1 Schedule

Problem sessions:
Wed, Dec. 5, 8:45pm-9:45pm
Mon, Dec. 10, $7 \mathrm{pm}-8 \mathrm{pm}$
Wed, Dec. 12, 8:45pm-9:45pm

The quiz will be on Thursday, Dec. 13.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

I: Vertex cover (p. 278, DSV).
I: Clustering (p. 280, DSV).
I: \quad TSP (p. 282, DSV).
A: Knapsack (p. 283, DSV).
A: Set-cover.

3 Basic material

Important concepts, problems, theorems, and algorithms:

- NP, NP-hard, NP-complete, reduction.
- Basic NP-complete problems (SAT, 3SAT, vertex cover, clique, k-coloring, integer linear programming)

Testing method:

- Solve a small instance of the basic NP-complete problems.
- Give a (simple) reduction between a pair basic NP-complete problems.

Example problems (homework):
8.1 (due Dec 6, 2007) Let $V=\{0,1,2,3\} \times\{0,1,2,3\}$ and $E=\left\{\left.\{(a, b),(c, d)\} \in\binom{V}{2} \right\rvert\, a=c\right.$ or $\left.b=d\right\}$. Find the largest clique in $G=(V, E)$.
8.2 (due Dec 6, 2007) Let $V=\{0,1,2,3\} \times\{0,1,2,3\}$ and $E=\left\{\left.\{(a, b),(c, d)\} \in\binom{V}{2} \right\rvert\, a=c\right.$ or $\left.b=d\right\}$. Find the smallest vertex cover in $G=(V, E)$.
8.3 (due Dec 6,2007) Give a reduction from 3-SAT to integer linear programming.

4 Additional homework

8.4 (due Dec 11, 2007) [Problem rating: I.] A vertex cover of a graph $G=(V, E)$ is a subset S of vertices such that for each edge $e \in E$ at least one of its endpoints is in S. Consider the following optimization problem:

Vertex-Cover

INSTANCE: A graph G.

SOLUTION: A vertex cover S of size G.
OBJECTIVE: Minimize the size of S.
Consider the following reduction from Vertex-Cover to Integer Linear Programming. For each vertex $i \in V=\{1, \ldots, n\}$ we will have a variable x_{i} and constraints $0 \leq x_{i}$ and $x_{i} \leq 1$. For each edge $\{i, j\} \in E$ we will have a constraint $x_{i}+x_{j} \geq 1$. Finally, the objective is to minimize $x_{1}+\cdots+x_{n}$. Thus our integer linear program is

$$
\begin{gather*}
\min \sum_{i \in V} x_{i} \\
x_{i} \leq 1, \text { for } i \in V \\
x_{i} \geq 0, \text { for } i \in V \tag{1}\\
x_{i}+x_{j} \geq 1, \text { for }\{i, j\} \in E \\
x_{i} \in \mathbb{Z}, \text { for } i \in V \quad \text { (integrality). }
\end{gather*}
$$

Let O be the optimum of (1).
Now view (1) as a linear program (i.e., drop the integrality constraint). Let R be the optimum of this linear program.
a) Which of the following two is always true?

$$
R \leq O \quad O \leq R
$$

b) Find a graph G for which the values of O and R are different.
8.5 (due Dec 11, 2007) [Problem rating: A.] Prove that if the graph G in Problem 8.4 is bipartite, then $O=R$.

5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz. We will go over the ones that you choose in the problem sessions.

- 8.1, 8.3, 8.4, 8.6, 8.14, 8.18, 9.7, 9.9.

