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A Zoo of Parallelism Techniques



Data Parallelism in Training

Replicate model to multiple devices

Partition inputs across multiple devices

Training:
e Gather gradients across all devices
e Average them (Reduce) and update parameters

Key constraint: Model + Parameters + Gradients + other
data must fit in one device



Pipeline Parallelism in Training

e Partition model across multiple devices

e Transmit data (activations) forwards across these devices

e And gradients backwards across these devices

Huang et al., GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, NIPS 2019
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https://papers.nips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf

Model Parallelism in Training

e ‘“Intra-layer” Model Parallelism
e now probably termed tensor parallelism
e Breaks up tensors across multiple devices in the transformer
layer

Shoeybi et al., Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, 2020
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http://arxiv.org/abs/1909.08053

Distributed Data Parallel (2019)

e Data Parallel, but over different machines

e Can be combined with Model Parallel (in PyTorch)

Fully Sharded Data Parallel: faster Al training with fewer GPUs
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https://engineering.fb.com/2021/07/15/open-source/fsdp/

ZeRO (2020)

e ZeRO asks: where does memory go?

e Model state: optimizers, gradients, parameters
e Residual state: activations, etc.

e Do we need full copies of model state on each device?
e at all times?

e can throw away other devices portions and rebuild again
e can also offload to CPU

Rajbhandari et al., ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
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http://arxiv.org/abs/1910.02054

Fully Sharded Data Paralle

e Shard model state and activations
o Gather everything needed for a layer
e Run layer

e Throw everything away

Feng et al., Getting Started with Fully Sharded Data Parallel (FSDP2)
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https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

3-D Parallelism

e Pipeline Parallelism 4 Data Parallelism + Model Parallelism

DeepSpeed.ai, Pipeline Parallelism
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https://www.deepspeed.ai/tutorials/pipeline/

Other forms of parallelism

e Sequence Parallelism
e a form of Tensor Parallelism
e Expert Parallelism

e a form of Model parallelism, with each Expert on a separate
device



The Next 700 ML Parallelization schemes: Building Blocks

e Partitioning (Sharding)
e Copies (Replication)
e Loading and Unloading

e The first two operations applied to:
e Operators / Layers
e Data (Parameters, Optimizer State, Gradients, Activations,
etc.)
e Load/Unload are applied to Data based on Liveness
e Communication introduced to:

e Combine Partitions (Many to One, Many to Many)
e Transmit Data (One to One)

e Subject to data dependence constraints

e But can be relaxed to use stale data



Things to watch out for

e Communication volume
e Can turn compute bound to /0 bound
e Computation intensity
e In the extreme case, GPUs are underutilized because the
computation has become very small
e Look at the timeline of operations and watch for
e underutilization, idle time
e excessive synchronization
e lack of communication/computation overlap



Fault Tolerance



A Taxonomy of Failures

Failure Symptoms Failure Domain Likely Failure Cause
User Program  System Software  Hardware Infra

OOM

GPU Unavailable
GPU Memory Errors
GPU Driver/Firmware Error
GPU NVLink Error
Infiniband Link
Filesystem Mounts
Main Memory Errors
Ethlink Errors

PCle Errors

NCCL Timeout
System Services

User Bug
PCle error, Driver/BIOS, thermals

Thermal Noise, Cosmic Rays, HBM Defect or Wear

Outdated Software, High Load

Electro/Material Failure, Switch

Electro/Material Failure, Switch

Failed Frontend Network, Drivers in D State, Storage Backend
Circuit Wear, Thermal Noise, Cosmic Rays

Electro/Material Failure, Switch

GPU Failure, Poor Electrical Contacts

Userspace Crash, Deadlock, Failed HW

Userspace Interference, Software Bugs, Network Partition
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Kokolis et al., Revisiting Reliability in Large-Scale Machine Learning Research Clusters


http://arxiv.org/pdf/2410.21680v1

What can we do about failures?

e Mean Time to Failure
e Decreases as number of
components increase
e An estimate could help, for
example, checkpoint
e Or choose appropriate
architecture to maximize
goodput
e goodput is useful
throughput
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Fig. 7: MTTF analysis by job sizes for RSC-1 and RSC-2,
rounded up to the next multiple of 8 GPUs. CI: Confidence
Interval. MTTF decreases predictably with scale.



Trying out Training



TimeCapsuleLLM

TimeCapsuleLLM

Trained on 1800s text from Project Gutenberg.


https://github.com/haykgrigo3/TimeCapsuleLLM?tab=readme-ov-file

nanoGPT


https://github.com/karpathy/nanoGPT
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