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1 Introduction

Generative Al models like Large Language Mod-
els (LLMs) [1] require a huge number of parame-
ters to perform well on different tasks and to gain
a generalized understanding of human knowledge
[2]. However, making them practically deploy-
able is significantly constrained by the memory
these models need. For instance, running infer-
ence on a 7-billion (7B) parameter model requires
around 28GB of VRAM [3], and a 7B model is con-
sidered relatively small nowadays. Newer models
have hundreds of billions of parameters, requiring
multiple GPU models for both training and infer-
ence. Even for a smaller 7B model, only a lim-
ited number of GPU models can hold that many
parameters, which are typically enterprise-grade
cards (like the A100 or H100) or the latest top-
tier graphics cards (like an RTX 4080 with 16GB
of VRAM or better).

This places these powerful models outside the
reach of the vast majority of GPUs found in
personal desktops and laptops, as they simply
contain less VRAM. To get past this "VRAM
Barrier” a common solution is to quantize the
model’s parameters by reducing their numerical
precision. Weights can be reduced to formats like
half-precision (FP16), 8-bit floating point (FP8),
or even 4-bit formats (FP4). Since precision is
being cut, the main trade-off of quantization is a
potential loss of accuracy in the model’s outputs
[4].
To combat this trade-off, for example 4-bit for-
mats have various versions designed to maximize
accuracy, such as P4 (E2M1), MXFP4, and the
newest NVFP4 introduced in NVIDIA’s Blackwell
architecture [5]. This format achieves high ac-
curacy by using an innovative dual-scale system
(FP32 and FP8); its local FP8 scale allows for frac-
tional adjustments, minimizing quantization error
far better than other FP4 formats.

Consequently, many companies and startups
rely on calling third-party REST APIs to get gen-
erative Al content. This is because maintaining
the required amount of server compute carries a

significant financial risk. However, a high volume
of user requests can lead to huge costs in API
calls. To reduce this cost without building a server
warehouse, an alternative is to deploy models on
locally-hosted hardware. This could include gam-
ing PCs, laptops, or Mini-PCs with capable GPUs,
such as those with AMD iGPUs or Apple silicon,
which feature unified memory that provides am-
ple capacity and bandwidth for loading models
[6][7]. The GGUF file format can help with this,
as it is designed for storing and running LLMs on
consumer-grade hardware, is efficient for the in-
ference process, and allows splitting the model’s
layers between the GPU and CPU [3].

This project shows experiments running LLMs
with modern weight quantization techniques on a
laptop with an RTX 5070 Max-Q GPU[9], which
has 8GB of VRAM. In this study, we tried two of
the most popular engines to run LLMs: vLLM, a
state-of-the-art Python library for running LLMs
at a large scale (focusing on the highest through-
put and simultaneous requests possible)[10], and
Llama.cpp, which focuses on running efficient
transformer models on an edge device [11].

With our limited resources, we found that
vLLM is hard to get a model up and running or
to switch models without significant tweaks. How-
ever, with the models that we successfully loaded
into the GPU, we got good performance in terms
of tokens per second, even with multiple simulta-
neous requests. On the other hand, Llama.cpp
(thanks to the GGUF file format and different
quantization methods) was a lot easier for run-
ning a broad variety of language models, making
it easier to set up an end-to-end process, which we
also show in the results section.

2 Background

VRAM limitations when running LLMs are well
known in the field, specifically within the Trans-
former architecture on which they are based[12].
These limitations are particularly critical during
the autoregressive decoding step and attention



algorithms, specifically involving the KV cache.
This dynamic data, the keys and values for previ-
ous tokens, grows with every new token generated.
Traditional systems waste significant memory due
to fragmentation because they must pre-allocate
large, contiguous blocks for this cache. This con-
tiguous layout also makes it difficult to efficiently
share memory, such as sharing the cache for com-
mon prompt prefixes across different requests[13].

A primary method for reducing the mem-
ory usage of LLMs at inference time is quan-
tization, which is divided into two main types:
Quantization-Aware Training (QAT) and Post-
Training Quantization (PTQ)[14]. We are focus-
ing on PTQ, which relies on taking a model’s pa-
rameters after it has been trained and reducing
their precision, often with the trade-off of some
accuracy loss[4].

