracker has two derived
classes for tracking in color and in graylevel. When the tracker is applied
to an image, no syntactical difference can be observed between the two.
Only when the object representing the tracking operation is initialized
by the constructor in C++ do the arguments differ slightly.

3.5 3-D Reconstruction
The module for point tracking described in section 3.4 can be used to
recover 3-D information. A camera mounted on a linear sledge is moved
horizontally to record a sequence of images. Since points are tracked
and the displacement is small, no such correspondence problem (as in
stereo vision) has to be solved explicitly. If the optical axis is orthogonal
to the motion vector, stationary points in the scene lie on a straight
line in the spatiotemporal domain [26]. The regression line through
the trajectory of a point is computed to eliminate errors and to obtain
subpixel accuracy. The inclination of this line determines the stereo
disparity of the point. The regression error can be used as a measure for
the certainly of the disparity value. The reliability of the range value is
proportional to the disparity multiplied by the reliability of the disparity.
The approach is also applicable to the situation in which the optical
axis of the camera is not perpendicular to the motion vector. Then,
each feature point can be transformed to coordinates of a virtual camera
with perpendicular orientation. The algorithm accepts an abstract point-
tracking operator (object); that is, the same algorithm can be used for
graylevel as well as color images. Camera calibration and orientation are
known from objects describing the camera properties.

Results of reconstruction are shown in figure 13. The time for recon-
structing depth just depends on the time for tracking points (section
3.4).

3.6 Knowledge Base
In section 3.3, we represented single objects by model densities. Struc-
tural knowledge about scenes, objects, as well as camera actions and
strategies can also be represented in a semantic network. Semantic net-
works have been applied successfully—for example, in [29, 30, 33]—to
pattern-analysis problems. They provide an intuitive formalism for the
representation of objects and facts that are required for computer vi-
sion. Our goal is to continue the work on knowledge representation
concerning the semantic network formalism ERNEST [47, 48, 33] by
integrating camera actions into the knowledge base. We also reuse the
existing control algorithms for the semantic network. Examples of al-
ternative solutions for the explicit representation of actions are and–or
trees [19], hidden Markov models [44], or Bayesian networks [46] (as
also presented in the other contributions of this volume).

Using the notation and structure defined in [31, 48], a semantic net-
work is a directed acyclic graph consisting of nodes and labeled edges.
The nodes are concepts composed of attributes and are used for the
representation of objects and camera actions. The edges denote special-
ization that implies inheritance of attributes, part–of relations, and the
concrete link that joins entities of a different level of abstraction. Since
image processing is never exact, all entities in the semantic network
have an attached certainty that measures the degree of certainty. The
certainty values are used to guide either an A* graph search algorithm
or another decision process. The expansion of nodes in the A* search

VIDERE 1:4 Active Knowledge-Based Scene Analysis 16

Figure 8. Combined representation
of actions and objects in a knowledge
base.

specialization link

part link

concrete linko�ceScenescene

punch

adhesive Tape

gluestick

segmentation colorRegion

searchAdTape aspectAdTape

direct search

punch besides gluestick

explScene explO�ceScene

search gluestick

search punch

o�ceScenescene

punch

adhesive Tape

gluestick

segmentation colorRegion

searchAdTape aspectAdTape

direct search

punch besides gluestick

explScene explO�ceScene

search gluestick

search punch

tree during analysis follows six inference rules [48]; that is, the control
works independently of certainty functions and of the particular seman-
tic network used in an application. Alternative possibilities for control
strategies such as Markov decision processes are discussed in [16]; we
also provide a second control algorithm called parallel iterative control
[18, 32], which is based on combinatorial optimization.

Figure 8 shows a typical semantic network. The lower part of the
network contains objects that are used in the application in section
4.1. The shaded ovals represent different camera actions in which each
competing action (direct_search for a search without intermediate
object [19], punch_besides_gluestick for a search for a punch using
the intermediate object glue stick, and so on) is linked to the concept
explOfficeScene by competent part links; the control resolves these
alternatives that are collected in so-called sets of modality. (See [33]
for details). In other words, for each alternative a new node in the
search tree is generated during analysis. Concrete links relate the camera
actions (such as direct_search) to the knowledge on objects. An in-
stantiation of the concept direct_search calculates a new value for the
pan position attribute. The same holds for punch_besides_gluestick.
Both instances have associated certainty, which are now used by the con-
trol in combination with the certainty of the scene knowledge to select
the next search tree node for expansion. A subsequent instantiation of
explOfficeScene using the higher-judged camera action yields a cam-
era movement to the position stored in the pan attribute. After this
movement, new instances for the concepts representing the scene knowl-
edge (colorRegion, punch ...) are generated. If certainties of con-
cepts get worse, the search tree node that contains the instance of
the other camera movement becomes the node with the highest cer-
tainty in the search tree. Therefore, this node is selected by the con-
trol for expansion, which causes a second instantiation of the concept
explOfficeScene. During this instantiation, the other camera move-
ment is performed.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 17

