Optimizing Adversarial Defenses With CUDA

Johnny Tavares
University of Rochester
jtavare3 @u.rochester.edu

Abstract—Deep convolutional neural networks such as ResNet-
50 are increasingly relied on to provide image recognition and
classification tasks. As they’re adopted in more sensitive areas,
researchers have become aware of the vulnerabilities to adver-
sarial attacks, specifically Projected Gradient Descent (PGD),
and have offered various defenses. However, these defenses may
not initially be optimal enough to be implemented in practice.
Focusing on the widely used PyTorch framework, this paper
demonstrates the ease and efficacy of leveraging CUDA to
mitigate Python library call overhead and optimize memory
traffic through the fusion of proposed defensive operations. The
defense introduced a negligible 1.4% overhead in total inference
latency, much less than the 68.3% overhead reported for the
Kornia library.

I. INTRODUCTION

Deep neural networks are highly vulnerable to adversarial
attacks such as PGD, which introduce small, carefully crafted
perturbations that cause misclassification while remaining
difficult for humans to detect. This paper will extend the
work presented in [1], which demonstrated that combining
spatial smoothing with feature squeezing (via bit-depth reduc-
tion) substantially improves the robustness of models such as
ResNet50 against adversarial examples.

Their implementation used the TensorFlow framework with
the Adversarial Robustness Toolbox (ART), which, like many
reference implementations, prioritizes correctness and flexi-
bility over low-level performance optimization. To replicate
their approach in our PyTorch environment, we use Kornia [6]
implementations of spatial smoothing and feature squeezing,
which similarly rely on unfused, multi-kernel tensor opera-
tions. This design introduces significant computational over-
head and may be unsuitable for the high-throughput inference
required in applications such as autonomous driving, even
though the underlying security threat remains substantial.

To address this limitation, we present a fused GPU kernel
exposed as a PyTorch custom operator. It integrates spatial
smoothing and feature squeezing in a single pass to reduce
inference latency. The kernel is intentionally simple and
straightforward to implement, requiring only modest CUDA
programming effort while still providing substantial perfor-
mance benefits.

Availability: The source code for this project is
publicly available at https://github.com/johnny-tavares/
Optimizing- Adversarial-Defenses- With-CUDA

II. BACKGROUND
A. Spatial Smoothing

As illustrated in Figure 1, Spatial Smoothing uses a sliding
window across the entire image to filter out high frequency
noise. This window typically contains the pixels around the
target pixel, and uses them to generate a new pixel value as
illustrated in Figure 2. The window can start at a size of 3 x 3
pixels, and the smoothing becomes more aggressive as you
increase the window’s size.

Regarding the calculation of the new pixel value, two
popular options exist. Mean blur and median blur take the
window’s pixels, and choose the mean or median as the new
pixel value respectively. Median blur will be more expensive
to compute as you need to store each value and then sort,
which turns out to be significant later on.

Swoothing Process over an Inage using Averaes

inbut (i)
000000
000000
0 90 90 90 90 %0
o sols0 %0 %0
0 90 50 %0 50 %
0 90 50 9 50 %
0 90 90 9 90 %
ofo
o[o
ofo

outeut (i)

0 [10]20]30]30[30] 20| 10
0/20/30|50|50|60|40 |20
03050 [l 80|90 60|30

" | o[30]s080[80]90[60 30|

" [10]30[60]50] 90| 90| 6030
10[3040[60| 60| 50|40 20

[20| 20 30[30[30|20 [10
10{10| 0 U‘U 0 O‘U

olofo]e o oo oo
olole]|e o oo oo

ooooooonoo
SEREEEEEEE

0
0
0

oo o
slsls
o oo

Fig. 1. The effect of smoothing on removal of outliers. (Reprinted from [4]).

Swoothing Process over an ImaJe using AveraJes

inbut (i)
0|0 0 0 0
o|o 0 0 0
90|90(90/90 90 O
9 0 9 %0 %0 O
90 90 90 90 %0 O
90 90 90 90 90 O
90 90 90 90 90 O

output (i)

9 .
0 0[10/20|30

cococooooooo
©coc8ocoooooo
cocoooooooo
cococooooooo

oo o
oo o
oo o
oo o
oo o

[
o
0
ad ~

Fig. 2. Two-dimensional image smoothing example using a 3 X 3 average
filter. (Reprinted from [4]).

B. Feature Squeezing

Bit-depth reduction reduces the color bit-depth of the image
(e.g., from 8-bit to 4-bit). Figure 3 illustrates the results of
feature squeezing, where colors are noticeably more “blocky”.
This is commonly implemented by quantizing the color space,

where each color channel’s 2" possible values (e.g., 28 =
256 for 8-bit) are mapped down to a smaller set, effectively
removing the least significant bits (LSBs) of the pixel values.