The vLLM inference engine contains state-of-
the-art techniques for minimizing the problems of
memory usage described above with its own at-
tention algorithms like PagedAttention [10], in-
cluding different Quantization methods[15]: Bit-
Blas [16], GPTQModel (General-purpose Post-
Training Quantization) [17], AWQ (Activation-
aware Weight Quantization)[18], and moreover,
they also recently analyzed NVIDIA’s new Black-
well architecture, which introduced NVFP4 for
4-bit floating point operations, resulting in a 4x
throughput speed [19].

The primary goal of these quantization meth-
ods (such as AWQ and GPTQ) and the vLLM
inference engine is to allow a model to be loaded
entirely into one or more GPUs to achieve max-
imum throughput. While some libraries, such as
HuggingFace’s transformers, offer options like de-
vice_map="auto” to split a model between the
CPU and GPU [20], this is not the primary de-
sign for high-performance engines. On the con-
trary, vLLM’s PagedAttention mechanism [13] is
fundamentally an advanced VRAM management
technique, reinforcing its GPU focus.

On the other hand, there is Llama.cpp, an en-
gine more focused on running LLMs in edge Al de-
vices [21], where usually these devices do not have
a GPU, only CPU. If it has one, it is a small one
that is known as a Neural Processing Unit (NPU),
which can be found on smartphones or modern
regular laptops, but usually they have their spe-
cific scenarios to have parallelism operations with
low power consumption [22], and it can be helpful
too for computers with a consumer GPU, like a
gaming GPU where the VRAM is limited. The
developer of Llama.cpp also created the underly-
ing gegml library and the GGUF file format; these
are what enable Llama.cpp to thrive on the edge

hardware.

Instead of requiring a large amount of VRAM,
Llama.cpp leverages ggml to perform inference ef-
ficiently on CPUs, including ARM. A key part of
this is the use of GGUF format files, which are op-
timized for faster loading of models and which also
support quantized tensors. While ggml’s primary
strength is on CPU performance, it also has the
ability to split the workload (e.g., model’s layers)
to GPUs to get extra performance, making it ideal
for scenarios with limited VRAM.

GGUF files have their own nomenclature for
quantization versions of models, following this pat-
tern: Q[Number]_[Type]_[Size]. Q[Number] is the
number of bits used per weight (e.g., Q4 = 4-bit,
Q5 = 5-bit, and Q8 = 8-bit). For the [Type],
it could be _0 or _1, but these are legacy types;
they are straightforward quantization methods
and lower quality than K types (which are the
modern recommended balance between speed and
accuracy) and i-Quants types, which focus on get-
ting better quality at low bit sizes based on which
weights are more important, but can be slower
than K-quants. And lastly, the _[Size] indicates
the block size and precision mix; this could be .M
for medium (which offers a good balance), _S, L,
or even _XSS [8].

On this project, we got a lot better out-of-
the-box experience using Llama.cpp with GGUF
files than with vLLM and using other quantiza-
tion methods, primarily because Llama.cpp auto-
matically offloads the model’s weights and com-
putation between the CPU and GPU, while with
vLLM, it is hard to make it run if the model
weights and KV cache do not fit in your VRAM
without any tweaks.

3 Method

In this work, first we built the vLLM project from
source code to have available the latest updates
and be able to use the latest and most optimized
backends for NVIDIA GPUs, and also try mod-
els with support of NVFP4 and see if our GPU
would be able to handle that. Since we had the
newest Blackwell architecture GPU, we checked
NVIDIA’s CUDA GPU Compute Capability Web-
site to see if the laptop GPU would support it [23].
The Blackwell family has a Compute Capability of
12.0, which supposedly supports nvfp4. However,
the site doesn’t specify if this support (e.g., for
the RTX 5070 Max-Q) also applies to the laptop
versions. We wrote a small CUDA program and
confirmed that our GPU does indeed report Com-
pute Capability 12.0.

Then, to have a better development experience,



we changed the focus to use Llama.cpp since it
made it easier to run the models we want without
spending too much time tweaking and trying many
different arguments, as was the case with vLLM
for this project.

