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Abstract
The ONNX Runtime Optimizer is a widely-used tool that performs
graph-level optimizations on ONNX models. Previous work [15]
suggests that similar ONNX graph optimizers could crash during
inference or generate invalid models, but this has not been tested
on the Runtime Optimizer with NVIDIA GPUs. OTX is a Python-
based tool for benchmarking any ONNX model with any dataset
by iteratively testing the base model against optimized variants.
Our testing finds that enabling aggressive optimization can lead
to 1–4x slowdowns in inference performance for certain image
classification and object detection models.

1 Introduction
Deep Learning models are widely used for tasks such as text gener-
ation, image classification, object detection, and more [10]. As the
popularity of these models grow, they are being deployed across a
diverse range of hardware, from small mobile phones to large data
centers.

To effectively harness the computational power of these devices,
a variety of AI compilers and frameworks are being developed,
such as the XLA project by Google [36] and the MLIR framework
[9]. These tools translate model descriptions, usually expressed
in Python, into an intermediate format and then apply a series of
optimization passes to improve utilization of the target hardware.

ONNX is an open-source format that represents machine learn-
ing models as computation graphs [22]. In an ONNX graph, nodes
represent operations on data (e.g., convolution, ReLU, addition) and
edges define how this data flows between nodes. A graph is only
translated into device-specific functions (kernels) during inference,
giving it the advantage of being inter-operable across device types
and manufacturers.

ONNX Runtime [1] is a popular cross-platform inference engine
for ONNX models that includes an optimization tool to improve
performance through graph-level transformations of the model
graph. Ideally, such tools should improve inference speeds and not
alter the semantics of the underlying model. However, our analysis
using OTX revealed several models for which enabling the default
optimization level resulted in a substantial decrease in inference
speed, as well as two graph optimizations that caused the model to
crash during inference.

Contributions. This work makes the following contributions:

(1) Introduces OTX, a Python-based tool to test and profile
ONNX models against optimized variants using the ONNX
Runtime Optimizer.

(2) Analyzes why performance degradation may occur during
inference with the data collected by OTX.

2 Background
2.1 Graph Optimizations
Individual operations in deep learning models can be optimized
to improve the computational efficiency of the underlying model
[10]. This includes techniques such as Operator Fusion (as shown in
Figure 1), where multiple tensor operations are combined into a sin-
gle fused operation. Other methods include constant folding, dead
code elimination, and converting operations to hardware-specific
variants. Each type of transformation is applied as an optimization
pass over the model graph. Tools such as the ONNX Runtime exe-
cute sequences of such passes during the optimization phase that
modifies the graph and produces a new optimized variant.

Figure 1: An example of an ONNX graph that undergoes node
fusion. In this example, the convolution, batch normalization, and
ReLU nodes are fused together during the optimization pass into a
single fused node.

2.2 ONNX Runtime & Optimizer
ONNX Runtime (ORT) is an open-source, high performance engine
for creating and running machine learning models in the ONNX
format [1]. It is cross-platform and works with CPUs, GPUs, and
other specialized accelerators. Each hardware provider (NVIDIA,
AMD, Qualcomm, etc.) has a corresponding Execution Provider
(EP) that implements the logic required for executing the model
graph using device-specific libraries.

The Runtimeworks by loading amodel, applying an optimization
pass (described below), and then partitioning the execution graph.
The partitioning step splits the graph into subgraphs such that each
subgraph runs on the most efficient execution provider (if there
are multiple available). After partitioning, the nodes are sent to the
appropriate EP for execution.
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The Runtime Optimizer (referred to as the "Optimizer" hence-
forth) is the component of the inference engine that executes the
optimization step [18]. The Optimizer can be run during inference
(as "online" mode) or separately on its own ("offline" mode). There
are four levels of optimization, and choosing a level enables all the
optimizations of that level and all previous levels.

DISABLE_ALL disables all optimizations, ENABLE_BASIC applies
basic graph optimizations like constant folding, redundant node
elimination, and semantic-preserving node fusions, ENABLE_EXTENDED
addsmore complex node fusions that are device-specific, and ENABLE_ALL
adds data layout optimizations. ENABLE_ALL is applied by default
and is therefore examined in greater detail in this paper. Since the
optimizer can be executed during inference, it has the advantage of
knowing what hardware environment it is being executed in, and
can perform hardware-aware optimizations and layout transforma-
tions that take advantage of the execution graph partitioning.

