CSC2/458 Par. and Distr. Sys. Assignment 4 Due: April 16, 2018, 7PM

All exercises must be done by yourself. You may discuss questions and potential solutions with your classmates, but
you may not look at their code. If in doubt, ask the instructor.

Acknowledge all sources you found useful. Your code should compute the correct results.
Partial credit is available, so attempt all exercises.

Submit your code and answers in a single archive file (ZIP/TGZ/TBZ2, etc.) that contains your name in the
filename (e.g. JRandom Al . zip). Your answers should be a PDF file in the archive.

In this assignment, you will implement two concurrent queues, one blocking and another non-blocking, and use them
in an asynchronous parallel version of SSSP.

Your programs will be tested on node2x14a, node2x18a and node—ibm-822.csug. Modify the makefile so
that make binaryname makes the binary.

When reporting times below for each question, report times for 1, 2, 4, 8, and IV, threads along with which machine
you used to obtain the time. As in Assignment 2, repeat each experiment and report averages and standard deviation.

Here, N, is the maximum number of hardware thread contexts supported on a machine. N,,,, = 56 fornode2x14a,
Npar = 72 for node2x18a and N,,4, = 160 for node-ibm-822.csug.

Check for correctness against the serial version using test . sh command.

Exercise 1

Implement a blocking concurrent queue that has the same interface as serial queue using a single lock per queue.
Write a parallel test harness for this queue. The harness is not graded, but is useful to quickly identify issues. Submit
the implementation of this queue as blocking_queue.h.

Exercise 2

Implement a lock-free concurrent queue. You can use any of Michael and Scott queue (from MLS), the Herlihy and
Wing queue (on page 475 of their paper), or the variant of the M&S queue described in Herlihy and Shavit (the HS
textbook).

Note: this exercise involves significant effort, start now.
Use the harness from E1 to test this queue. Submit the implementation of this queue as lockfree_queue.h.

All code you submit here must be your own.

Exercise 3

Parallelize the sssp function using the two queue implementations above to obtain asynchronous and (in theory)
much faster versions of SSSP than the one you wrote in A2. Use lock-free atomic read/modify/writes to handle data
races within the SSSP algorithm. Note that you cannot exit a thread until the queue is empty and all threads are done
(i.e. no new work is guaranteed to appear on the queue). Do not use barriers (i.e. do not implement a synchronous
version).

1. Call the binary for sssp using the concurrent queue from El as sssp_blocking. Report the performance for
all inputs for varying number of threads.

2. Call the binary for sssp using the lock-free queue from E2 as sssp_lockfree. Report the performance for
all inputs for varying number of threads.

3. How does your implementation of the lock-free queue compare with the blocking queue at N, , threads?

END.

Spring 2018 1


https://dl.acm.org/citation.cfm?id=78972

