
Vectorization Additions to SMaT CPU Code and use Case Comparison
of SMaT and dgl-SpMM

Jason Shin
jshin60@u.rochester.edu

Abstract— Recent frameworks such as SpTransX [7] employ
the utilization of Sparse Dense Matrix Multiplication (SpMM)
to show empirical performance gains on knowledge graphs.
For its implementation, SpTransX utilizes dgl g-SPMM [16]
for GPU based SpMM operations. Highly optimized SpMM
libraries such as SMaT [11] can outperform dgl g-SPMM and
other cuSparse based SpMM libraries by 8.60 − 16.32× in
most cases. As such, a comparison of dgl g-SpMM and SMaT
can determine if employing SMaT into SpTransX can improve
the SpMM operation performance of SpTransX. This project is
separated in two parts. The first vectorizes portions of the csr to
bcsr code of SMaT showing a 3.85× reduction in average cycles,
3.41× reduction in average instruction count, and a 1.69×
reduction in average execution time. The second compares
the adj and adjneg SpMM operation times and throughput
of transe, transh, and tansr on dgl g-SPMM and SMaT finding
that SMaT under performs compared to dgl g-SPMM due to the
highly sparse nature (99.99% sparsity) of the SpMM operations
performed.

I. INTRODUCTION

Recent frameworks such as SpTransX [7] employ the
utilization of Sparse Dense Matrix Multiplication (SpMM)
to show empirical performance gains on knowledge graphs
embedding (KGE) methods such as transe [8] which were
designed for tasks such as social network analysis and recom-
mender systems. SpTransX utilizes dgl g-SpMM [16] which
is based on cuSparse for its implementation. If dgl g-SpMM
was replaced with a highly optimized SpMM library, it could
potentially allow for further optimization of SpTransX’s
training pipeline. Highly optimized SpMM libraries such
as SMaT [11] report higher empirical SpMM performance
compared to cuSparse potentially introducing performance
gains to SpTransX allowing for larger Knowledge Graphs
(KG) to be trained in a reasonable amount of time. When
examining the SMaT source code, some of the commonly
utilized CPU code (i.e. csr to bcsr in matrix.h) does not
employ vectorization. This project does the following:

1) Implement loop vectorization, loop unrolling, and soft-
ware pipelining to the csr to bcsr conversion of SMaT
[6] as Intel AVX intrinsics [3] to reduce the number
of instructions used by the SMaT pipeline.

2) Compare SMaT to dgl-SpMM on SpMM operations
performed by the SpTransX reproducibility library [1]
observing the conditions in which SMaT improves
upon dgl-SpMM.

II. BACKGROUND

A. SpTransX

SpTransX [7] is a recently introduced framework for com-
puting knowledge graph (KG) embeddings as Sparse-Dense
Matrix Multiplications (SpMM) making improvements to
four translational models by representing knowledge graph
embedding (KGE) computations as a series of SpMM oper-
ations to reduce training time as well as memory usage. This
improves upon previous KGE calculation methods which
utilize dense matrices and suffer from high memory demands
and expensive back propogation calculations. SpTransX uti-
lizes dgl g-SPMM [16] for GPU SpMM calculations taking
an input of COO matrices for GPU SpMM operations and
CSR matricies for CPU SpMM operations.

B. SMaT

SMaT [11], a recently introduced SpMM library utilizing
a method with Tensor Cores for additional performance in
SpMM operations shows higher emperical performance than
other SpMM and SpVM libraries such as cuSparse and
DASP being ×16.32 and ×10.78 faster on the suitesparse
dataset. Within synthetic matrix tests where C = A×B and
A has the shape N × N , SMaT performs well when N is
large being ×8.60 faster than cuSparse when N = 1000.

C. CSR, COO, and BCSR

Recent research comparing CSR/COO matrices to BCSR
matrices [12] has shown that the usage of BCSR on moder-
ately sparse to highly sparse graphs could have a similar
runtime to CSR and COO matrices with reduced GPU
memory consumption in tasks such as Breadth First Search.