2.3 Deep Learning Models
Deep neural networks include many different architectures, each
tailored to perform specific tasks such as image recognition, se-
quence modeling, and structured prediction. In this paper, we focus
on three common categories of networks:

2.3.1 Image Classification. Image classification is the task of as-
signing a label or category to an image. These models use Convolu-
tional Neural Networks (CNNs) that extract and learn features from
images [7]. They are evaluated by a series of industry-standard
metrics like accuracy, precision, and F1-score.

2.3.2 Object Detection. Object detection models are designed to
identify instances of objects within an image and to draw bound-
ing boxes around each detected object. They output a class label
(what the object is) and a set of coordinates for the bounding box
(where the object is) [27]. They are measured by metrics such as
IoU (overlap between predicted and ground truth boxes), precision,
and recall.

2.3.3 Text Comprehension. These models handle text-related tasks
such as summarization and text recognition. In this paper, we fo-
cused on question-answering models. A common metric is BLEU,
which evaluates the quality of the generated text by comparing it
to one or more references [24, 33].

2.4 Related Work
This work is built on extending and complementing the work done
by OODTE [15]. OODTE developed a differential testing engine
for the ONNX Optimizer (a tool similar to the Runtime Optimizer)
that evaluated 130 well-known models from the official ONNX
Model Hub. They found that 9.2% of model instances either caused
the optimizer to crash or led to the generation of invalid models.
However, their tool was tested only on Intel CPUs and did not
consider inference times in comparing the original and optimized
models. Our work uses the Runtime Optimizer on Nvidia GPUs and
uses GPU profiling to calculate and evaluate inference timing.

WhiteFox [37] is a tool that generates high-quality test programs
for deep learning compilers, and has found bugs in PyTorch Induc-
tor, TensorFlow-XLA, and TensorFlow Lite. Similarly, NNSmith

[13] utilizes a fuzz testing approach to detect bugs in deep-learning
compilers.

3 OTX Architecture
This section describes the architecture and methodology behind
OTX (shown in Figure 2). At its core, OTX is a Python-based tool
that loads models, optimizes them, and then compares both the orig-
inal and optimized variants across a provided dataset. OTX consists
of three primary modules: (1) Orchestrator Module, (2) Inference
Module, and (3) Metrics Comparison Module. This module-based
architecture is also inspired by OODTE, though their source code
has not been released [15].

Figure 2:Architecture of OTX based on the three primary modules.

3.1 Orchestrator Module
The orchestrator module defines a base Model class that is then
sub-classed by each specific model. The base class defines the logic
for loading the model, either from disk or from Hugging Face, and
then generating a new model based on the desired optimization
level.

Each sub-class needs to define the following functions: setup_
dataset for loading a dataset from disk and preparing it for in-
ference, score_output to define the way an output can be scored,
compare_output to define how different outputs can be compared,
and prepare_input_feedwhich defines how the dataset should be
passed to the Runtime engine. In essence, the Orchestrator module
handles all the model-specific functionality so that the Inference
and Metrics_Comparison modules can focus on model-agnostic
logic.

3.2 Inference Module
The Inference module is responsible for performing the actual
inference using the ONNX Runtime engine and for collecting the
metrics used by the Metrics_Comparison module.

The module uses the CUDAExecutionProvider [17] and verifies
that inference is being performed on the GPU. Inference takes place
on a single GPU based on the provided device_id. To ensure that
all metrics captured are fair, a warm up session with 10-20 samples
is conducted before each inference run.

GPU profiling is done in one of two modes: PYNVML and NCU.
PYNVMLmode uses the nvidia-ml-py library [21] which provides
Python bindings to NVIDIA’s GPU management and monitoring
functions. This mode captures data on GPU utilization, memory
usage, execution time, power usage and temperature. PYNVML
mode runs as a background thread sampling the GPU state every
10ms. The final result is then computed as an average over all the
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samples. NCU mode uses the NVIDIA Nsight Compute CLI [19]
that captures detailed performance metrics such as SM throughput
& usage, block & grid sizes, memory throughput, and DRAM usage
on a per-kernel level. Since the overhead of launching NCU is sig-
nificant, NCU mode is only run on 5-10 randomly selected samples
from the larger dataset.