Figure 9. Representation of a contour
point by active rays.

m

contour C

%
m

(�; �)

cm(�)

�

The implementation provides classes for all major items in the seman-
tic network. A formal language definition is used to generate a parser
and code generator that creates C++ code from the knowledge-base
definition. Two implementations of control strategies—one for A* con-
trol and one for iterative-optimizing control—have been used for only
one (unchanged) knowledge-base definition. The classes involved here
are an abstraction of the analysis procedure which is seen as a sequence
of analysis states.

3.7 Contour-Based Real-Time Object Tracking
A simple and thereby powerful method for fast object detection and
tracking in image sequences is based on active contours or snakes [27].
A number of control points has to be chosen to define a parametric curve
around an object. From an initial estimate, an energy-minimization
process contracts the contour to the object. To track moving objects,
this step is repeated over time, in combination with some prediction
mechanism to introduce some coherence of the contour movement in
time [10].

In [10], we proposed the notion of active rays that can also be used
for the description of an object’s contour; this approach reduces the 2-
D contour-extraction problem of active contours to a 1-D one. In this
case, rays are cast in certain directions from an initial reference point
inside the contour (figure 9). The image is sampled along each ray. The
contour point cm(φ) in direction φ from the reference point m is now
located in a 1-D signal: the sampled image date on each ray, at position
λ(φ), which corresponds to the distance of the contour point from the
reference point m.

Similar to active contours, an internal and external energy is defined
for active rays. The contour represented by the function λ∗(φ) is ex-
tracted by minimizing the sum of these energies. In contrast to active
contours, the energy minimization now takes place along only 1-D rays
to attract points on each ray to the estimated object contour. The co-
herence in space of the contour is forced by the internal energy (figure
10) [13]. Both ideas, active contours and active rays, are represented as
classes and related by a common base class; thereby, they share many
lines of code.

Compared to active contours, active rays have several advantages for
real-time applications. First, due to the representation of the contour
points, parameterized by an angle defining the direction of each ray, no

VIDERE 1:4 Active Knowledge-Based Scene Analysis 18

Figure 10. Left: 2-D contour ex-
tracted by active rays. Right: 1-D
function λ∗ of the corresponding 2-D
contour shown on the left.

10

4

3
�

30

� 2�

��(�)

0

Figure 11. Results for tracking
moving objects in real time.

crossing can occur in the contour nor can the contour points move along
the contour of the objects. Thus, prediction steps can be robustly applied.
Second, an anytime algorithm can be defined that allows for an itera-
tive refinement of the contour depending on the time that is available
for each image. This is an important aspect for real-time applications.
Third, textural features can be efficiently defined on 1-D signals to locate
changes in the gray-value statistics, identifying borders between two tex-
tured areas. This is a computationally expensive task for active contours
due to the independent search in the 2-D image plane [45]. Finally, an
efficient combination with a 3-D prediction step is possible by using a
similar radial representation of 3-D objects [11].

A complete object-tracking system—COBOLT (contour-based local-
ization and tracking, [10])—has been implemented in the ANIMALS
framework to evaluate the new approach in the area of real-time pedes-
trian tracking in natural scenes [12]. A pan-tilt camera supervises a place
in front of our institute. The application program is independent of this
device; either the Sony camera or the TRC head shown in figure 3 can be
used. A motion-detection module detects moving objects and computes
the initial reference point for active rays. The tracking module computes
for each image the center of gravity of the moving pedestrian by using
active rays and changes the settings of the axes as described in section
3.1 to keep the moving objects in the center of the image (figure 11). In
five hours of experiments under different weather conditions, tracking
was successful 70% of the time. On an SGI Onyx with two R10000 proc-
essor, 25 images per second could be evaluated in the complete system
that summarizes the image grabbing, tracking, and camera movement.
For contour extraction alone using 360 contour points, approximately 7
ms are needed per image.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 19

3.8 Optimization
The solutions of the optimization problems outlined in sections 2.1, 3.3,
and 3.7 require that several strategies for optimization are evaluated.
The results of the individual algorithms, the sequence of the operations,
and the setting of the camera parameters are each included in the opti-
mization process.