III. METHOD

The main work done was on improving SMaT’s csr
to bcsr conversion code primarily focusing on vectorizing
the blockindex calculations. This is due to the remaining
code containing a large sum of potentially non contiguous
matrix accesses which require gathers and scatters that are
inefficient for the CPU to conduct. Such code is kept
unvectorized as well as portions of code which cannot be
done with AVX SIMD operations (i.e. division, modulo, and
the multiplication of two vectors with 64 bit integers). The
code optimizations focus on three of the four blocks of loops
within the csr to bcsr conversion function. The first block of
code from the SMaT source code [6] has the following form:

for (size_t row = 0; row < m_row; row++){



size_t j = csrRowPtr_host[row]
for (; j < csrRowPtr_host[row + 1];
j++){

size_t col = csrColIdx_host[j];
size_t rowRegion = row / MMA_M;
size_t colRegion = col / MMA_K;
size_t blockIndex = rowRegion *
numColRegions + colRegion;
//Remaining unaltered code

}
}

which for the portion of interest will produce 4 ∗
(csrRowPtr_host[row + 1] − csrRowPtr_host[row])
size_t operations for each iteration of the outer loop.

When applying vectorization, we can assign the vectors
for rowRegion∗numColRegions outside of the inner loop
of the code block. This means that we only need to assign
each group of csrColIdx_host[j]/MMA_K to a vector and
perform a single vector addition within the inner loop. As
the code utilizes AVX intrinsics [3] which are 256 bit vectors
and size_t values are 64 bit, each iteration of the loop will
include four calculations simultaneously. As such we can
produce the following code vectorization:

size_t* blockindex_nums = (size_t *)
calloc(sizeof(size_t), 4);
for (size_t row = 0; row < m_row; row++){

size_t rdivm = row / MMA_M;
__m256i b = _mm256_set1_epi64x(rdivm

*numColRegions);
size_t j = csrRowPtr_host[row]
for (; j+4 < csrRowPtr_host[row + 1];
j=j+4){

__m256i colRegion =
_mm256_set_epi64x(
csrColIdx_host[j+3]/MMA_K,
csrColIdx_host[j+2]/MMA_K,
csrColIdx_host[j+1]/MMA_K,
csrColIdx_host[j]/MMA_K);
__m256i blockIndex =
_mm256_add_epi64(b, colRegion);
_mm256_store_si256(
(__m256i*)blockindex_nums,
blockIndex);
//Remaining unaltered code

}
//unvectorized code block

}
free(blockindex_nums);

The vectorized code first places the calculation and vector
assignment of row/MMA_M ∗ numColRegions outside
of the inner loop producing two size_t operations every
iteration. Within the loop we have to conduct four size_t
operations (division) to assign the four col/MMA_K val-
ues. We can then calculate the four blockindicies with a
single SIMD addition. The results are then stored to an

array for the non vectorized portion of code in which spatial
locality can reduce the memory access time of each of
the blockindex calculations. As such, with vectorization the
number of size_t operations and SIMD operations can be
reduced down to 2 + 5(⌊(csrRowPtr_host[row + 1] −
csrRowPtr_host[row])/4⌋)+ 4((csrRowPtr_host[row+
1] − csrRowPtr_host[row])%4) per each iteration of the
outer loop. Further loop unrolling and basic software pipelin-
ing (although as CPUs can perform independent instructions
out of order, it is unlikely any software pipelining will
increase the pipeline parallelism of the code) can be applied
to potentially allowing for the total number of instructions
utilized by the program to be reduced as fewer instructions
are spent on the loop itself and more on the instructions
within the loop:

size_t* blockindex_nums_16 = (size_t *)
malloc(sizeof(size_t)*8);
size_t* blockindex_nums = (size_t *)
calloc(sizeof(size_t), 4);
for (size_t row = 0; row < m_row; row++){

size_t rdivm = row / MMA_M;
__m256i b = _mm256_set1_epi64x(rdivm

*numColRegions);
size_t j = csrRowPtr_host[row]
for (; j+8 < csrRowPtr_host[row + 1];
j=j+8){