3.3 Metrics Comparison Module
The Metrics_Comparison module analyzes the collected data and
scores each model’s output using the score_output function de-
fined earlier. The compare_output function is used to compare the
base model against any of its optimized variants. Finally, the results
are saved as a JSON report or text file.

4 Experiment Setup
4.1 Experiment Process
For each model, inference is performed on each of the four variants
(base, basic, extended, all) ten times each, and the reports are aver-
aged to calculate the final results. If any run was unreasonably slow
or fast (differs by more than 3 standard deviations), it was excluded
from the results and re-computed.

4.2 Models Used
For our experiment, we selected 15 models from the ONNX Model
Zoo onHuggingFace [23]. Eight Image Classificationmodels: ResNet-
50 [5], AlexNet [8], ShuffleNet-V2 [16], GoogleNet-12 [34],MobileNet-
V2 [30], SqueezeNet1.1 [6], EfficientNet [35] and VGG [32]. Five
Object Detection Models: SSD [14], YOLO-V2 [28], Faster R-CNN
[29], UltraFace [12], Mask R-CNN [4]. Two Text Generation models:
GPT2 [25] and BERT-Squad [2, 26]. We utilized models of various
opsets based on availability, ranging from 7 (the lowest compatible
with the latest ONNX Runtime version) up to 12.

4.3 Computational Resources
All tests were run on a NVIDIA RTX A5000 with 24GB of memory
running CUDA Version 13.1 and Driver version 590.44.01. OTX
should be generalizable to other NVIDIA hardware, although this
has not yet been tested. The Orchestrator module is provider-
agnostic and should work with other hardware providers, while
the other two modules contain NVIDIA-specific logic.

4.4 Datasets
Standard industry datasets where selected for each model type. For
Image Classification, we used 973 images from the ImageNet-256
dataset on Kaggle [3]. For Object Detection, we used two datasets:
750 images from YOLOv3 Lyft Dataset [31] and 593 images from
the COCO 2017 Dataset [11]. For question answering, we used 502
questions from the SQuAD2.0 dataset [26].

To accurately compare models of the same type, we employed
the same comparison methods. For image recognition, we used Top-
1 accuracy and Top-5 accuracy. For object detection, we calculated
F1-score, IoU, and precision. For text generation, we calculated
BLEU score [24].

5 Results
5.1 No Significant Differences
During testing, the following models displayed no significant dif-
ference in result accuracy or inference metrics across any model
variants: AlexNet, EfficientNet-Lite4, UltraFace, Mask R-CNN, GPT-
2, and BERT-Squad. A further analysis of these models showed that
only one or two nodes were changed per model between the base
and fully optimized variants. This suggests that the uploaded mod-
els had already been optimized, or that the structure of these models
doesn’t lend to any further optimization. To maintain brevity in
the discussion and clarity in the graphs, these models are excluded
from the rest of the results section.

5.2 Node Transformations
This section analyzes how different optimization levels affect the
number and type of nodes in the computation graph on the mod-
els studied. Faster R-CNN is excluded from this section due to its
unique model architecture that relies on operations none of the
other models use.

Figure 3: Change in total node count (relative to the original model)
across the four model variants.

Figure 3 shows how the total number of nodes change for each
model variant relative to the original model. On average, compared
to the original model, therewas a 22% reduction in the basic variants,
47% reduction in the extended variants, and a 45% reduction in the
optimized variants.

Figure 4 shows the average node distribution of the top 5 node
types across the image models. Most notably, Convolution nodes
jumped from 38% of nodes in the original models to 72% of all
nodes in the optimized models. This can be partly explained by
the disappearance of ReLU (18% to 0%) and BatchNormalization
(11% to 0.2%) nodes, suggesting that the ENABLE_ALL pass prefers to
aggressively fuse convolution nodes with activation functions and
operations, and decompose large convolutions into smaller ones.

