CSC290/420 Machine Learning Systems for
Efficient Al
Training - |l

Sreepathi Pai
October 29, 2025

URCS

A Zoo of Parallelism Techniques
Fault Tolerance

Trying out Training

A Zoo of Parallelism Techniques

Data Parallelism in Training

Replicate model to multiple devices

Partition inputs across multiple devices

Training:
e Gather gradients across all devices
e Average them (Reduce) and update parameters

Key constraint: Model + Parameters + Gradients + other
data must fit in one device

Pipeline Parallelism in Training

e Partition model across multiple devices

e Transmit data (activations) forwards across these devices

e And gradients backwards across these devices

Huang et al., GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, NIPS 2019

Fo B.

Loss
BD
Device 3
T|me >

Device 2
Device 1 F. B Fao | Faa | Foz | Faa| Boa | Bz | Bay | Bas Updats
Foo| For | Faz | Fus Bes | Beo | Bor Buo Update

Device 0
Fuo | Fux | Fiz | Fas | B | Bu Bu | Bw Update
Foo | Far | Foz | Fos Bubble ‘ Bus | Box | Bur | Boo | Upase

Gradients
(a)

(c)

https://papers.nips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf

Model Parallelism in Training

e ‘“Intra-layer” Model Parallelism
e now probably termed tensor parallelism
e Breaks up tensors across multiple devices in the transformer
layer

Shoeybi et al., Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, 2020

¥ = GeLU{X A}

| o
i =[x || XAy =R |-
| =
EHJ

| =: XAs
!

H

!

A=Ay, Aq

I
! E= [n‘

(b) Self-Attention

http://arxiv.org/abs/1909.08053

Distributed Data Parallel (2019)

e Data Parallel, but over different machines

e Can be combined with Model Parallel (in PyTorch)

Fully Sharded Data Parallel: faster Al training with fewer GPUs

MODEL
SHARD >

FORWARD
[LocaL)

-

MODEL
SHARD

[

FORWARD
fLocaL)

>

BACKWARD
(LoCAL)

BACKWARD
(LocaL)

> 2

UPDATE
WEIGHTS
(LocAL)

UPDATE
WEIGHTS
fLocaL)

https://engineering.fb.com/2021/07/15/open-source/fsdp/

ZeRO (2020)

e ZeRO asks: where does memory go?

e Model state: optimizers, gradients, parameters
e Residual state: activations, etc.

e Do we need full copies of model state on each device?
e at all times?

e can throw away other devices portions and rebuild again
e can also offload to CPU

Rajbhandari et al., ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Memory k=12
c q | rese
BPug gpy; gPuy.4 onsume N,=64
Baseline (242+K) =W | 12068
Py 2w+2w+ 2 31408
- 2+ K)=W
Posig 2w+ S0 | 16668
(2424 K)v W
P

— 19GB
Os+E+p u

Parameters Gradients Optimizer States

http://arxiv.org/abs/1910.02054

Fully Sharded Data Paralle

e Shard model state and activations
o Gather everything needed for a layer
e Run layer

e Throw everything away

Feng et al., Getting Started with Fully Sharded Data Parallel (FSDP2)

| Load shard Offload grads to
| FromCPUIf CPUif CPU
i CPUOffioaded

offload is enabled
4

FREE FULL REDUCE- FreeFuLL bososes
WEIGHTS SCATTER WEIGHTS [—

FSDP instance 1: I layers FSDP instance 1: N layers FSDP instance N: M layers
2 ‘

FORWARD
(LOCAL)

i ; i
GATHER GATHER !
WEIGHTS WEIGHTS SYNC GRADS
(ALL_GATHER) (ALL_GATHER) (REDUCE_SCATTER)
T

P
¥

FORWARD FREE FULL BACKWARD REDUCE- FREE FULL .
'WEIGHTS (LOCAL) SCATTER WEIGHTS B | UPDATE
bad WEIGHTS
H i (LOCAL)
! FSDP instance 1: N layers FSDP instance 1: N layers i FSDP instance N: M layers
v

i
1 Load shard Offload grads to
i FromCPUf CPUfCPU

CPU Offloaded offioad is enabled

https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

3-D Parallelism

e Pipeline Parallelism 4 Data Parallelism + Model Parallelism

DeepSpeed.ai, Pipeline Parallelism
| Data Parallel Rank 0

[Pipeline Stage 0 (" Pipeline Stage 1) (" Pipeline Stage 2 (" Pipeline Stage 3)
= 2 = PPPPERE
g z (—) 2 il
: £ (]l
H B (—

__ Network Layers0-7 __Network Layers8-15) _Network Layers 16-23 | _ Network Layers 24-31 /

ZeRO.
ZeRO.