Fig. 3. The effects of reducing the color bit-depth of an image, demonstrating
the quantization effect on pixel values. (Reprinted from [5]).

Similarly to Spatial Smoothing, by eliminating these small
variances in the LSBs, bit-depth reduction destroys the care-
fully crafted gradient signal that the adversarial example relies
upon to misclassify the model. This “squeezes” out small
perturbation values, effectively sanitizing the input. With both
combined, the output is demonstrated in Figure 4.

| i

Image after Spatial
Smoothing in Step 6

Image after applying
Gaussian Data
Augmentation in Step 7

Image after applying
Spatial Smoothing and
Feature Squeezing
together in Step 9

Image after applying
Feature Squeezing in Step 8

Fig. 4. Image changes throughout Spatial Smoothing and Feature Squeezing
(Reprinted from [1]).

C. Projected Gradient Descent Reasoning

Projected Gradient Descent (PGD) is widely regarded as the
“universal” first-order adversary, as noted in [3]. It performs an
iterative sequence of gradient-based updates, each step pushing
the input toward a misclassification while a projection operator
keeps the perturbation within a specified ¢,-bounded region.
This process makes PGD substantially stronger than single-
step attacks such as FGSM, often producing perturbations that

approach the worst-case adversarial examples permitted by the
threat model.

Given its reputation as the strongest and most reliable first-
order attack in the literature, evaluating our CUDA-based
defense under PGD offers a meaningful and conservative stress
test. Demonstrating robustness here suggests that the defense
is likely to remain effective against weaker or less optimized
adversaries as well.

D. Existing Implementations (Kornia)

The Kornia library is an open-source, differentiable com-
puter vision library built specifically for PyTorch. Taking
a deeper look at Kornia’s median blur implementation, it
currently carries out several independent GPU operations:

1) Constructing a binary kernel in Python and transferring
it to the device,

2) Applying a full conv2d operation to extract local
windows from the input, and

3) Computing the median via a reduction over the expanded
window dimension.

Each stage triggers a separate kernel launch, resulting in
additional global memory traffic, synchronization overhead,
and loss of memory locality. A fused CUDA kernel would
avoid these intermediate steps, keeping the computation local
to the thread block and substantially reducing latency.

Another significant inefficiency arises from the creation of
the sliding-window tensor. After the conv2d operation, the
output is reshaped into a tensor of shape (B,C, K2 H,W),
effectively expanding the input by a factor of K2. For a
3 x 3 kernel, this corresponds to a ninefold increase in data
before the median is computed. Constructing and storing
this intermediate tensor places a heavy burden on memory
bandwidth, which is typically the dominant cost in filtering
operations. In contrast, a specialized CUDA kernel would
compute the median directly from registers or shared memory,
avoiding the need to materialize the full window tensor in
global memory.

III. REPLICATION AND BENCHMARKING SETUP

A. Experimental Setup

o Hardware: Single Nvidia RTX A5000.

e Model: ResNet50V2.

o Image Size: 224 x 224

e Blur: Median blur is chosen as it’s the more effective
choice against adversarial attacks [2].

« Edge Handling: We use coordinate clamping rather than
reflection padding in our Spatial Smoothing, as it’s faster
to implement in raw CUDA and avoids allocating larger
padded images in memory.

o Bit Depth: 4-bit depth reduction is a common choice,
although other options are certainly possible.

B. Benchmarking Methodology

To rigorously evaluate performance across all defense im-
plementations (Defenseless, Kornia, and Custom Kernel), a

strict timing protocol was implemented to account for the
asynchronous nature of GPU execution:

o Warmup Phase: A warmup loop of 10 iterations ensures
the GPU caches are hot and the device is in a steady state.

o Synchronization: Calls to
torch.cuda.synchronize () are placed immedi-
ately before the start timer and after the workload. This
ensures the timer measures the actual GPU execution
time, not just the CPU launch overhead.

e Garbage Collection: Python’s garbage collector
(gc.disable ()) is disabled during the timing loop to
prevent random CPU pauses from skewing the results,
but this is mainly precautionary.

e Metric: We use Python’s “time.perf_counter()” to bench-
mark the combined latency of applying the defense and
performing model inference.