5.3 Accuracy
All 15 models tested by OTX reported no difference in accuracy
between the original model and any of its optimized variants, im-
plying that the Optimizer did not perform any optimizations that
affected the semantics of the underlying model.



CSC 290, December 2025, Rochester, NY Siddharth Narsipur

Figure 4: Average node distribution (Top 5 Node Types) across the
four model variants.

However, inference on the extended variants of the MobileNetV2
and YOLOv2models failed, producing the following errors: INVALID_
ARGUMENT: unsupported convolution activationmodeClip and INVALID_
ARGUMENT: unsupported convolution activation mode LeakyRelu.

Figure 5: Change in inference performance across the four model
variants.

5.4 Perfomance
Figure 5 shows how inference performance changed across the
model variants. The basic variant showed a minor but discernible
speedup in 4 of the 7 models. The extended variant performed sim-
ilarly to the original model across all model types. An exception is
Faster R-CNN, whose optimized variant showed a near 8x speedup,
compared to the significant slowdowns (1.8x to 4x slower) for the
other six models.

Figure 6 shows the change in GPU utilization between the origi-
nal and optimized variants. We can see that GPU utilization dra-
matically drops for all the models after being fully optimized. This
is true even for the Faster R-CNN model that had improved its
inference speeds.

For the models that show degraded inference after optimization,
two main reasons were discovered: (1) node placement and (2) GPU
kernel assignment.

Figure 6: Change in GPU utilization between the original and fully
optimized model.

5.4.1 Node Placement. For the ResNet50, SSD, and YoloV2 models,
GPU utilization dropped to less than 5%, as most compute nodes
began being assigned to the CPU Execution Provider after opti-
mization despite the availability of a GPU (shown in table 1). Upon
probing the ONNX Runtime, we observed that these nodes were
characterized by the suffix _NCHWC. The runtime also explicitly in-
dicated that no GPU Execution Provider was available for nodes
with this specific configuration.

Table 1: Percentage of Nodes Assigned to GPU by Optimization
Level

% Nodes Assigned to GPU

Model Original Basic Extended Optimized

ResNet50 100.0 100.0 100.0 6.4
YoloV2 100.0 100.0 N/A 25.6
SSD 95.3 95.3 95.3 51.7
Faster R-CNN 90.9 90.9 90.8 87.0

5.4.2 Kernel Assignment. The performance of the others models
whose inference time worsened after optimization was explained
by examining ShuffleNet. Utilizing NCU mode during inference,
the results highlight two primary performance characteristics of
the original model:

• High-performance FFT-based convolutions: The profiler
indicates high memory throughput for Fast Fourier Trans-
form convolutions.
– fft2d_r2c_32x32: 60.37% SM throughput, 90.89% mem-
ory throughput.

– fft2d_c2r_32x32: 70.16% SM throughput, 92.58% mem-
ory throughput.

• Large 128 × 128 Tile GEMM: General Matrix Multiply op-
erations showed high Compute (SM) utilization.
– ampere_sgemm_128x128_nn: 93% SM throughput, 67.40%
memory throughput.

Analysis of the optimized model revealed that a portion of the
convolution nodes began using matrix multiplication kernels char-
acterized by small grid sizes which limit hardware occupancy.
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• Matrix multiplication kernels with low grid size:
– gemmk1_kernel, 1.80% SM Throughput, 1.63% Memory
Throughput, Grid Size: 32 thread blocks

This leads to a counter-intuitive performance losswhere operator
fusion results in a suboptimal graph (shown in table 2). The trans-
formation shifts execution from optimized kernels to fragmented
operations. The original model leverages the cuDNN library [20],
which employs highly optimized algorithms for convolution. These
operations utilize Matrix-Matrix (𝑀 ×𝑀) multiplication, allowing
for high throughput and utilization.

