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Training Overview



e A mode of executing machine learning models distinct from
inference mode

e Used to build models

e Recall: a neural network consists of weights and biases
e Training “learns” their values for a particular task
e Loss function measures how different the model is from an
expected output
e The value of the loss function dictates how the weights and
biases get updated
e Steps
e Initialization [random values]
e Forward [mostly the same as inference]
e Backward [compute the gradient and update the weights]
e Repeat until Convergence



Initialization

Initialization sets all weights and biases to random numbers

Can't initialize to all zeroes

Not considered a performance or efficiency bottleneck

But high performance random number generation is
sometimes a bottleneck

e in Markov Chain Monte Carlo simulations, for example



e Essentially, the same computation as inference
e but need to calculate gradients as well
e Operates on a training set

e Large, with significant storage demands (hundreds of TB for
latest LLMs)
e Inference requires less storage

e But can be optimized similar to inference



Backward Pass (Backpropagation)

e Only in training
e Propagate loss “backwards” through the neural network
e i.e. update weights and biases so that the next forward pass
will have less error (or loss)
e Two conceptual steps form this “Optimization step”

e Gradient calculation
e Gradient descent



Convergence

e Training is iterative

e Repeat forward and backward passes until desired loss is
achieved

e Convergence is not guaranteed



Auto-differentiation



Gradient Calculation using Differentiation

Wis1 < Wi — L(AE)
n

where AE; is the gradient of the error wrt weight i

The gradient can be calculated by differentiating the computation.



Numerical, Symbolic, and Auto-Differentiation

From Baydin et al., Automatic Differentiation in Machine Learning: a Survey
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Symbolic
Differentiation
of the Closed-form

or. in closed-form,
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Automatic Numerical
Differentiation Differentiation
L.
£1(x):
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https://www.jmlr.org/papers/volume18/17-468/17-468.pdf

The Chain Rule

W = X
wp = h(Wo)
wy = g(wi)

Oy _ Oy Ow; 0wy _ Of(w,) Og(wi) Oh(wo)
Ox  Owedwy Ox  Owa Owg  Ox

From Wikipedia, Auto-Differentiation


https://en.wikipedia.org/wiki/Automatic_differentiation

Forward AD

Forward Primal Trace

Forward Tangent (Derivative) Trace
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Table 2 from Baydin et al., Automatic Differentiation in Machine Learning: a Survey


https://www.jmlr.org/papers/volume18/17-468/17-468.pdf

Forward AD using Duals

e Forward AD is implemented using a special number system
e A pair of numbers known as duals (x, x")
e Think of x as the actual value, and x’ representing the
derivative
e The normal arithmetic operations are extended to handle
these dual numbers
e Every value in the program is extended to track its x’
e Extra storage space

e Forward AD yields gradients with respect to one neural
network input x

e Must be repeated n times if there multiple NN inputs

X1, X2, X3, ..0y Xn



Reverse AD

Forward Primal Trace

Reverse Adjoint (Derivative) Trace
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= _s Fa = o = 1.716
v =lnwv_y =1In2 =%, +0 /vy =55
s =v_ Kup =2X5 =y + T X vy = L.716
2 X Up =5
vy = siniyg = sind = T3 X cos g = —0.284
Vi =04+ ve = 0693+ 10 =f %1 =1
x1 =1
vy =wg vy = 10.603 + 0.950 x(-1) =-1
x1 =1
Y oy o= = b5 =17 =1

Table 3 from Baydin et al., Automatic Differentiation in Machine Learning: a Survey


https://www.jmlr.org/papers/volume18/17-468/17-468.pdf

Reverse AD Implementation

e Store computed values to a “tape”

e until end of computation
e required to compute gradients

e However, only one pass required even for multiple NN inputs

e Storage vs compute overhead



Overcoming Storage overheads

e Active area of research

e Recomputation

e sometimes called rematerialization

e recompute values instead of storing them in memory
e Checkpoint

e usual meaning: store state of program to restart from this
point
e In ML, similar meaning but more intertwined with AD



Checkpointing, Recomputation, and AD
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From Siskind and Pearlmutter, Divide-and-Conquer Checkpointing for Arbitrary Programs with No User Annotation


https://arxiv.org/pdf/1708.06799

Gradient Descent



Stochastic Gradient Descent

e Gradient descent requires computing gradients for all inputs
e And averaging them before updating weights

e Stochastic gradient descent only uses one input picked

randomly



Parallel Stochastic Gradient Descent

e Compute gradients as usual on one input

e However, compute multiple updates in parallel
e Aggregate those updates at the same time

e Use mutual exclusion to aggregate in parallel



Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve

state-of-the-art performance on a variety of machine learning tasks. Several
researchers have recently proposed schemes to parallelize SGD, but all require
performance-destroying memory locking and synchronization. This work aims
to show using novel theoretical analysis, algorithms, and implementation that
SGD can be implemented without any locking. We present an update scheme
called Hogwild which allows processors access to shared memory with the
possibility of overwriting each other's work. We show that when the associated
optimization problem is sparse, meaning most gradient updates only modify
small parts of the decision variable, then Hogwild achieves a nearly optimal rate
of convergence. We demonstrate experimentally that Hogwild outperforms
alternative schemes that use locking by an order of magnitude.

Abstract of Hogwild!: A Lock-Free Approach to Parallelizing Stochastic
Gradient Descent


https://papers.nips.cc/paper_files/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html
https://papers.nips.cc/paper_files/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html

Distributed Training



e AlexNet - two NVIDIA GTX 580 GPUs
o ImageNet size - 130GB to 1.31TB
e one machine?

e ChatGPT 3.5 - 1024 A100 GPUs (?)

e Text size upto hundreds of TB
e definitely not one machine



DistBelief (2013)
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Dean et al., Large Scale Distributed Deep Networks


https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

Storage (Meta’s Tectonic)
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Zhao et al., Tectonic-Shift: A Composite Storage Fabric for Large-Scale ML Training, USENIX ATC 23



https://www.usenix.org/system/files/atc23-zhao.pdf

Scheduling (Meta’s MAST)
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Choudhary et al., MAST: Global Scheduling of ML Training across
Geo-Distributed Datacenters at Hyperscale, OSDI 2024


https://www.usenix.org/system/files/osdi24-choudhury.pdf
https://www.usenix.org/system/files/osdi24-choudhury.pdf
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