With Llama.cpp, we served two LLM models at
the same time to receive requests for two differ-
ent kinds of tasks: one was an Optical Character
Recognition (OCR) transformer-based model and
the other was a Text Generation LLM. With that,
we wanted to experiment with a scenario where
modern AT applications could use this setup to re-
duce the time for manual forms completion. For
this, we wrote a small project in Golang to call
into this server and complete the workflow. This
scenario is where a tenant needs to upload a proof
of payment screenshot of different bank apps for
his rent payment to his landlord, without making
the tenant fill out input fields again where he has
to enter the transaction date, the total amount,
and the currency. Thus, a call is first made to the
OCR server, and then we pass the extracted text
to a text generation model to output a JSON with
these three fields. This is a small example, but it
could be useful in larger scenarios where you have
a contract and it has a lot of information and you
need to extract the relevant information.

In the results section, we show the performance
of a quick test of the throughput using an LLM
on vLLM and a quick test on NVFP4. We then
present a broader test on Llama.cpp, including the
accuracy for the same models with different quan-
tization versions of the GGUF files, to see how
far we can make them smaller without losing too
much accuracy.

3.1 Dataset

For testing the small Al application feature we
mentioned before, we used our own dataset that
we collected from previous users of their proof of
payment for one month of rent. After cleaning
some duplicate values or data that was used for
developing the software, we ended up with 40 ex-
amples from real users. We labeled these png,
jpeg, or pdf files with three main features: trans-
action date, total amount, and currency, and used
them to get the accuracy. We also included an-
other feature just to check if there are reasons for
failing, which is image quality (e.g., a screenshot
is a ’perfect’ picture, while a blurry picture or a
picture of a receipt could be considered medium
or low). So if a test failed, we could justify that
it was for the picture quality or for other reasons,
such as multiple dates showing in the picture and
the Generative model getting confused. We could
then improve the prompt to improve its ability to

determine which one it has to select as the trans-
action date. Table 1 shows a quick summary of
the data set, the fields, and their range of values.

Table 1: Dataset Summary and Value Ranges.
The bold headers (Amount, Currency, Date)
are used to measure model accuracy.

File Name Date Amount Currency Quality

.pdf, .png, Oct 01 Monthly USD, High,

Jpeg, .jpg  Nov 25’25 Rent Cost PYG Med, Low
4 Results

In this section, first we describe what we tried
with vLLM and a quick experiment with NVFP4
running with vLLM. Unfortunately, tweaking and
getting the right models to run something in the
GPU was a hard experience and time consum-
ing, so these subsections are preliminary results.
The models we wanted to run on both vLLM and
Llama.cpp didn’t work on vLLM to try to com-
pare the throughput. To meet our deadlines, we
moved completely after the first presentation to
Llama.cpp to be able to continue with the project
and get some results to benchmark the small fea-
ture for a modern Al application that we described
in the previous section.

After the preliminary results, we show results
running on Llama.cpp with AI models stored in
GGUF files. We list the models we tried, paral-
lelized requests, time benchmarks, and accuracy.
For accuracy, we got good results. However, the
parallelized OCR process was complicated. It was
noticed that the total processing time scaled lin-
early with the number of requests; for example,
two requests took twice as long as one, and four
requests took four times as long.

4.1 Preliminary results: vLLM and
NVFP4

4.1.1 vLLM

We began by serving a small model, facebook/opt-
125m [24], which ran successfully using the vLLM
Python library — part of the quickstart guide [25].

Then, we attempted to serve a larger model
with 1.5 billion parameters, the Qwen2.5-1.5B-
Instruct [26] model, on our 8GB VRAM machine.
This initial run failed with an Out-of-Memory
(OOM) error during server initialization. The
logs suggested vLLM’s warmup phase was the
cause, as it attempted to allocate memory for
256 single-token dummy requests simultaneously.
The default value for running vLLM as a server



is max_num_seqs=256. This significant upfront
memory attempt exceeded the available VRAM.

This behavior, where initialization fails but ac-
tual serving is efficient, suggests the warmup allo-
cation test bypasses the normal operational sched-
uler. During normal operation, the scheduler man-
ages request batching incrementally, constrained
by both concurrent requests and total tokens per
batch, which is far more VRAM-efficient. As a
temporary fix, we reduced max_num_seqs from 256
to 100, which successfully lowered the warmup
memory requirement, allowing the server to ini-
tialize.