Probabilistic optimization routines that allow practically efficient so-
lutions for object recognition are discussed in [25]. Again, a class hier-
archy for optimization strategies similar to the operator hierarchy above
simplifies the experiments.

The basic idea of the implementation is to program the algorithms
independently from the function that is to be optimized. An abstract
base for all optimization strategies has an internal variable that is the
function to be optimized; the class provides a method for minimization
or maximization to all derived classes.

All optimization algorithms can be divided into global and local pro-
cedures; additional information may be present (such as the gradient
of the function which yields another class in the hierarchy). Procedures
that use the function directly are, for example, the combinatorial opti-
mization, the downhill simplex algorithm, or the continuous variant of
the simulated annealing algorithm. The gradient vector can be used for
the optimization of first order. Examples are the iterative algorithms in
[25], the algorithm of Fletcher and Powell, and the well-known Newton-
Raphson iteration. The interface to the optimization classes simply ac-
cepts vector objects of real numbers and does not impose any other
constraints on the parameters other than an interval in the case of global
optimization. The computation times measured in [25] for the optimiza-
tion classes were approximately 1 min. for 10,000 calls to the function to
be optimized. This class hierarchy for optimization has also been used in
speech-analysis applications, naturally without the need to include any
image-processing modules; this is an empirical proof for the flexibility of
this software approach.

4 Examples and Applications
4.1 Active Object Recognition
The goal of our major example in the context of this article is to show
that a selection of the modules presented in section 3 can be effectively
combined to build a system that finds objects in an office room. In
[54], colored objects are located without prior knowledge; the image
is partitioned and searched in a resolution hierarchy. The system here
actively moves the camera and changes the parameters of the lens to
create high-resolution detail views.

Knowledge on objects is represented in [15] by a hierarchical graph
that could be formulated as a semantic network; the viewpoint control
described there is part of the control algorithm for evaluating the graph.
In contrast, [43] uses Bayesian networks to represent scenes and objects.
Evidence gathered during analysis determines the next action to be per-
formed (which can be either a camera action or a new segmentation).
In our work, camera actions as well as top-level knowledge are explic-
itly represented in one semantic network; the control algorithm of the
semantic network used to guide the search is independent of the camera
control.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 20

Figure 12. Scene overview and
hypotheses for objects.

Figure 13. Two projections of 3-D
points for figure 12.

Real-world office objects (the tape roller in figure 6, the glue stick
and punch in figure 12) are used in our experiments. The objects oc-
cupy only a few pixels in the wide-angle views captured initially (fig-
ure 12, left). They are presented to the system first isolated from the
background; their color histogram for the current lighting is recorded.
The approximate size of the object is stored in the semantic network
manually in advance. This simple object model is sufficient to discrimi-
nate the objects in this example. The formalism—as well as the control
structure—allows for other arbitrary object models, such as aspects as
applied in [15]. Such a model will be simple for the object in figure 6
(left) but will be complex in the case of objects such as the punch in fig-
ure 12 (right). Hypotheses for object locations in the scene are generated
based on color using the algorithm outlined in section 3.2. Results are
shown below in figure 14 for the object from figure 6. An evaluation of
six color-normalization algorithm with respect to object localization de-
pends on the particular object. In most cases, UV histograms performed
better than RGB [34]. Object hypotheses computed from histogram in-
tersection or other histogram comparisons such as the EMD distance
[40] gave approximately the same results but higher computation times.

The pan-tilt unit mounted on the linear sledge is moved to estimate
3-D information using the ideas outlined in section 3.5; we compute a
set of scattered 3-D points. The focal length is known from calibration
(section 3.1). A result is shown in figure 13; neither the accuracy nor the
number of points is sufficient to estimate 3-D surfaces of the objects.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 21

Figure 14. Backprojection of red
object.

Figure 15. Segmentation of object
hypotheses; shown in figure 12
(right).

