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Non-bulk data transfers: Loads and Stores

� Load and Store instructions can be used to transfer data

� Special loads: non-temporal loads and stores

� Hint to the processor that these should not be cached

� Most computers are stall-on-use for loads

� Other instructions (or hardware threads) are executed without

waiting for a load



Computation and Communication

� Communication is seen as I/O

� traditionally considered “slow” compared to CPU

� Using loads/stores uses CPU for communication

� Perform communication using a dedicated unit

� e.g., DMA engine

� Still slow

� Goal is not make CPU wait for communications

� overlap communication with computation



Asynchronous Notifications: Interrupts

� When a DMA engine completes a data transfer, it raises an

interrupt that alerts the CPU

� The OS then translates that interrupt into a signal for a

program

� A signal causes the program to run a pre-registered signal
handler

� interrupts whatever it was doing

� resumes after signal has been handled



Synchronous Notification: Polling

� The CPU can also periodically check if the data transfer has
completed

� possibly by examining some register or flags on the DMA

engine

� Polling continously can be slow and can waste CPU cycles

� However, at high enough communication rates, polling is
usually better than interrupts

� rise of user-space networking (i.e., OS is not involved)



Pinned Memory

� DMA engines have traditionally required physical addresses

� however, newer DMA engines can deal with virtual addresses

as well

� The mapping between virtual to physical memory must

remain unchanged during the DMA operation

� Achieved by “pinning” the page

� prevents the OS from swapping the page out

� These pinned pages are sometimes called “bounce buffers”

� Aside: GPUs can load/store directly from pinned pages in

CPU memory



Zero Copy

� Traditional data transfer: device to bounce buffer (OS kernel
memory) to user buffer

� or in the reverse direction

� Can a device directly send data to user buffer bypassing the
OS kernel?

� or can a program send data directly to device?

� devices: network cards, disks, GPUs

� Example: copying a file using fread and fwrite vs

sendfile (on Linux)



Cross-Device Transfers

� Data from a source device to a destination device doesn’t

need to go through the CPU

� Devices: Network cards (NICs), Disks, GPU [memory]

� Various proprietary technologies

� e.g. NVIDIA’s GPUDirect



Outline

Single-Machine Communication

Networked Communication

Collective Communication Algorithms

Communication in ML Programs



Multi-machine Communication

� Physical Layer: Electrical, Radio, Optical Fibre

� Different bandwidth, latency, routing characteristics

� Data Link Layer: Ethernet, 802.11, InfiniBand

� Network layer: IPv4, IPv6

� Transport layer: e.g, TCP, SCTP

� Application layer: e.g., HTTP



Physical Network Topologies

� How different nodes of the network are wired up

� alternatively, physical paths between nodes

NetworkTopologies.png: Maksim / derivative work: Malyszkz, Public domain, via Wikimedia Commons
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https://commons.wikimedia.org/wiki/File:NetworkTopologies.svg


Topology Characteristics

� Diameter

� Max number of hops between two nodes

� Bisection Width

� Minimum number of links to be cut to bisect the network into

two

� Bisection Bandwidth

� The aggregate bandwidth of the the bisecting links

� How much bandwidth can one half of nodes use to send data

to the other half?



Logical Network Topologies

� The topology of a network is of interest to communication

algorithm designers

� Often, a logical topology is overlaid on the physical network

as an abstraction

� Example: logical ring even if the underlying physical network

is not a ring



Communication Modes

� Unicast (or Point to Point)

� One-to-one

� Sent once, received once

� Broadcast

� One-to-all

� Sent once, received by each device once

� Multicast

� One-to-many

� Many-to-many

� Sent once, Received once by each device in a multicast group

� Anycast

� One-to-one (of many)

� Sent once, received once by one member of a group

What are the performance implications?



Protocol Characteristics

� Connected / Non-connected

� must a connection be set up before sending data?

� Reliable / Unreliable

� are errors in transmission detected and reported?

� Ordered / Unordered

� is send order respected by receiver?

� Stream / Datagram

� is data broken up into chunks or sent as a continuous stream

of bytes?

What are the performance implications?



Low-Level Programmer Interfaces

� (Unix) Sockets

� available on non-Unices like Windows too

� send, recv, poll, events

� Device-specific mechanisms

� RDMA (a moniker for a large range of networking

technologies)

� cudaMemcpy[Async] (and its equivalents on other GPU

programming models)
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Collective Communication Algorithms

� Basic Communication Primitives: send, recv

� synchronous and asynchronous

� Collective Communication Algorithms

� an often multi-step data transfer algorithm performed by all

communicating devices

� some collective communication algorithm also perform

computation (e.g., +)

� Collective communication can be used by parallel algorithms

� often supported by hardware (esp. in supercomputers)



AllReduce

% executed by all machines
% not an efficient implementation!
% assuming async send
for m in other_machines:

send(m, mydata)

output = mydata

for m in other_machines:
data = recv(m)
output += data

return output

With support for AllReduce, this code becomes:

output = AllReduce(mydata)



Other CC Algorithms

� Broadcast*

� Reduce*, All-Reduce

� Gather*, All-Gather

� Scatter*

� Barrier

Operators marked with a * have a distinguished participant whose

behaviour is different from others. e.g., the sender of the broadcast



Using CC algorithms

� MPI (traditional)

� Doesn’t support GPUs very well

� NCCL

� NVIDIA-specific, built only for GPU-to-GPU communication

� RCCL

� AMD’s equivalent of NCCL (based on it)

� MSCCL

� Microsoft’s own library

� many others, strong area of interest because 40% of training
costs is communication

� and this cost is increasing



Illustration of many CC algorithm behaviours

See: NVIDIA NCCL’s Collective Operations page

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
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Training and Inference

� Distributed Parameter Training

� Data is split up among different machines which train on their

own subset

� A parameter server is a central location for these individual

subsets to be combined

� Pipeline Parallelism

� Data from one stage to another esp. if the stages are on

different GPUs

� Model Parallelism

� Data from one partition of the graph to another



ML-specific Communication Optimizations

� ML computations can be approximated

� without significant loss in accuracy

� ML communications can be reduced by not communicating
every step

� e.g., in pipelined algorithms

� i.e., operate on stale data, see Li et al., DistriFusion:

Distributed Parallel Inference for High-Resolution Diffusion

Models

� Asynchronous communication seems not to hurt

� e.g., Hogwild Stochastic SGD

� Compression of data

� Different compression schemes for parameters, activations,

inputs, outputs

https://openaccess.thecvf.com/content/CVPR2024/papers/Li_DistriFusion_Distributed_Parallel_Inference_for_High-Resolution_Diffusion_Models_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_DistriFusion_Distributed_Parallel_Inference_for_High-Resolution_Diffusion_Models_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_DistriFusion_Distributed_Parallel_Inference_for_High-Resolution_Diffusion_Models_CVPR_2024_paper.pdf
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