CSC290/420 Machine Learning Systems for
Efficient Al
Bulk Data Transfers / Communication

Sreepathi Pai
October 22, 2025

URCS



Single-Machine Communication
Networked Communication
Collective Communication Algorithms

Communication in ML Programs



Single-Machine Communication



Non-bulk data transfers: Loads and Stores

e Load and Store instructions can be used to transfer data
e Special loads: non-temporal loads and stores

e Hint to the processor that these should not be cached
e Most computers are stall-on-use for loads

e Other instructions (or hardware threads) are executed without
waiting for a load



Computation and Communication

e Communication is seen as |/O

e traditionally considered “slow” compared to CPU

Using loads/stores uses CPU for communication

Perform communication using a dedicated unit
e e.g., DMA engine
o Still slow

Goal is not make CPU wait for communications

e overlap communication with computation



Asynchronous Notifications: Interrupts

e When a DMA engine completes a data transfer, it raises an
interrupt that alerts the CPU

e The OS then translates that interrupt into a signal for a
program

e A signal causes the program to run a pre-registered signal
handler
e interrupts whatever it was doing
e resumes after signal has been handled



Synchronous Notification: Polling

e The CPU can also periodically check if the data transfer has
completed

e possibly by examining some register or flags on the DMA
engine
e Polling continously can be slow and can waste CPU cycles

e However, at high enough communication rates, polling is
usually better than interrupts

e rise of user-space networking (i.e., OS is not involved)



Pinned Memory

o DMA engines have traditionally required physical addresses
e however, newer DMA engines can deal with virtual addresses
as well
e The mapping between virtual to physical memory must
remain unchanged during the DMA operation
e Achieved by “pinning” the page
e prevents the OS from swapping the page out

e These pinned pages are sometimes called "bounce buffers”

e Aside: GPUs can load/store directly from pinned pages in
CPU memory



Zero Copy

e Traditional data transfer: device to bounce buffer (OS kernel
memory) to user buffer

e or in the reverse direction

e Can a device directly send data to user buffer bypassing the
OS kernel?

e or can a program send data directly to device?
e devices: network cards, disks, GPUs

e Example: copying a file using fread and fwrite vs
sendfile (on Linux)



Cross-Device Transfers

e Data from a source device to a destination device doesn't
need to go through the CPU
e Devices: Network cards (NICs), Disks, GPU [memory]
e Various proprietary technologies
e e.g. NVIDIA's GPUDirect



Networked Communication



Multi-machine Communication

Physical Layer: Electrical, Radio, Optical Fibre

e Different bandwidth, latency, routing characteristics
Data Link Layer: Ethernet, 802.11, InfiniBand
Network layer: IPv4, IPv6
Transport layer: e.g, TCP, SCTP

Application layer: e.g., HTTP



Physical Network Topologies

e How different nodes of the network are wired up
e alternatively, physical paths between nodes

Network Topologies.png: Maksim / derivative work: Malyszkz, Public domain, via Wikimedia Commons

ONGh S

Ring Mesh Star Fully Connected

VU o gt LL

Line Tree Bus


https://commons.wikimedia.org/wiki/File:NetworkTopologies.svg

Topology Characteristics

e Diameter
e Max number of hops between two nodes
e Bisection Width
e Minimum number of links to be cut to bisect the network into
two
e Bisection Bandwidth

e The aggregate bandwidth of the the bisecting links
e How much bandwidth can one half of nodes use to send data
to the other half?



Logical Network Topologies

e The topology of a network is of interest to communication
algorithm designers

e Often, a logical topology is overlaid on the physical network
as an abstraction

e Example: logical ring even if the underlying physical network
is not a ring



Communication Modes

e Unicast (or Point to Point)

e One-to-one
e Sent once, received once

e Broadcast

e One-to-all

e Sent once, received by each device once
e Multicast

e One-to-many

e Many-to-many

e Sent once, Received once by each device in a multicast group
e Anycast

e One-to-one (of many)
e Sent once, received once by one member of a group

What are the performance implications?



Protocol Characteristics

Connected / Non-connected

e must a connection be set up before sending data?
Reliable / Unreliable

e are errors in transmission detected and reported?
Ordered / Unordered

e is send order respected by receiver?

Stream / Datagram

e is data broken up into chunks or sent as a continuous stream
of bytes?

What are the performance implications?



Low-Level Programmer Interfaces

e (Unix) Sockets
e available on non-Unices like Windows too
e send, recv, poll, events

e Device-specific mechanisms

e RDMA (a moniker for a large range of networking
technologies)

e cudaMemcpy[Async] (and its equivalents on other GPU
programming models)



Collective Communication Algorithms



Collective Communication Algorithms

e Basic Communication Primitives: send, recv
e synchronous and asynchronous
e Collective Communication Algorithms
e an often multi-step data transfer algorithm performed by all
communicating devices
e some collective communication algorithm also perform
computation (e.g., +)
e Collective communication can be used by parallel algorithms

e often supported by hardware (esp. in supercomputers)



AllReduce

% executed by all machines
% not an efficient implementation!
% assuming async send
for m in other_machines:
send(m, mydata)

output = mydata
for m in other_machines:
data = recv(m)

output += data

return output

With support for A11Reduce, this code becomes:

output = AllReduce(mydata)



Other CC Algorithms

Broadcast*
Reduce*, All-Reduce
Gather*, All-Gather

Scatter*

e Barrier

Operators marked with a * have a distinguished participant whose
behaviour is different from others. e.g., the sender of the broadcast



Using CC algorithms

e MPI (traditional)
e Doesn't support GPUs very well
e NCCL
e NVIDIA-specific, built only for GPU-to-GPU communication
e RCCL
e AMD'’s equivalent of NCCL (based on it)
e MSCCL
e Microsoft’s own library

e many others, strong area of interest because 40% of training
costs is communication

e and this cost is increasing



lllustration of many CC algorithm behaviours

See: NVIDIA NCCL's Collective Operations page


https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

Communication in ML Programs



Training and Inference

e Distributed Parameter Training
e Data is split up among different machines which train on their

own subset
e A parameter server is a central location for these individual

subsets to be combined
e Pipeline Parallelism
e Data from one stage to another esp. if the stages are on
different GPUs
e Model Parallelism
e Data from one partition of the graph to another



ML-specific Communication Optimizations

ML computations can be approximated

e without significant loss in accuracy
e ML communications can be reduced by not communicating
every step

e e.g., in pipelined algorithms

e i.e., operate on stale data, see Li et al., DistriFusion:

Distributed Parallel Inference for High-Resolution Diffusion
Models

Asynchronous communication seems not to hurt

e e.g., Hogwild Stochastic SGD

Compression of data
e Different compression schemes for parameters, activations,
inputs, outputs


https://openaccess.thecvf.com/content/CVPR2024/papers/Li_DistriFusion_Distributed_Parallel_Inference_for_High-Resolution_Diffusion_Models_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_DistriFusion_Distributed_Parallel_Inference_for_High-Resolution_Diffusion_Models_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_DistriFusion_Distributed_Parallel_Inference_for_High-Resolution_Diffusion_Models_CVPR_2024_paper.pdf

	Single-Machine Communication
	Networked Communication
	Collective Communication Algorithms
	Communication in ML Programs