The subsequent goal now is to fovealize each object hypothesis and to
generate closeup views. This is required because in the overview image,
no stable features based on segmented regions can be detected for the
object’s size.3 Figure 124 shows an overview of the scene captured with
minimal focal length. Figure 12 shows three hypotheses in the closeup
view. First, the pan-tilt unit is rotated such that the optical axis of the
zoom lens points to the hypothesized object position estimated from the
backprojection. Considering the calibrated relationship between zoom
position and enlargement factor (section 3.1), the 3-D information, and
the approximate size stored in the knowledge base, we can now estimate
the zoom position which is appropriate for a closeup view of the object.
In [57, p. 45], three methods are listed to do fovealization technically.
The method above using a pan-tilt device on a linear sledge adds a fourth
method to this list. This operation is an example of the feedback arrow in
figure 1; the camera move is determined by the results of image analysis.

The segmentation of color regions on the detail view of the scene now
uses the color segmentation mentioned in section 2.3 and passes these
regions to the knowledge-based analysis module; they are collected in
a segmentation object attributed by the focal length, distance to the
camera, and reliability of the depth value. Results are shown in figure
15.

The goal of the module for object verification is to find an optimal
match of segmented regions in the color closeup views and the gray
ovals in figure 8. The search is directed by the certainty of the concept
officeScene which is the goal concept for the subgraph of gray ovals
in figure 8. For the computation, we use the attributes, relations, and

3. An MPEG video will show camera motion, 3-D points rotated in space, fovealization,
and so forth in the online version.

4. The 3-D information is more visible in the video (c.f. footnote 3) when the point cloud
is rotated.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 22

their certainties in the parts and concrete concepts. In the concept col-
orRegion, we use the Euclidean distance of the mean color vector to a
prototype of the color red, which is previously determined by the mean
of a histogram. The color space is the intensity-normalized RGB space.

The similarity of regions for the concepts punch, adhesive_Tape, and
gluestick is computed by the attributes height and width of the objects
and thus—in the current implementation—depends on the aspect, and
no pose estimation is performed. An extension is envisaged in combina-
tion with the project in section 3.3. The actual scale is determined by the
3-D information computed in section 3.3. The actual scale is determined
by the 3-D information computed in section 3.5.

For the search during matching of the regions, we use an A*-based
control [31] for the graph search, computing an instantiation path
through the network. The concepts are then instantiated from the bot-
tom up in the order determined by the path. This means that no restric-
tions are propagated during the analysis. The certainty of the nodes in
the search tree is equal to the certainty of the goal concept; in order
to guarantee an optimistic estimate, all certainties of noninstantiated
parts are set to one as long as the goal concept is not reached. The
computation of the certainties is deferred to computations of certainties
for instances that in turn use their attributes. The similarity measure
for color regions influencing the certainty is part 6 of the task-specific
knowledge and can thus be exchanged easily.

In seventeen experiments for evaluation of this application, we used
the punch, gluestick, and two tape rollers of identical shape but differ-
ent size; thus, object identification based only on color was not possible.
The data-driven hypotheses located 77 of 97 objects correctly. To restrict
the size of the search tree to 300–600 nodes, we presently use a heuristic
certainty function that weights regions of the object’s color higher than
regions of other colors. The rate of correct verifications of the hypothe-
ses is approximately 70%. This figure includes the frequent confusions of
stapler with the large tape roller. If we leave this object out, the recogni-
tion rate is approximately 80%. The total time for processing is around
2 min. for one scene on an SGI 02 (R10000, 195 MHz). Much of this
time is spent for the color segmentation, backprojection, and waiting
for the camera to reach a stable position. The convolution in figure 5
was replaced by a 21× 21 median filter to obtain good local maxima.
The A* search was replaced by our second control strategy in [2]; using
this integrative-optimizing control, the same recognition rates could be
reached.

4.2 Autonomous Mobile Systems
Autonomous mobile systems ideally can be used to integrate different as-
pects of computer vision into one common application. In the DIROKOL
project,5 a service robot will provide employees in hospitals with “fetch
and carry services.” The system is equipped with a couple of classi-
cal robotic sensors (such as sonar and infrared), a four-finger hand [5]
mounted on a robot arm, and a TRC stereo system for visual navigation,
object recognition, and active knowledge-based scene exploration. Sim-
ilar to the application described in section 4.1, semantic networks are