ZeRO

\

P800 G060 TERE BRED

Data Parallel Rank 1
(" Pipeline Stage 0 (" Pipeline Stage 1) (" Pipeline Stage 2 h (" Pipeline Stage 3)

<:>

MP:3 MP-2 MP.1 MP-0
MP:3 MP-2 MP-1 MP-0
MP3 MP-2 MP-1 MP-0

MP3 MP-2 MP-1 MP-0

~—
__Networklayers0-7)/ _ Network Layers8-15 _ Network Layers 16-23 _ Network Layers 24-31 |

https://www.deepspeed.ai/tutorials/pipeline/

Other forms of parallelism

e Sequence Parallelism
e a form of Tensor Parallelism
e Expert Parallelism

e a form of Model parallelism, with each Expert on a separate
device

The Next 700 ML Parallelization schemes: Building Blocks

e Partitioning (Sharding)
e Copies (Replication)
e Loading and Unloading

e The first two operations applied to:
e Operators / Layers
e Data (Parameters, Optimizer State, Gradients, Activations,
etc.)
e Load/Unload are applied to Data based on Liveness
e Communication introduced to:

e Combine Partitions (Many to One, Many to Many)
e Transmit Data (One to One)

e Subject to data dependence constraints

e But can be relaxed to use stale data

Things to watch out for

e Communication volume
e Can turn compute bound to /0 bound
e Computation intensity
e In the extreme case, GPUs are underutilized because the
computation has become very small
e Look at the timeline of operations and watch for
e underutilization, idle time
e excessive synchronization
e lack of communication/computation overlap

Fault Tolerance

A Taxonomy of Failures

Failure Symptoms Failure Domain Likely Failure Cause
User Program System Software Hardware Infra

OOM

GPU Unavailable
GPU Memory Errors
GPU Driver/Firmware Error
GPU NVLink Error
Infiniband Link
Filesystem Mounts
Main Memory Errors
Ethlink Errors

PCle Errors

NCCL Timeout
System Services

User Bug
PCle error, Driver/BIOS, thermals

Thermal Noise, Cosmic Rays, HBM Defect or Wear

Outdated Software, High Load

Electro/Material Failure, Switch

Electro/Material Failure, Switch

Failed Frontend Network, Drivers in D State, Storage Backend
Circuit Wear, Thermal Noise, Cosmic Rays

Electro/Material Failure, Switch

GPU Failure, Poor Electrical Contacts

Userspace Crash, Deadlock, Failed HW

Userspace Interference, Software Bugs, Network Partition

N0 % 0% % X X X K
NNXO%R X N X N X N X%
RN N N

Kokolis et al., Revisiting Reliability in Large-Scale Machine Learning Research Clusters

http://arxiv.org/pdf/2410.21680v1

What can we do about failures?

e Mean Time to Failure
e Decreases as number of
components increase
e An estimate could help, for
example, checkpoint
e Or choose appropriate
architecture to maximize
goodput
e goodput is useful
throughput

Lyr oo e — RsC2
Emoq T T

1 mo
10 days 4 —
5 days -
2 days
1 day

Mean Time to Failure

6 hrs :] 90% Cl around mean value

2 hrs

. Woggear™!
re=12.34/1000

Cluster
RSC-1

(Npagesra ™
rr=6.50/1000

8 16 32 64 128

256

512 1024 2048 4096

Job size (Number of GPUs)

Fig. 7: MTTF analysis by job sizes for RSC-1 and RSC-2,
rounded up to the next multiple of 8 GPUs. CI: Confidence
Interval. MTTF decreases predictably with scale.

Trying out Training

TimeCapsuleLLM

TimeCapsuleLLM

Trained on 1800s text from Project Gutenberg.

https://github.com/haykgrigo3/TimeCapsuleLLM?tab=readme-ov-file

nanoGPT

https://github.com/karpathy/nanoGPT

	A Zoo of Parallelism Techniques
	Fault Tolerance
	Trying out Training

