
CSC290/420 Machine Learning Systems for

Efficient AI

Training - I

Sreepathi Pai

October 27, 2025

URCS



Outline

Training Overview

Auto-differentiation

Gradient Descent

Distributed Training



Outline

Training Overview

Auto-differentiation

Gradient Descent

Distributed Training



Training

� A mode of executing machine learning models distinct from
inference mode

� Used to build models

� Recall: a neural network consists of weights and biases

� Training “learns” their values for a particular task

� Loss function measures how different the model is from an

expected output

� The value of the loss function dictates how the weights and

biases get updated

� Steps

� Initialization [random values]

� Forward [mostly the same as inference]

� Backward [compute the gradient and update the weights]

� Repeat until Convergence



Initialization

� Initialization sets all weights and biases to random numbers

� Can’t initialize to all zeroes

� Not considered a performance or efficiency bottleneck

� But high performance random number generation is
sometimes a bottleneck

� in Markov Chain Monte Carlo simulations, for example



Forward Pass

� Essentially, the same computation as inference

� but need to calculate gradients as well

� Operates on a training set

� Large, with significant storage demands (hundreds of TB for

latest LLMs)

� Inference requires less storage

� But can be optimized similar to inference



Backward Pass (Backpropagation)

� Only in training

� Propagate loss “backwards” through the neural network

� i.e. update weights and biases so that the next forward pass

will have less error (or loss)

� Two conceptual steps form this “Optimization step”

� Gradient calculation

� Gradient descent



Convergence

� Training is iterative

� Repeat forward and backward passes until desired loss is

achieved

� Convergence is not guaranteed



Outline

Training Overview

Auto-differentiation

Gradient Descent

Distributed Training



Gradient Calculation using Differentiation

Wi+1 ←Wi −
η

n
(∆Ei )

where ∆Ei is the gradient of the error wrt weight i

The gradient can be calculated by differentiating the computation.



Numerical, Symbolic, and Auto-Differentiation

From Baydin et al., Automatic Differentiation in Machine Learning: a Survey

https://www.jmlr.org/papers/volume18/17-468/17-468.pdf


The Chain Rule

y = f (g(h(x))) = f (g(h(w0))) = f (g(w1)) = f (w2) = w3

w0 = x

w1 = h(w0)

w2 = g(w1)

w3 = f (w2) = y

∂y

∂x
=

∂y

∂w2

∂w2

∂w1

∂w1

∂x
=
∂f (w2)

∂w2

∂g(w1)

∂w1

∂h(w0)

∂x

From Wikipedia, Auto-Differentiation

https://en.wikipedia.org/wiki/Automatic_differentiation


Forward AD

Table 2 from Baydin et al., Automatic Differentiation in Machine Learning: a Survey

https://www.jmlr.org/papers/volume18/17-468/17-468.pdf


Forward AD using Duals

� Forward AD is implemented using a special number system

� A pair of numbers known as duals (x , x ′)

� Think of x as the actual value, and x ′ representing the

derivative

� The normal arithmetic operations are extended to handle

these dual numbers

� Every value in the program is extended to track its x ′

� Extra storage space

� Forward AD yields gradients with respect to one neural
network input x

� Must be repeated n times if there multiple NN inputs

x1, x2, x3, ..., xn



Reverse AD

Table 3 from Baydin et al., Automatic Differentiation in Machine Learning: a Survey

https://www.jmlr.org/papers/volume18/17-468/17-468.pdf


Reverse AD Implementation

� Store computed values to a “tape”

� until end of computation

� required to compute gradients

� However, only one pass required even for multiple NN inputs

� Storage vs compute overhead



Overcoming Storage overheads

� Active area of research

� Recomputation

� sometimes called rematerialization

� recompute values instead of storing them in memory

� Checkpoint

� usual meaning: store state of program to restart from this

point

� In ML, similar meaning but more intertwined with AD



Checkpointing, Recomputation, and AD

From Siskind and Pearlmutter, Divide-and-Conquer Checkpointing for Arbitrary Programs with No User Annotation

https://arxiv.org/pdf/1708.06799


Outline

Training Overview

Auto-differentiation

Gradient Descent

Distributed Training



Stochastic Gradient Descent

� Gradient descent requires computing gradients for all inputs

� And averaging them before updating weights

� Stochastic gradient descent only uses one input picked

randomly



Parallel Stochastic Gradient Descent

� Compute gradients as usual on one input

� However, compute multiple updates in parallel

� Aggregate those updates at the same time

� Use mutual exclusion to aggregate in parallel



Hogwild!

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve

state-of-the-art performance on a variety of machine learning tasks. Several

researchers have recently proposed schemes to parallelize SGD, but all require

performance-destroying memory locking and synchronization. This work aims

to show using novel theoretical analysis, algorithms, and implementation that

SGD can be implemented without any locking. We present an update scheme

called Hogwild which allows processors access to shared memory with the

possibility of overwriting each other’s work. We show that when the associated

optimization problem is sparse, meaning most gradient updates only modify

small parts of the decision variable, then Hogwild achieves a nearly optimal rate

of convergence. We demonstrate experimentally that Hogwild outperforms

alternative schemes that use locking by an order of magnitude.

Abstract of Hogwild!: A Lock-Free Approach to Parallelizing Stochastic

Gradient Descent

https://papers.nips.cc/paper_files/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html
https://papers.nips.cc/paper_files/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html


Outline

Training Overview

Auto-differentiation

Gradient Descent

Distributed Training



Machines

� AlexNet - two NVIDIA GTX 580 GPUs

� ImageNet size - 130GB to 1.31TB

� one machine?

� ChatGPT 3.5 - 1024 A100 GPUs (?)

� Text size upto hundreds of TB

� definitely not one machine



DistBelief (2013)

Dean et al., Large Scale Distributed Deep Networks

https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf


Storage (Meta’s Tectonic)

Zhao et al., Tectonic-Shift: A Composite Storage Fabric for Large-Scale ML Training, USENIX ATC 23

https://www.usenix.org/system/files/atc23-zhao.pdf


Scheduling (Meta’s MAST)

Choudhary et al., MAST: Global Scheduling of ML Training across

Geo-Distributed Datacenters at Hyperscale, OSDI 2024

https://www.usenix.org/system/files/osdi24-choudhury.pdf
https://www.usenix.org/system/files/osdi24-choudhury.pdf

	Training Overview
	Auto-differentiation
	Gradient Descent
	Distributed Training