__m256i colRegion1 =
_mm256_set_epi64x(
csrColIdx_host[j+3]/MMA_K,
csrColIdx_host[j+2]/MMA_K,
csrColIdx_host[j+1]/MMA_K,
csrColIdx_host[j]/MMA_K);
__m256i colRegion2 =
_mm256_set_epi64x(
csrColIdx_host[j+7]/MMA_K,
csrColIdx_host[j+6]/MMA_K,
csrColIdx_host[j+5]/MMA_K,
csrColIdx_host[j+4]/MMA_K);
__m256i blockIndex1 =
_mm256_add_epi64(b, colRegion1);
__m256i blockIndex2 =
_mm256_add_epi64(b, colRegion2);
_mm256_store_si256(
_mm256_storeu_si256(
(__m256i*)blockindex_nums_16,
blockIndex1);
_mm256_storeu_si256(
(__m256i*)&blockindex_nums_16[4],
blockIndex2);
//Remaining unaltered code

}
//initial vectorized code block
//unvectorized code block

}
free(blockindex_nums);
free(blockindex_nums_16);



(a) Number of size_t and SIMD
operations per iteration of code block
1 as csrRowPtr_host[row + 1] −
csrRowPtr_host[row] increases.

(b) Number of size_t and SIMD opera-
tions per iteration of code block 2 as Z =
⌊m_col/16⌋ increases.

(c) Number of size_t and SIMD
operations per iteration of code block
3 as csrRowPtr_host[row + 1] −
csrRowPtr_host[row] increases.

Fig. 1: The number of size_t and SIMD operations per iteration as csrRowPtr_host[row + 1]− csrRowPtr_host[row]
or Z = ⌊m_col/16⌋ varies.

This ultimately creates a block of code that produces 2 +
10(⌊B1/8⌋) + 5(⌊(B1&8)/4⌋) + 4((B1%8)%4) size_t and
SIMD operations per iteration of the outer loop (where B1 =
csrRowPtr_host[row + 1]− csrRowPtr_host[row]).

For the second code block in the SMaT source code [6]:

for (size_t row = 0; row < m_row;
row += MMA_M) {

size_t col = 0;
for (; col < m_col; col += MMA_K) {

size_t current_block =
row / MMA_M * numColRegions +
col / MMA_K;
//Remaining unaltered code

}
}

we can apply the same strategy as we did for the first code
block to reduce the expected number of size_t and SIMD
operations from 4N to 2 + 24(⌊Z/8⌋) + 11(⌊(Z%8)/4⌋) +
4((Z%8)%4) size_t and SIMD operations per iteration of
the outer loop (where Z = ⌊m_col/16⌋).

For the third code block in the SMaT source code [6]:

for (size_t row = 0; row < m_row;
row++) {

size_t j = csrRowPtr_host[row];
for (; j < csrRowPtr_host[row + 1];
j++) {

size_t col = csrColIdx_host[j];
size_t rowRegion = row / MMA_M;
size_t colRegion = col / MMA_K;
size_t blockIndex = rowRegion *
numColRegions + colRegion;
half val = csrVal_host[j];
size_t offset = row % MMA_M *
MMA_K + col % MMA_K;
size_t bcsrIndex =
relativeBlockIndexMapping_host
[blockIndex]

* MMA_M * MMA_K + offset;
blockSize, offset, bcsrIndex);
bcsrVal_host[bcsrIndex] = val;