Listing 1. Accurate GPU timing implementation.
Synchronize BEFORE start time ensures
previous GPU work is done
torch.cuda.synchronize ()
start = time.perf_counter ()

The workload
defended = apply_defense (batch,
defense_type)
with torch.inference_mode ():
output = model(defended)

Synchronize AFTER end time ensures
GPU work is actually done
torch.cuda.synchronize ()

end = time.perf_counter ()

C. Performance and Robustness Without Defense

For the defenseless case, the classification results were as
follows:

o Confidence: The clean image was classified with an
initial confidence of 87.48%.

o Average Inference Time: The average inference latency
was measured at 2.2089 ms.

o Standard Deviation: The standard deviation for the
inference time was 0.0172 ms.

Applying the adversarial example to this baseline model suc-
cessfully destroyed its robustness. The model misclassified
the image with a final prediction of paper towel and a
destructive confidence of 100%.

D. Performance and Robustness With Kornia

For the baseline defense mechanism, the initial performance
metrics show a predictable overhead compared to the unde-
fended model:

¢ Clean Confidence: The model classified the clean image
with an initial confidence of 84 . 92% (a slight drop from
the undefended baseline).

o Average Inference Time (Overhead): The average in-
ference latency was measured at 3.7239 ms.

o Standard Deviation: The standard deviation for the
inference time was significantly higher at 0.1393 ms.

When the adversarial example was applied to the model
with this baseline defense, the robustness was significantly
improved, as measured by the post-attack confidence:

« Post-Attack Average Correct Confidence: The average
confidence for the correct class after the attack was
70.11%.

This result demonstrates that the defense mechanism suc-
cessfully maintained a high level of classification confidence,
contrasting sharply with the 100% confidence misclassification
observed in the undefended baseline.

IV. SYSTEM DESIGN: FUSED SPATIAL SMOOTHING +
FEATURE SQUEEZING KERNEL

A. Kernel Design Overview

The core of the optimization strategy is a custom C++
CUDA kernel designed to fuse multiple operations into a
single efficient pass. The kernel assigns each thread the job
of calculating the new value for a single pixel. This process
involves two distinct stages executed sequentially within the
same thread:

1) In-Register Median Sorting: Unlike standard library
implementations that rely on separate convolution and
reduction steps, this kernel implements a sorting algo-
rithm directly. For a given pixel, the thread retrieves
the 3 x 3 neighborhood window, stores the values in
a local array, and sorts them to identify the median.
This minimizes global memory usage by keeping the
operation largely within the thread’s registers.

2) Fused Bit-Depth Reduction: Immediately after the
median is found, the kernel applies feature squeezing.
It uses floorf operations to quantize the pixel value:

val = floorf(median x levels)/levels (D

By performing this immediately after sorting, the ker-
nel avoids writing intermediate results back to global
memory, preserving memory locality.

Note that another reason median blur was chosen was to
show that the CUDA kernel can still efficiently execute the
more computationally expensive sorting option compared to
simple averaging.

B. Implementation Details

The implementation leverages PyTorch’s load_inline
utility to integrate the custom CUDA kernel into the Python-
based pipeline.

1) Runtime Compilation: The CUDA source code is
defined as a C++ string within the Python script. The
load_inline function compiles this string at runtime,
creating a callable PyTorch extension. This allows the entire
defense logic to remain self-contained while taking advantage
of the raw performance of compiled C++.

Listing 2. Compiling the CUDA kernel at runtime.
my_ext = load_inline (
name="defense_ext_v1’,
cpp_sources=cpp_source ,
cuda_sources=cuda_source ,
functions=[’launch_fuse’],
verbose=False

2) Kernel Launch Configuration: For the benchmarking
experiments, the kernel is launched with a fixed configuration
to ensure consistent occupancy. We utilize a thread block
dimension of 16 x 16 (256 threads per block). The grid
dimension is explicitly set to 14 x 14 x 3 to cover the input
spatial dimensions and processing planes.

V. EVALUATION
A. Latency Comparison

To evaluate the computational efficiency of the proposed
defense, we measured the processing time of the Custom
Kernel against a standard library implementation (Kornia) and
a baseline of no defense. As shown in Figure 5, the Kornia
Median Blur introduced significant overhead, increasing pro-
cessing time by 68.3%.

In contrast, our Custom Kernel implementation demon-
strated superior performance, executing in 2.24 ms. This
represents an overhead of only 1.4% compared to the “No
Defense” baseline, making it a highly efficient solution for
real-time applications.

41 3.72 N
m
é 2.21 2.24
E 2 |
=
0 T
No Defense Kornia Custom
Kernel
Method

Fig. 5. Latency comparison between standard Kornia implementation and the
optimized Custom Kernel.

B. Robustness Comparison

We evaluated the effectiveness of the defenses against ad-
versarial examples. Table I summarizes the prediction results,
confidence scores, and success status for each strategy.