5. The project is funded by the Bavarian Research Foundation (Bayerische Forschungs-
stiftung).

VIDERE 1:4 Active Knowledge-Based Scene Analysis 23

used for object representation. The complexity of dynamic scenes in au-
tonomous mobile systems applications makes it necessary to apply prob-
abilistic knowledge-representation schemes (Markov models, dynamic
Bayesian networks) as well. For these approaches, it is more natural to
acquire knowledge during a training step automatically. The goal for the
future is to combine the classical approach of semantic networks with
probabilistic representation schemes to have both an explicit knowledge
base that intuitively corresponds to the description given by humans and
an adjustable, trainable part, especially for the active components in an
active vision system. In this section, we present one aspect for the vision
submodule of an autonomous system; this issue’s article by Schlegel et
al. provides a broader discussion of vision and robotics including navi-
gation and robot control.

Actual work on probabilistic methods in this context has been per-
formed on automatic natural-landmark definition and localization with
application to visual self-localization based on stochastic sampling [14].
The landmark definition is based on color histograms (section 3.2)
which have been extended technically by deriving a new extended class
from the class for histograms to contain additional information on the
distribution of the pixels position of a certain color bin as in [23]. Such
histogram bins are defined as landmarks that contain a certain amount
of entries; in addition, the distribution of the (x, y)T position in the im-
age plane indicates a local color region. This means that the variance
in (x, y)T positions must be small. The mean (mx, my)

T of the (x, y)T

positions indicates the position of the landmark in the image.
For automatic self-localization based on natural landmarks defined by

color histograms, a probabilistic approach has been used. Assume now,
that a landmark is given (the histogram bin, the covariance matrix, C,
and the mean position (mx, my)

T of the histogram entries in the image).
The landmarks can be detected in the image by randomly sampling posi-
tions from that normal distribution given by the mean (mx, my)

T and the
covariance matrix C. For each sampled position, the histograph bin cor-
responding to the color pixel at that position is compared with the prere-
corded histogram bin. The positive hits are counted, and the probability
for seeing the landmarks is computed by the relative frequency. Assum-
ing independence between the landmarks, the probability for looking at
a certain scene position can be computed by multiplying the probabil-
ity for each single landmark. The unknown position is then found by a
maximum-likelihood estimation over all possible positions.

For our experiments, we moved the camera around our department’s
floor. We took a sequence of 300 color images at a frame rate of 1 Hz.
The experiments have shown that, on average, 4.2 (variance: 11.2) land-
marks per image were automatically defined. An example image with
the detected landmarks is given on the left of figure 16. The computation
time for landmarks definition was 230 ms. With these landmarks, self-
localization by stochastic sampling have been evaluated. One hundred
samples were drawn, which took 14 ms. The results of these experiments
are visualized on the right side of figure 16 by using a confusion matrix
of size 300× 300. On the axis of the matrix, different areas of the de-
partment’s floor are represented by different colors. Each element of the
matrix represents the quality of the correspondence between the origi-
nal image (row) and the test image (column). A dark entry stands for
a good correspondence and a light entry for a bad one. As expected,
the diagonal of the matrix has many dark entries, indicating a good self-
localization ability. The blockwise structure of the rest of the dark entries

VIDERE 1:4 Active Knowledge-Based Scene Analysis 24

Figure 16. Left: Example image with
automatically detected landmarks.
Right: Confusion matrix showing
the quality of self-localization. Dark
entries indicate high correspondence
between two positions.

indicates that similar appearing areas of the department’s floor are also
recognized.

It is worth noting that the achieved results are based only on color
histograms without and 3-D knowledge or other active sensors. Actually,
neither dependencies between landmarks seen at a certain position nor
context in time is taken into account. This is done in our current work.

4.3 Active Search for Objects with Mobile Robot
A mixture of the two applications has been realized as follows: a class
was defined on top of the robot control, allowing the robot to be placed
on a straight line at a discrete position. They syntax for moving the
robot was forced to be identical to that of positioning the linear sledge,
as virtual operators defined in a common base class (SMotor in figure
3) were used in C++. The same common interface syntactically linked
the TRC head on the robot and the Canon camera in the office. Only
three lines of the application program for the office exploration had to
be changed for the experiments described in section 4.1 on the robot.

5 Conclusion and Future Work
Most knowledge-based systems in computer vision represent only ob-
jects or scenes in the knowledge base. Here, an approach to represent
camera actions and strategies in the same formalism was presented. This
will be most important in active vision and for autonomous systems.