}
}

We have two points in which the code will not be
vectorized, at the end with bcsrV al_host[bcsrIndex] =
val; and in the middle when we call
relativeBlockIndexMapping_host[blockIndex]. For
the first we can apply similar methods as before (storing the
bcsrIndex values into memory) as it is simply assigning
values to non contiguous indexes of bcsrV al_host. For the
second we have to switch from AVX SIMD intrinsics [3] to
non vectorized code as we will multiply three size_t values
together (thus two 64 bit multiplications). As such, we have
to store the values of blockIndex into memory and perform
the two multiplications. This means that the calculation
of the offset must be done either before we temporarily
switch to a chunk of non vectorized code or after. It is done
before the section of non vectorized code, as col%MMA_K
must be calculated to get the offset. We also have to
calculate col/MMA_K prior to the non vectorized block
of code and can take advantage of spatial and temporal
locality (as we are accessing the same contiguous elements
of csrColIdx_host for both) to reduce the memory access
time. If we apply the same vectorization, loop unrolling,
and software pipelining as code blocks 1 and 2 (with the
consideration of needing to switch to non vectorized code
for a portion of the calculation), we can reduce the expected
number of size_t and SIMD operations from 11B1 to
5 + 30(⌊B1/8⌋) + 15(⌊(B1%8)/4⌋) + 11((B1%8)%4)
for each iteration of the outer loop (where B1 =
csrRowPtr_host[row + 1]− csrRowPtr_host[row]).

For all three code blocks, we can observe that applying
vectorization and loop optimizations can allow for a reduc-
tion in the number of expected instructions (in the chunks of
altered code). We can see from Figure 1 that in almost all
cases (other than extremely small csrRowPtr_host[row +



1] − csrRowPtr_host[row] or Z = ⌊m_col/16⌋ values),
employing code vectorization can reduce the number of
size_t and SIMD operations we conduct per iteration and
thus the total number of size_t and SIMD operations for
these blocks of code. The largest benefit is for code blocks 1
and 3 in which the difference number of expected size_t and
SIMD operations grows significantly as the space between
row pointer values grow. In the context of the matrices that
will run within the SpTransX reproducibility code [1], for
the largest sparse matrix (the sparse matrices associated with
transe SpMM operations) ⌊m_col/16⌋ = 1018 and the av-
erage csrRowPtr_host[row+1]− csrRowPtr_host[row]
value should be 3̃. This means that for code blocks 1 and
3, we do not gain any benefit to vectorization and for code
block 2 we reduce the expected size_t and SIMD operations
from 4,072 to 3,054 per iteration of the inner loop. As we
have 393,216 rows or 24,576 iterations of the outer loop for
code block 2, we should at most save 25,018,368 size_t
and SIMD operations for any of the sparse matrices used in
by SpTransX. To take advantage of the instruction reductions
for code blocks 1 and 3 by vectorization we need on average
more elements per row (thus a more dense matrix).

Beyond the implementation of AVX SIMD intrinsics [3]
into the csr to bcsr function of SMaT, minor changes (which
reference some online C tutorials on file reading and writing
[9], [10], [13], [14] for its implementation) were made to
the tester.h source code of the reproducibility library [6].
This allowed for comparisons of SMaT and dgl-SpMM to be
made for SpMM operations from transe, transh, and transr.
On top of the .mtx file the code takes for the A sparse matrix,
it will also read a num_data.txt file which contains the N
and K dimension of the B dense matrix (each on its own
line) and a float_data.txt file which contains the float values
of the B dense matrix in row order form. The output is
then written to a C_vals.txt for checking purposes. Although
reading from these files introduces overheads, the evaluation
for vectorizing csr to bcsr does not consider these overheads
as it is testing the band_mtx_16384_16384.mtx synthetic test
case and the SMaT and dgl-SpMM gathers the Mma-CBT-
Kernel data for SMaT SpMM computations which also does
not consider the overhead.

IV. EVALUATION

An empirical evaluation of both the difference in per-
formance of the vectorized and unvectorized csr to bcsr
conversion function as well as the performance difference be-
tween SMaT and dgl-SpMM were conducted. For the csr to
bcsr conversion test the built in band_mtx_16384_16384.mtx
synthetic test provided by the reproducibility library [6] was
conducted with the following command line arguments:

-M=512 -N=512 -K=512 -enable_wmma=true
-enable_mma=true -warmup_iterations=1
-profiling_iterations=10
-sleep_duration=100
-enable_check=false -n_mult=1
-filename=<path to file>