To validate the server’s stability under load, a
Go script was developed to send 50 concurrent re-
quests using diverse programming task prompts
(to prevent prefix caching). The vLLM sched-
uler managed these requests by batching them ef-
ficiently, demonstrating stable performance under
high concurrency, which suggests the underlying
issue is specific to the warmup phase’s large, non-
scheduled memory allocation, not the scheduler’s
ability to handle real requests.

Table 2: vLLM Server Performance (Qwen2.5-
1.5B on RTX 5070 Max-Q 8GB VRAM) under
Concurrent Load

Requests Peak Prompt Peak Gen. Peak KV Gen /
(tok/s) (tok/s) Cache (%) Request
1 4.2 40 0.4 40
10 37 589 2.5 59
20 74 686 6.4 34
30 111 1058 9.1 35
50 185 1265 18.5 25
70 244 1796 22.9 26
80 279 1949 29.6 24
90 273 2213 34.2 25

4.1.2 First attempts on NVFP4

As we mentioned before, this project was tested
on a Blackwell GPU in a laptop. Laptop versions
of desktop GPUs are considered Max-Q versions
[27], which are sold with the same name but are
less powerful. So we weren’t sure if this version
had FP4 units.

After many attempts at running FP4 open-
source models, and a lot of errors. Some were
because the available models we found on the
Nvidia profile were too big for our machine, and
other FP4 models we found ran with FP4 Mar-
lin, so we got this message: ‘Your GPU does
not have native support for FP4 computation’,
which is not exactly NVFP4. After checking the
source code [28], we realized that they change
the backend depending on whether libraries like
FlashInfer, TensorRT-LLM, or CUTLASS are in-
stalled [29][30][31]. Fig. 1 shows the code sec-

tion where the backend is selected. After in-
stalling these, it worked on our machine. Ad-
ditionally, setting environment variables such as
VLLM_NVFP4_GEMM_BACKEND=1 and EN-
ABLE_NVFP4_SM120=1 made it work.

scalar,
el0pt quantizatio

_-init__(self, quant_config: ModelOptNvFpdConfig) -> None:

self.quant_config = quant_config
SE_TRTL

self.backend = "flas
has_flashinfe: :

self.backend =

ValueErr: ot support NVFP4"

se Blackwell and"

Figure 1: Python implementation of
ModelOptNvFp4LinearMethod showing dy-
namic selection of the backend to support FP4
operations such as TensorRT-LLM, Flashlnfer,
Cutlass, or Marlin, based on the current execution
environment and hardware support.

Unfortunately, the model we tried was an
8 billion parameter model (nvidia/Qwen3-8B-
NVFP4)[32], and it already took 6 GB for the
weights, so there wasn’t enough space for the KV
cache. As you can see in the results in Table 3, we
were not able to serve more than 10 requests at the
same time. Also, the throughput is slower than the
previous results because this is a larger model, and
the accuracy might be better. In the future, we ex-
pect to find NVFP4 models that are smaller and
take up less space, to see whether we can achieve
better results, such as throughput, compared to
the previously analyzed non-quantized model.

Table 3: Performance Results running the model
nvidia/Qwen3-8B-NVFP4

Requested Generation KV Cache peak gen /
— Running Throughput (tok/s) (%) num of request
1—=1 32.5 28.9 32.5
10 —» 8 316 99.5 39.5
20 =7 382.3 97.6 54.6

4.2 Llama.cpp, GGUF files, and AI
application experiment

After we had tried a lot of times with vLLM, we
decided to change the focus to Llama.cpp since
it has a better focus on running LLMs on edge
devices [11]. Here, we were able to move faster, we
were able to try a lot of different models without
any issues or tweaking, and get the things done.