Table 2: Kernels Launched: Original vs. Optimized Variants of
ShuffleNet

Kernel Block Grid SM SM Memory
Size Size Util. Thru. Thru.

fft2d_r2c_32x32 512 256 ∼ 86% 60.7% 90.89%
ampere_sgemm_128x128_nn 256 900 ∼ 93% 70.16% 93%

GEMV (Optimized Variant) 256 32 ∼ 21% 1.8% 1.6%
BN (Optimized) 512 3 ∼ 4% 2.19% 2.2%

The optimized graph introduced nodes dependent on small,
generic General Matrix-Vector (GEMV) kernels. This shifted the
computation to Matrix-Vector (𝑀 × 𝑉 ) operations that require a
high volume of sequential launches for the convolution kernels that
ShuffleNet relies on. Consequently, the system incurs significant
overhead from kernel launching while suffering from low GPU
utilization during the execution of these lightweight kernels.

5.4.3 Faster R-CNN Performance. Contrary to the other models,
Faster R-CNN demonstrated a unique performance improvement
after optimization. The optimized model delivered a significant
7.79× speedup alongside a 91% reduction in peak memory usage
(shown in table 3).

Table 3: Faster R-CNN PerformanceMetrics: Original vs. Optimized

Metric Original Optimized

Inference Time (50 images) 83.91s 10.77s
Throughput 0.60 samples/s 4.64 samples/s
GPU Utilization 97.30% 10.30%
Memory Usage (Peak) 18.23 GB 1.67 GB
Precision 0.59 0.60

Profiling of the optimized Faster R-CNN model identified the
"backbone" as the primary performance bottleneck. The backbone is
the main feature extractor at the beginning of the inference pipeline
[29]. The analysis revealed three distinct inefficiency patterns that
contributed to high inference latency:

• High-Latency Grouped Convolutions: The backbone ex-
ecution is dominated by conv2d_grouped_direct_kernel.
While this kernel achieves relatively high hardware satura-
tion (73.91% SM throughput and 73.87% memory through-
put), a single invocation necessitates the launch of over 15.56
million threads (15, 200 blocks ×1024 threads), resulting in a
standalone execution time of 5.21 ms.

• Inefficient FrequentKernels (FFT):The fft2d_c2r_32x32
kernel is invoked 151 times per inference pass. However, due
to its small grid size (only 4 blocks), it fails to saturate the
GPU, yielding negligible utilization (2.70% SM throughput
and 4.25% memory throughput).

• Unfused Activation Overhead: The profiling detected ac-
tivation kernels such as ampere_scudnn_128x64_relu that
can be fused into the preceding convolution kernels.

Significant performance improvements in the optimized model
were achieved through a combination of memory and graph opti-
mizations. Data layout adjustments eliminated 84 inefficient trans-
pose operations, which directly reduced memory bandwidth usage.
The execution pipeline was further optimized by offloading specific
kernels—including GatherKernel, BinaryElementWiseSimple, SliceKernel,
Clip, ExpandKernel2D, and NMSKernel—to the GPU, which previ-
ously ran on the CPU in the basic model. Finally, all 56 ReLU nodes
were fused into the smaller, faster convolution kernels that replaced
the monolithic kernel.

6 Limitations
OTX was only tested on 15 models and three model variants, while
there are over 2,900 models on the Hugging Face ONNXModel Zoo.
Different model architectures may break OTX or provide insights
into the performance of the optimizer that weren’t covered here.

All experiments were conducted on a GPU with the Ampere
architecture, which is two generations old. The CUDAExecution-
Provider may perform better on newer architectures.

NVML mode is run as a background polling thread which may
add overhead to inference metrics and influence the metrics evalu-
ation.

As mentioned above, some nodes were assigned to the CPU
execution provider during inference. These statistics were not mon-
itored or considered by the MetricsComparison mode.

7 Future Work
Directions of future work include:

• This project has emphasized the importance of the Execu-
tion Provider in assigning the appropriate kernels to nodes
and the Inference Engine in assigning nodes to execution
providers. Future work could profile this relationship across
different execution providers.

• Extending this work to other optimizers, like the ONNX
Optimizer and experimenting with the ordering of passes
like in OODTE.

• Testing OTX on the TensorRT and TensorRT for RTX Execu-
tion Providers.

8 Conclusion
This work introduces OTX, a Python-based tool to test and bench-
mark any ONNXmodel by iteratively testing the base model against
optimized variants.
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