For the SMaT and dgl-SpMM test, dgl-SpMM data was gath-
ered from profiling the reproducibility code of SpTransX [1]
(specifically the transe-fastkg.py, transh-fastkg.py, and transr-
fastkg.py scripts) and SMaT data was gathered utilizing the
following command line arguments:

-M=512 -N=512 -K=512 -enable_wmma=true
-enable_mma=true -warmup_iterations=0
-profiling_iterations=1
-sleep_duration=100
-enable_check=false -n_mult=1
-filename=<path to file>

For the SMaT SpTransX tests .mtx files were generated
utilizing scipy csr arrays [2] and the mmwrite function [4].
The float values of the dense B matrix were gathered utilizing
numpy savetxt [5] (a tutorial [15] was also briefly referenced
for writing files in python).

A. Vectorized CSR to BCSR

For the band_mtx_16384_16384.mtx synthetic test, the
SMaT baseline had on average 261,476,275,200 cycles and
202,674,662,400 instructions. The average runtime of the test
was 101.817 seconds with an average IPC of 0.775 for the
CPU portion. With the vectorization and loop unrolling of
index calculations in the three blocks the average number
of cycles was 67,936,960,000 and average total number of
instructions 59,477,376,000. The average time was 60.18
seconds with an average IPC of 0.875. Employing loop op-
timization and vectorization techniques reduced the average
runtime of the test by 1.69×, the average number of cycles
by 3.85×, the average number of instructions by 3.41×, and
increased the average IPC by 1.13×. As such we can observe
that vectorizing the code blocks as well as applying loop
unrolling and software pipelining heavily reduces the number
of cycles and instructions. This is because with vectorization
four additions can be done in one SIMD operation and loop
unrolling can reduce the number of instructions spent on
conditional jumps for loops. Furthermore, reordering some
of the calculation to improve temporal locality of the code
could also reduce the number of instructions and cycles as
the result of the operations could be stored to a single point
in memory or a register rather than being recomputed at
every iteration if no code optimizations were applied. The
lower reduction in average time is likely due to the additional
overhead of switching from SIMD intrinsics to unvectorized
code which requires writing (and for code block 3 reading)
from memory. This can also be observed in the collected
results as the average DRAM bound for the base case was
2.94% and 8.57% for the vectorized code.

B. Performance improvements from vectorization vs. un-
rolling and software pipelining

Basic tests on the effectiveness of just vectorization and
vectorization with loop unrolling and software pipelining
were conducted. What was found was that the majority
of the improvements came from the vectorization of code
with minimal improvements coming from loop unrolling



and software pipelining. On average the time was 56.37
seconds, the cycles were 88,082,624,000, and the instructions
were 82,601,792,000 which is marginally faster than with
loop unrolling and software pipelining with an additional
2̃0,000,000,000 instructions and cycles on average. This
is because the CPU does out of order execution as well
as independent instruction execution. This means explicitly
unrolling the loop doesn’t matter as the CPU could process
multiple iterations of the loop anyways due to the nature
of how the CPU processes instructions. A higher average
dram bound percentage of 17.98% was observed which is
likely due to the fact that when switching from vectorized to
unverctorized code, allowing more values to take advantage
of spacial locality can reduce the number of times memory
needs to be read from ram.