To test the small flow described in section 3
(which is: extract the characters of an image with
an OCR model and generate an output structure
with a text generative LLM model), we first looked
for the newest OCR models. We attempted to
use Deepseek-OCR [33], but it exceeded our avail-
able VRAM, so we utilized LightOnOCR-1B-1025
instead, a vision—language model for OCR which
was just released in October 2025, achieving state-
of-the-art results by being fast and light [34]. We
tested a version with imatrix quantization of the
model created by the user ‘noctrex’ in hugging-
face [35]. And for the text generative model,
we used qwen2.5-1.S-instruct-q4_k_m.gguf’, since
it performed well and it was a 4-bit model we
hadn’t tried any others by that time.

Model Models Tested

Type

OCR LightOnOCR-1B-1025-11-BF16
LightOnOCR-1B-1025-11-F16
Light OnOCR-1B-1025-11-Q6_K_M
LightOnOCR-~1B-1025-11-Q4_K_M
LightOnOCR-~1B-1025-11-Q3_K_M
LightOnOCR-1B-1025-i11-Q2_K

Text

Gen Qwen2.5-Qwen2.5-1.5B-Instruct-

Q4. KM

Table 4: List of models tested organized by task
type.

OCR TextGen Date Amount Currency
L-BF16 Q-Q4 81.67 95.00 97.50
L-F16 Q-Q4 82.50 93.33 95.83
L-Q6_K_M Q-Q4 81.67 90.83 98.33
L-Q4.K_M Q-Q4 82.50 90.83 97.50
L-Q3_.K_M Q-Q4 80.83 93.33 96.67
L-Q2_.K Q-Q4 78.33 92.50 99.17
Table 5: Accuracy. L: LightOnOCR, Q-Q4:

Qwen2.5-1.5B-Q4_K_M

In table 4 we list the OCR and Text Genera-
tive models we tested, and in Table 5 we show
the results of the end-to-end workflow and average
after running three times, since LLMs are non-
deterministic. This table lists the percentage of
parts of the images we were able to identify cor-
rectly from our dataset. For detecting the cur-
rency, it did pretty well for all models. More than
90% of the dataset images are Gs/Guaranies cur-
rency and the rest are USD/dollar. Surprisingly,
with the smallest OCR model, we got 99% of ac-
curacy, but this does not mean that other OCR
quantized versions did not get this result; it also
depends on the text generative model and if it

correctly grabbed the currency of what the OCR
model extracted. For the amount field, accuracy
was more than 90% for every OCR, and the rent
for guaranies is around 7 numbers; here, with the
largest model, we got the best performance. And
finally, the date was where the models struggled
the most. When we saw the models that failed
on this field, we noticed it was from both models:
from the OCR, it sometimes missed the number
(instead of 17, the OCR output an 11), and from
the Qwen model, it had more than one date to
consider from the images and grabbed the current
one, such as the distinction of ’transaction date’
or 'processed date’ data that some banks have in
their app, which made the language model con-
fused.

Finally, for timing, we tried to do parallel out-
put with llama.cpp and vLLM, but when two re-
quests or more arrived at the same time, the pro-
cessing time was increasing linearly, so testing se-
quentially would have gotten the same wait time.
This is a future work to fix, but our intuition is
that the issue comes from the LightOnOCR and
not from text generative models, since in vLLM
and in Llama.cpp the text generative models were
able to parallelize well and reduce time to serve
multiple requests. With that said, in the Table 6
we show the times for a non-parallel request, one
by one processing at a time.

It is also good to mention that, Llama.cpp al-
lows you to split the model layers between CPU
and GPU, but in these scenarios, we were able to
load and run completely on the GPU both mod-
els at the same time. With this, we got a VRAM
usage up to 5.6GB of 8GB available; the language
model only occupied 1.2GB and the OCR 4GB or
more in the VRAM.

We also tested running llama.cpp in parallel,
processing 10 images at the same time. But, as
shown in Table 7, this increased the time a lot
for every request/user. The throughput got bet-
ter a little better, from 0.48 to 0.77 req/s, but
the average total time went from 2.1s to 12.6s.
You can see the problem is the OCR time (1.8s
to 11.5s), not the text gen (0.28s to 1.04s). We
followed the 1lama.cpp documentation to do this
correctly, but there are still some issues. We think
this is more about the LightOnOCR model struc-
ture rather than the 1lama.cpp engine.