We described our system architecture for active image understanding
which is implemented in an object-oriented fashion. Classes and ob-
jects encapsulate data, devices, and operators as well as the knowledge
base. The applications presented make use of a subset of the modules
and prove that the approach is feasible for knowledge-based analysis
as well as real-time processing. We argued that this programming para-
digm simplifies solving image-analysis tasks and gave examples for the
expressional power of the proposed approach, especially when applied
to unusual areas such as device interfaces. Object-oriented programming
is preferred to genericity for hierarchies of operator classes; assuming
that the task of an operator is not trivial, the overhead imposed by this
implementation scheme is negligible. Genericity is used for regular data
structures such as for pixel access in image matrices.

In our application for active object recognition and scene exploration,
we used a knowledge base represented as a semantic network of cam-
era actions and object models. In our application for autonomous mo-
bile systems, color was used for landmark detection as a first stage of
knowledge-based navigation and operation. Both applications share var-
ious modules for image processing and analysis.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 25

More modules exist in our system that can be combined with the
systems described in section 4. To give an example, one of the color-
normalization algorithms described in [9] will be selected for each ob-
ject in the application in section 4.1; this selection will be annotated
to the object in the knowledge base. Moving objects in an object room
will be tracked using the methods of section 3.7 after they have been lo-
calized. An integration of statistical models (section 3.3) and semantic
networks (section 4.1 [25, 39]) will be used for holistic object recogni-
tion as in [29]. These models are invariant of the aspect. This extension
will be used in the system in section 4.1 as well as in section 4.2. Pose
estimation in the verification stage will be integrated into the matching
process.

Acknowledgements
This work was funded partially by the Deutsch Forschungsgemeinschaft
(DFG) under grants SFB 182 and SFB 603. Only the authors are respon-
sible for the contents. This work was funded partially by the Bayerische
Forschungsstiftung (project DIROKOL).

Special thanks to colleagues in Bielefeld for discussions on the use of
semantic networks for computer vision.

References
[1] More references to our own work can be found in the publication

section of our Web site http://www5.informatik.uni-erlangen.de.
[2] U. Ahlrichs, J. Fischer, D. Paulus, and H. Niemann. Approach to

active knowledge based scene exploration. In ES99-19th SGES
International Conference on Knowledge Based Systems and Applied
Artificial Intelligence, pages 289–301. Cambridge, 1999.

[3] R. B. Arps and K. K. Prat, (Eds.). In SPIE Image Processing and
Interchange: Implementation and Systems, vol. 1659, 1992.

[4] R. Beß, D. Paulus, and M. Harbeck . Segmentation of lines and
arcs and its application to depth recovery. In Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 4: 3161–3165. IEEE Computer Society Press, Munich,
April 1997.

[5] J. Butterfass, G. Hirzinger, S. Knoch, and H. Liu. Dlr’s multisensory
articulated hand. In IEEE International Conference on Robotics and
Automation, pages 2081–2086. Leuven, Belgium, 1998.

[6] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. Computer Surveys, 17(4):471–522, 1985.

[7] I. C. Carlsen and D. Haaks. IKSPHF—concept and implementation
of an object-oriented framework for image processing. Computers
and Graphics, 15(4):473–482, 1991.

[8] D. Crevier and R. Lepage. Knowledge-based image understanding
systems: A survey. Computer Vision and Image Understanding,
67(2):161–185, August 1997.

[9] L. Csink, D. Paulus, U. Ahlrichs, and B. Heigl. Color normalization
and object localization. In Rehrmann [42], pages 49–55.

[10] J. Denzler. Aktives Sehen zur Echtzeitobjektverfolgung. Infix, Aachen,
1997.

[11] J. Denzler, B. Heigl, and H. Niemann. An efficient combination of
2d and 3d shape description for contour based tracking of moving

VIDERE 1:4 Active Knowledge-Based Scene Analysis 26

objects. In H. Burkhardt and B. Neumann (Eds.), Computer Vision-
ECCV 98, Lecture Notes in Computer Science, pages 843–857.
Berlin, 1998.

[12] J. Denzler and H. Niemann. Real-time pedestrian tracking in natural
scenes. In G. Sommer, K. Daniliidis, and J. Pauli (Eds.), Computer
Analysis of Images and Patterns, CAIP’97, Kiel 1997, Lecture Notes
in Computer Science, pages 42–49. Berlin, 1997.