Without defense, the model failed completely, misclas-
sifying the input as “Paper Towel / Remote” with 100%
confidence. Both the Baseline (Kornia) and the Custom Kernel
successfully recovered the true class (“Siamese Cat”). While

the Custom Kernel resulted in a slightly lower confidence
score (~66.17%) compared to the Kornia Baseline (~70.11%),
it maintained the correct classification while offering the
significant latency improvements noted in the previous section.

Defense Strategy | Prediction Confidence Status
No Defense Paper Towel / Remote 100.00% FAILED
Baseline (Kornia) | Siamese Cat ~70.11% RECOVERED
Custom Kernel Siamese Cat ~66.17 % RECOVERED

TABLE T
ROBUSTNESS COMPARISON SHOWING SUCCESSFUL CLASSIFICATION
RECOVERY BY BOTH DEFENSE METHODS.

VI. DISCUSSION
A. Extending to Other Defenses

While this work focused on replicating the spatial smooth-
ing and feature squeezing defense proposed in [1], the
core contribution—reducing memory bandwidth pressure
through kernel fusion—extends naturally to a wide range
of preprocessing defenses. Many gradient-masking or input-
transformation techniques share similar bottlenecks, including
repeated kernel launches, unnecessary global memory traffic,
and Python-level overhead. Because these inefficiencies are
structural rather than algorithm-specific, the same CUDA
optimization strategy could be applied to defenses such as
JPEG compression or randomized preprocessing layers.

B. Limitations

Although the Custom Kernel demonstrates substantial
speedups, several limitations must be considered when in-
terpreting the results. One key factor is the impact of the
underlying machine learning libraries. The original work by
Muthalagu et al. used TensorFlow and the Adversarial Robust-
ness Toolbox (ART), whereas this replication was conducted
in PyTorch. This mismatch is not ideal for direct comparison,
as each framework differs in memory allocation behavior,
operator implementations, and scheduling.

C. Timing Fairness and Kornia Overhead

When comparing the Custom Kernel to Kornia, it is im-
portant to consider what each tool is optimized for. Kornia
is a fully differentiable CV library designed for training
pipelines, meaning it must maintain autograd traces and relies
on generic PyTorch primitives that prioritize flexibility over
minimal memory movement. In contrast, the Custom Kernel is
specialized purely for inference and removes all unnecessary
overhead. Thus, the performance difference reflects a trade-
off between the flexibility of a general-purpose differentiable
library and the efficiency of a purpose-built CUDA kernel,
rather than a deficiency in Kornia’s implementation.

D. CUDA Efficiency

At the low level, the Custom Kernel presented here is
not theoretically optimal. The implementation favors clarity
and simplicity, relying on per-thread register sorting. A more
advanced version could use shared-memory tiling to reduce
redundant global memory reads for overlapping windows,

or using a more GPU-Optimized sorting algorithm. As a
result, the measured 1.4% overhead should be viewed as a
conservative upper bound; tighter optimization could push the
overhead toward zero.

VII. CONCLUSION

This paper presented a CUDA-optimized implementation
of a spatial smoothing and feature squeezing defense for
PyTorch. By fusing operations into a single kernel, we reduced
inference overhead from 68.3% to a negligible 1.4%, making
the defense viable for real-time systems. While high-level
libraries like Kornia provide essential flexibility for research
and training, this work demonstrates that custom kernel fusion
is a necessary step for deploying adversarial defenses in
production environments where latency is critical. We success-
fully demonstrated that the defensive principles established
in prior TensorFlow research can be efficiently adapted to
PyTorch, providing a robust and high-speed protection against
PGD attacks.

REFERENCES

[1] R. Muthalagu, J. Malik, and P. M. Pawar, “Detection and pre-
vention of evasion attacks on machine learning models,” Expert
Systems with Applications, vol. 266, Art. no. 126044, 2025. doi:
10.1016/j.eswa.2024.126044.

[2] W. Xu, D. Evans, and Y. Qi, "Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks,” in Proceedings 2018 Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA,
2018. doi: 10.14722/ndss.2018.23198.

[3] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2019.

[4] Udacity, “Smoothing Process Over an Image Using Average,”
YouTube, Feb. 23, 2015. Accessed: Dec. 8, 2025. [Online]. Available:
http://www.youtube.com/watch?v=ZoaEDbivmOE.

[5] Blender Artists Community, “Reducing the number of
colors (color depth),” Apr. 8, 2013. [Online]. Available:
https://blenderartists.org/t/reducing-the-number-of-colors-color-
depth/571154. [Accessed: Dec. 8, 2025].

[6] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski, “Kornia: an
Open Source Differentiable Computer Vision Library for PyTorch,” in
IEEE Winter Conference on Applications of Computer Vision (WACV),
2020, pp. 3674-3683.