C. SMaT and dgl-SpMM

TABLE I

SMaT vs dgl-SpMM (Averages)
Type Model type Time (ms) TFLOP/s

dgl-SpMM Transe adj 13.37 0.0414
SMaT Transe adj 186.392 0.003

dgl-SpMM Transe adjneg 36.13 0.0153
SMaT Transe adjneg 191.742 0.003

dgl-SpMM Transh adj 1.324 0.0248
SMaT Transh adj 4.1214 0.0084

dgl-SpMM Transh adjneg 0.617 0.0532
SMaT Transh adjneg 3.9376 0.0086

dgl-SpMM Transr adj 680.34 0.000091
SMaT Transr adj 5.8774 0.0114

dgl-SpMM Transr adjneg 457.8 0.000135
SMaT Transr adjneg 5.581 0.012

SpTransX for each forward pass does two SpMM calcu-
lations. One for the adj sparse matrix and another for the
adjneg sparse matrix on the embeddings. In both the transe
and transh case we can observe in Table I that dgl-SpMM
outperforms SMaT even though in it’s papers evaluation
section SMaT outperformed cuSparse by 8−16× [11]. This
even extends to the amount of vram utilized as SMaT for
transe utilizes 2,44 GB of vram while dgl-SpMM utilizes
only 1.83 GB of vram and for transh SMaT utilizes 224
MB while dgl SpMM utilizes only 41.87 MB of vram.
This is likely because the adj and adjneg SpMM operations
performed are extremely sparse (with all the adj and adjneg
SpMM matrices for transe, transh, and transr being 99.99%
being sparse) which is known to cause SMaT to under
perform compared to cuSparse (and by extension dgl-SpMM
which is based upon it) in some cases. However, for the
adj transr SpMM operations, dgl-SpMM took 680.34 ms
utilizing 152.6 MB of vram with a throughput of 0.000091
TFLOP/s and SMaT took 5.8774 ms utilizing 224 MB of
vram with a throughput of 0.0114 TFLOP/s. Similarly for
the adjneg SpMM operation, dgl-SpMM took 457.8 ms with
a throughput of 0.000135 TFLOP/s and SMaT took 5.581
ms with a throughput of 0.012 TFLOP/s. In these cases
despite the sparse matrices being extremely sparse SMaT
heavily outperforms dgl-SpMM. This is potentially because
the adj and adjneg matricies for dgl-SpMM do not have high

row imbalance or other conditions which can cause SMaT
to show low performance. However, it could also be from
other factors such as potential overheads produced when
gathering the dgl-SpMM data that were not present when
gathering SMaT data which was done in a vacuum without
the overlaying SpTransX pipeline. In general, we can argue
that SMaT is not well suited for optimizing SpTransX due
to its low performance with very sparse matrices and higher
vram usage when running.

V. CONCLUSION

This report employs code vectorization to the SMaT csr
to bcsr conversion of the SMaT pipeline and examines the
improvements it gains upon the initial unvectorized code
as well as examines SMaT’s performance compared to
dgl-SpMM on SpTransX SpMM operations. For the code
vectorization, the per iteration operation reductions to each
of code blocks was substantial enough that the additional
overhead of loads and stores to switch from unvectorized
to vectorized code was smaller than the improvements from
these optimizations. However, it is worth noting that this
project did not explore if the same benefits can be observed
for very small matrices where the operation reduction is
smaller. Future work can explore either fully vectorizing the
csr to bcsr code observing how the usage of gathers and
scatters affects the performance. Employing a GPU based
csr to bcsr is also another potential direction. In the context
of SpTransX, SMaT performed worse compared to dgl-
SpMM due to the sparse nature of the SpMM operations
conducted. Future work can look at how sparsity affects the
performance of different SpMM libraries and selects certain
libraries based on the sparsity information known of the
given sparse matrix. Although SMaT did not outperform
dgl-SpMM, the code vectorization of csr to bcsr shows that
performance improvements can be gained even from partially
vectorizing loop heavy code if the operation reduction is
larger than the overhead introduced from switching between
vectorized and unvectorized code. Furthermore, one thing
not considered, but mentioned during the presentation was
that division, modulo, and multiplication can be conducted
utilizing shift operations when they are powers of two (which
are the majority of the division, multiplication, and modulo
operations in the code) meaning additional vectorization
improvements to the csr to bcsr code can still be applied.

REFERENCES

[1] Artifact evaluation reproduction for "sparsetransx: Efficient train-
ing of translation-based knowledge graph embeddings using sparse
matrix operations", mlsys 2025. URL: https://github.com/
OnixHoque/sptransx-mlsys2025-reproduce/.

[2] csr_array - scipy v1.16.1 manual. URL: https://docs.scipy.
org/doc/scipy/reference/generated/scipy.sparse.
csr_array.html#scipy.sparse.csr_array.