[13] J. Denzler and H. Niemann. Active rays: Polar-transformed active
contours for real-time contour tracking. Journal on Real-Time
Imaging, 5(3):203–213, June 1999.

[14] J. Denzler and M. Zobel. Automatische farbbasierte Extraktion
natürlicher Landmarken und 3D-Positionsbestimmung auf Basis
visueller Information in indoor Umgebungen. In Rehrmann [42],
pages 57–62.

[15] S. J. Dickinson, H. I. Christenesn, J. K. Tsotsos, and G. Olofsson.
Active object recognition integrating attention and viewpoint
control. Computer Vision and Image Understanding, 67(3):239–260,
September 1997.

[16] B. Draper, A. Hanson, and E. Riseman. Knowledge-directed
vision: Control, learning and integration. Proceedings of the IEEE,
84(11):1625–1637, November 1996.

[17] H. Faasch. Konzeption und Implementation einer objektorientierten
Experimentierumgebung für die Bildfolgenauswertung in ADA. PhD
thesis, Universität Hamburg, Hamburg, 1987.

[18] V. Fischer and H. Niemann. A parallel any-time control algorithm
for image understanding. In Proceedings of the 13th International
Conference on Pattern Recognition (ICPR), pages A:141–145. IEEE
Computer Society Press, 1996.

[19] T. Garvey. Perceptual stragegies for purposive vision. Technical
report, SRI AI Center, SRI International, Menlo Park, 1976.

[20] K. E. Gorlen, S. Orlow, and P. S. Plexico. Data Abstraction and Object-
Oriented Programming in C++. John Wiley and Sons, Chichester,
1990.

[21] R. M. Haralick and V. Ramesh. Image understanding environment.
In Arps and Pratt [3], pages 159–167.

[22] B. Heigl, D. Paulus, and H. Niemann. Tracking points in sequences
of color images. In Proceedings 5th German-Russian Workshop on
Pattern Analysis, pages 70–77, 1998.

[23] B. Heisele, W. Ritter, and U. Kreßel. Objektdetektion mit Hilfe
des Farbfleckenflusses. In V. Rehrmann (Ed.) Erster Workshop
Farbbildverarbeitung, volume 15 of Fachbverichte Informatik, pages
30–35. Universität Koblenz-Landau, 1995.

[24] A. Hoogs and D. Hackedtt. Model-supported exploitation as a
franework for image understanding. In ARPA, I:265–268, 1994.

[25] J. Hornegger. Statistische Modellierung, Klassifikation und
Lokalisation von Objekten. Shaker Verlag, Aachen, 1996.

[26] B. Jähne. Spatio-Temporal Image Processing. LNCS 751. Springer,
Heidelberg, 1993.

[27] M. Kass, A. Wittkin, and D. Terzopoulos. Snakes: Active contour
models. International Journal of Computer Vision, 2(3):321–331,
1998.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 27

[28] U. Köthe. Reusable components in computer vision. In B. Jähne,
H. Haussecker, and P. Geissler (Eds.), Handbook of Computer Vision
and Applications, pages 103–132. Academic Press, London, 1999.

[29] F. Kummert, G. Fink, and G. Sagerer. Schritthaltende hybride
Objektdetektion. In E. Paulus and F. Wahl (Eds.), Mustererkennung
1997, pages 137–144. Springer, Berlin, September 1997.

[30] C.-E. Liedtke, O. Grau, and S. Growe. Use of explicit knowledge for
the reconstruction of 3-D object geometry. In V. Hlavac and R. Sara
(Eds.), Computer analysis of images and patterns—CAIP ’95, number
970 in Lecture Notes in Computer Science, Springer, Heidelberg,
1995.

[31] H. Niemann. Pattern Analysis and Understanding, volume 4 of
Springer Series in Information Sciences. Springer, Heidelberg, 1990.

[32] H. Niemann, V. Fischer, D. Paulus, and J. Fischer. Knowledge based
image understanding by iterative optimization. In G. Görz and St.
Hölldobler (Eds.), KI-96: Advances in Artificial Intelligence, volume
1137 (Lecture Notes in Artificial Intelligence), pages 287–301.
Springer, Berlin, 1996.

[33] H. Niemann, G. Sagerer, S. Schröder, and F. Kummert. Ernest:
A semantic network system for pattern understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
9:883–905, 1990.