5 Conclusion and future work

We tested two modern plug-and-play LLM serving
engines, vLLM and Llama.cpp, to see how easy
it was to run Large Language Models on a low-
VRAM GPU machine, and how good of an idea



Total Process

OCR Time
(s)

Text Generation
Time (s)

OCR Model Text Gen Time (s)
LighOnOCR-BFI6  QLKM W ST E 2R
LightOnOCR-F16 Q4KM Miivglig,ifi/[;tx? 85?25
LightOnOCR-Q6 . K-M  Q4.KM Miﬁ;vgi:.é,ol(\)/[;tx:l .1468.81
LightOnOCR-Q4.K-M  Q4.KM Mii:V%:.;Q.,ll(\)/I:atx? .115?.63
LightOnOCR-Q3 KM Q4.K-M Mﬁ?g{.?}éﬁﬁx{?'g}lg
LightOnOCR-Q2.K QLK.M Avg: 2.39 + 3.07

Min: 1.27, Max: 15.95

Avg: 2.44 + 2.89
Min: 1.30, Max: 24.25

Avg: 2.46 + 2.95
Min: 1.29, Max: 24.56

Avg: 1.73 + 1.44
Min: 1.10, Max: 16.16

Avg: 1.82 £+ 2.10
Min: 1.08, Max: 14.94

Avg: 1.54 £+ 0.68
Min: 1.09, Max: 7.71

Avg: 2.10 + 2.98
Min: 1.04, Max: 15.26

Avg: 0.28 + 0.05
Min: 0.23, Max: 0.67

Avg: 0.28 + 0.06
Min: 0.24, Max: 0.70

Avg: 0.27 + 0.04
Min: 0.23, Max: 0.65

Avg: 0.28 £+ 0.06
Min: 0.24, Max: 0.69

Avg: 0.27 £+ 0.03
Min: 0.23, Max: 0.48

Avg: 0.29 + 0.09
Min: 0.24, Max: 0.72

Table 6: Processing time statistics (average £ standard deviation, minimum, and maximum) for
different quantization levels across 3 runs of 40 processed files.

Table 7: Sequential vs. Parallel (10 Requests) Per-
formance Comparison for LightOnOCR-Q4_K_M
and Qwen2.5-1.5B-Q4_K_M.

Metric Sequential (1 Request) Parallel (10 Requests)
Throughput 0.48 req/s 0.77 req/s
Total Process (s)
Avg + Std 2.10 £ 2.16 12.61 + 5.82
Min, Max 1.32, 15.63 4.19, 30.81
OCR (s)
Avg + Std 1.82 = 2.10 11.58 + 5.76
Min, Max 1.08, 14.94 3.49, 29.39
Text Gen (s)
Avg + Std 0.28 = 0.06 1.04 = 0.41
Min, Max 0.24, 0.69 0.51, 2.22

it is to be useful as a server, avoiding being de-
pendent on cloud services or paying for LLMs via
curl API calls. We found that vLLLM is more ready
for big-scale production, while being hard to run a
wider range of models if you have a limited device,
with a lot of failures when running or tweaking to
make it work. But with what we were able to
test, we got good throughput for serving multiple
requests. And we found that Llama.cpp could be
more useful for running models while developing
your application and also for serving AI applica-
tions for small features where the primary focus is
to reduce time, for example, to extract text and
use this to auto-complete large forms.

Also, we noticed that running Llama.cpp in
our system, while parallel processing improved the
overall system throughput (more requests per sec-
ond), it significantly increased the latency for each
individual user. This means that while the system
handles more work, every user waits much longer
than they would in a sequential, first-come-first-
served queue. This trade-off remains a future work
in progress, and further investigation is needed
to see if other models, resources or configuration

changes can solve this latency problem.

Additionally, other Al experiments or use cases
need to be tested, such as Al agents, which could
be more complicated in this project since Al
agents need to have more ’intelligence,” meaning
larger models and better throughput to generate a
lot of tokens to ’think’ and make a decision. How-
ever, on current applications, we noticed that they
still take time to process, so the user might be
waiting to continue working or just let the agent
work and do other things in the meantime. So in
those scenarios where background jobs are allowed
in the user experience, it could be a good test to
see if larger models will be effective on this kind of
machine and leverage the CPU RAM if they are
limited in VRAM.
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