[3] Intel® intrinsics guide. URL: https://www.intel.com/
content/www/us/en/docs/intrinsics-guide/index.
html#techs=AVX_ALL.

[4] mmwrite - scipy v1.16.1 manual. URL: https://docs.scipy.
org/doc/scipy-1.16.1/reference/generated/scipy.
io.mmwrite.html.

https://github.com/OnixHoque/sptransx-mlsys2025-reproduce/
https://github.com/OnixHoque/sptransx-mlsys2025-reproduce/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_array.html#scipy.sparse.csr_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_array.html#scipy.sparse.csr_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_array.html#scipy.sparse.csr_array
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_ALL
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_ALL
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_ALL
https://docs.scipy.org/doc/scipy-1.16.1/reference/generated/scipy.io.mmwrite.html
https://docs.scipy.org/doc/scipy-1.16.1/reference/generated/scipy.io.mmwrite.html
https://docs.scipy.org/doc/scipy-1.16.1/reference/generated/scipy.io.mmwrite.html


[5] numpy.savetxt - numpy v2.3 manual. URL: https:
//numpy.org/doc/stable/reference/generated/
numpy.savetxt.html.

[6] Smat: (s)parse (ma)trix matrix (t)ensor core-accelerated library. URL:
https://github.com/spcl/smat.

[7] Md Saidul Hoque Anik and Ariful Azad. Sparsetransx: Efficient train-
ing of translation-based knowledge graph embeddings using sparse
matrix operations. In Eighth Conference on Machine Learning and
Systems, 2025. URL: https://openreview.net/forum?id=
73tG7ZDSBT.

[8] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason We-
ston, and Oksana Yakhnenko. Translating embeddings for modeling
multi-relational data. In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, NIPS’13,
page 2787–2795, Red Hook, NY, USA, 2013. Curran Associates Inc.

[9] GeeksforGeeks. C program to read content of a file, Jul
2025. URL: https://www.geeksforgeeks.org/c/
c-program-to-read-contents-of-whole-file/.

[10] GeeksforGeeks. Removing trailing newline char-
acter from fgets() input, Aug 2025. URL:
https://www.geeksforgeeks.org/dsa/
removing-trailing-newline-character-from-fgets-input/.

[11] Patrik Okanovic, Grzegorz Kwasniewski, Paolo Sylos Labini, Maciej
Besta, Flavio Vella, and Torsten Hoefler. High performance unstruc-
tured spmm computation using tensor cores, 2024. URL: https:
//arxiv.org/abs/2408.11551, arXiv:2408.11551.

[12] Naw Safrin Sattar, Hao Lu, and Feiyi Wang. Bcsr on gpu: A
way forward extreme-scale graph processing on accelerator-enabled
frontier supercomputer. In Proceedings of the SC ’24 Workshops of the
International Conference on High Performance Computing, Network,
Storage, and Analysis, SC-W ’24, page 280–289. IEEE Press, 2025.
doi:10.1109/SCW63240.2024.00044.

[13] W3Schools. C read files. URL: https://www.w3schools.com/
c/c_files_read.php.

[14] W3Schools. C write to files. URL: https://www.w3schools.
com/c/c_files_write.php.

[15] W3Schools. Python file write. URL: https://www.w3schools.
com/python/python_file_write.asp.

[16] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library: A
graph-centric, highly-performant package for graph neural networks,
2020. URL: https://arxiv.org/abs/1909.01315, arXiv:
1909.01315.