[34] D. Paulus and L. Csink. On color normalization. In T. Szirányi and
J. Berke (Eds.), Magyar Képfeldolgozók és Alakfelismerök Országos
Konferenciája, Konferenciakiadvány, pages 222–229. Keszthely,
1997.

[35] D. Paulus and J. Hornegger. Pattern Recognition of Images and
Speech in C++. Advanced Studies in Computer Science. Vieweg,
Braunschweig, 1997. (Now available as [36].)

[36] D. Paulus and J. Hornegger. Applied pattern recognition: A practical
introduction to image and speech processing in C++. Advanced
Studies in Computer Science. Vieweg, Braunschweig, 2nd edition,
1998.

[37] D. Paulus, J. Hornegger, and H. Niemann. Software engineering
for image processing and analysis. In B. Jähne, P. Geißler, and H.
Haußecker (Eds.), Handbook of Computer Vision and Applications,
3, pages 77–103. Academic Press, San Diego, 1999.

[38] D. Paulus and H. Niemann. Iconic-symbolic interfaces. In Arps and
Pratt [3], pages 204–214.

[39] J. Pösl, B. Heigl, and H. Niemann. Color and depth in appearance
based statistical object localization. In H. Niemann, H.-P Seidel,
and B. Girod (Eds.), Image and Multidimensional Digital Signal
Processing ’98, pages 71–74. Alpbach, Austria, July 1998. Infix.

[40] J. Puzicha, J. Buhmann, Y. Rubner, and C. Tomasi. Empirical
evaluation of dissimilarity measures for color and texture. In
H. Burkhard and B. Neumann (Eds.), Computer Vision—ECCV
’98, number 1406 in Lecture Notes in Computer Science, pages
563–577. Springer, Heidelberg, 1998.

[41] J. R. Rasure and M. Young. Open environment for image processing
and software development. In Arps and Pratt [3], pages 300–310.

[42] V. Rehrmann (Ed.). Vierter Workshop Farbbildverarbeitung, Koblenz,
Föhringer, 1998.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 28

[43] R. Rimey and C. Brown. Task-orinted vision with multiple Bayes
nets. In A. Blake and A. Yuille (Eds.), Active Vision, pages 217–236.
Cambridge, MA, 1992.

[44] R. D. Rimey and M. Brown. Controlling eye movements with
hidden Markov models. International Journal of Computer Vision,
7(1):47–65, January 1991.

[45] R. Ronfard. Region-based strategies for active contour models.
International Journal of Computer Vision, 13(2):229–251, 1994.

[46] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, 1995.

[47] G. Sagerer. Darstellung und Nutzung von Expertenwissen für ein
Bildanalysesystem. Springer, Berlin, 1985.

[48] G. Sagerer and H. Niemann. Semantic Networks for Understanding
Scenes. Advances in Computer Vision and Machine Intelligence.
Plenum Press, New York, 1997.

[49] J. Shi and C. Tomasi. Good features to track. In Proceedings of
Computer Vision and Pattern Recognition, pages 593–600. Seattle,
Washington, June 1994. IEEE Computer Society Press.

[50] B. Stroustrup. The C++ Programming Language, 3rd edition.
Addison-Wesley, Reading, 1997.

[51] M. J. Swain and D. H. Ballard. Color indexing. International Journal
of Computer Vision, 7(1):11–32, November 1991.

[52] F. Thomanek and E. D. Dickmanns. Autonomous road vehicle
guidance in normal traffic. In Second Asian Conference on Computer
Vision, pages III/11-III/15. Singapore, 1995.

[53] S. Ullman. High-level Vision: Object Recognition and Visual Cognition.
MIT Press, Cambridge, MA, 1996.

[54] V. V. Vinod, H. Murase, and C. Hashizume. Focussed color
intersection with efficient searching for object extraction. In Pattern
Recognition, volume 30, pages 1787–1797, 1997.

[55] R. G. Willson. Modeling and Calibration of Automated Zoom Lenses.
PhD thesis, Carnegie Mellon University, Pittsburgh, 1994.

[56] L. Wixson. Gaze selection for visual search. Technical report,
Department of Computer Science, College of Arts and Science,
University of Rochester, Rochester, New York, 1994.

[57] Y. Yeshurun. Attentional mechanisms in computer vision. In V.
Cantoni (Ed.), Artificial Vision, Human and Machine Perception,
pages 43–52. Plenum Press, New York, 1997.

VIDERE 1:4 Active Knowledge-Based Scene Analysis 29