APPENDIX

Code Repository

The repository with all the code I wrote within the
SMaT reproducibility code [6] and SpTransX reproducibil-
ity code [1] (as well as time data for SpMM oper-
ations for transe, transh, and transr) can be found at
https://github.com/jshin60/CSC290FPCode

CSR to BCSR data

Original SMaT Vtune Data
Run Time Cycles Instructions DRAM Bound

1 105.656s 278,982,144,000 202,153,728,000 2.7%
2 106.206s 299,548,032,000 201,387,648,000 3.2%
3 101.135s 556,372,992,000 478,942,464,000 3.7%
4 99.444s 169,572,480,000 129,526,656,000 1.8%
5 96.645s 2,905,728,000 1,362,816,000 3.3%

Vectorized SMaT Vtune Data
Run Time Cycles Instructions DRAM Bound

1 71.760s 169,593,984,000 136,273,536,000 4.7%
2 64.484s 844,032,000 551,040,000 12.9%
3 60.610s 230,684,160,000 211,817,088,000 18.5%
4 56.204s 3,249,792,000 3,448,704,000 9.0%
5 56.204s 3,249,792,000 3,448,704,000 2.3%
6 51.793s 2,593,920,000 1,325,184,000 9.7%

Vectorized SMaT Vtune Data Without
Loop Unrolling and Software Pipelining

Run Time Cycles Instructions DRAM Bound
1 62.481s 13,047,552,000 8,781,696,000 25.1%
2 67.384s 272,426,112,000 265,730,304,000 16.4%
3 53.005s 61,541,760,000 47,343,744,000 32.5%
4 53.034s 170,083,200,000 163,511,040,000 16.4%
5 56.204s 3,249,792,000 3,448,704,000 2.3%
6 46.119s 8,147,328,000 6,795,264,000 15.2%

SMaT SpTransX SpMM Data

MMA-CBT Kernel Data
Run Model type Time (ms) TFLOP/s

1 Transe adj 184.327 0.003
2 Transe adj 196.716 0.003
3 Transe adj 183.917 0.003
4 Transe adj 181.821 0.003
5 Transe adj 185.179 0.003
1 Transe adjneg 210.492 0.003
2 Transe adjneg 187.642 0.003
3 Transe adjneg 186.839 0.003
4 Transe adjneg 186.572 0.003
5 Transe adjneg 187.165 0.003
1 Transh adj 5.920 0.006
2 Transh adj 3.284 0.010
3 Transh adj 3.293 0.010
4 Transh adj 4.356 0.007
5 Transh adj 3.754 0.009
1 Transh adjneg 4.872 0.007
2 Transh adjneg 4.516 0.007
3 Transh adjneg 3.741 0.009
4 Transh adjneg 3.579 0.009
5 Transh adjneg 2.980 0.011
1 Transr adj 6.891 0.009
2 Transr adj 6.074 0.011
3 Transr adj 5.079 0.013
4 Transr adj 5.206 0.013
5 Transr adj 6.137 0.011
1 Transr adjneg 6.927 0.010
2 Transr adjneg 5.699 0.012
3 Transr adjneg 5.443 0.012
4 Transr adjneg 4.596 0.014
5 Transr adjneg 5.240 0.013

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html
https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html
https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html
https://github.com/spcl/smat
https://openreview.net/forum?id=73tG7ZDSBT
https://openreview.net/forum?id=73tG7ZDSBT
https://www.geeksforgeeks.org/c/c-program-to-read-contents-of-whole-file/
https://www.geeksforgeeks.org/c/c-program-to-read-contents-of-whole-file/
https://www.geeksforgeeks.org/dsa/removing-trailing-newline-character-from-fgets-input/
https://www.geeksforgeeks.org/dsa/removing-trailing-newline-character-from-fgets-input/
https://arxiv.org/abs/2408.11551
https://arxiv.org/abs/2408.11551
https://arxiv.org/abs/2408.11551
https://doi.org/10.1109/SCW63240.2024.00044
https://www.w3schools.com/c/c_files_read.php
https://www.w3schools.com/c/c_files_read.php
https://www.w3schools.com/c/c_files_write.php
https://www.w3schools.com/c/c_files_write.php
https://www.w3schools.com/python/python_file_write.asp
https://www.w3schools.com/python/python_file_write.asp
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315

	Introduction
	Background
	SpTransX
	SMaT
	CSR, COO, and BCSR

	Method
	Evaluation
	Vectorized CSR to BCSR
	Performance improvements from vectorization vs. unrolling and software pipelining
	SMaT and dgl-SpMM

	Conclusion
	References

