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Loop optimizations so far

» Important applications
» Scientific computing
> Audio/Video processing
» Deep Learning

» Loop Dependences

» True, anti- and output dependences

» Must examine dynamic trace

P |teration spaces, vectors, lexicographic ordering
» Identifying loop dependences

P Restrict array index functions to affine functions

» Formulate dependence testing as an ILP

» Dependence exists if solutions exist
» ILP is NP-complete

> Today
» Vectorization
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Fortran 90 Vectorization

» If a loop contains a single statement
» And there is no loop-carried dependence
P its iterations are independent of each other
» Then its iterations can be executed in parallel
» ‘vectorization”



Example #1

DOI=1, N
X(I) =X(@ +C
ENDDO

can be vectorized as (Fortran-specific syntax)
X(1:N) = X(1:N) + C



Example #2

DOI=1,N
X(I+1) = X(I) + C
ENDDO
cannot be vectorized as (Fortran-specific syntax)

X(2:N+1) = X(1:N) + C

Fortran 90 semantics say that RHS uses original values.

» Serial code computes:
> X(2) = X(1) +C
> X(3) =X(2) +C=X({1) +C+C
» Vectorized code computes
> X(2) =X(1) +C
> X(3) =X(2) +¢C
» i.e. updates on the LHS are not reflected in RHS until the
entire statement has finished executing



Example #3

D0OI=1, N

S1: A(T +1) =B(I) +C
S2: D(I) = A(I) + E
ENDDO

Note loop-carried dependence S1 § S2
Can this be vectorized?



Example #3: Vectorized by Distribution

DOI=1, N

Si: AT +1) =B(I) +C
ENDDO

DOI =1, N

S2: D(I) = A(I) + E
ENDDO

» Loop "distribution”

A(2:N+1) = B(1:N) + C
D(1:N) = A(1:N) + E



Example #4

DOI=1,N

S1: B(I) = A(I) +E

$2: A(T+1) =B(D +¢C
ENDDO

» Which dependences exist?

» Can this loop be vectorized by distributing?
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Simple Dependence Tests

Goal: Find dependences by examining indices.

DOI=1, N
AT +1) =A(I) + B
ENDDO

Is there a read-after-write dependence from A(I + 1) in iteration
Iy to the read A(I) in a subsequent iteration?

Io+1=1lL+ Al

What value of A/ satisfies this equation?



True dependence testing

bh+1=1l+Al
is satisfied by
> Al=1
» 1 > 0 (later, so true dependence, i.e. read after write)

» 1 < N (will execute, assuming N > 1)
> dk(i) =1, so Dk(i) = (<)



Anti-dependence testing

Is there a write-after-read dependence from the read A(I) in
iteration ly to the write A(T + 1) in a subsequent iteration?

bh+1+Al=1
is satisfied by:
> Al =-1
» —1 <0, (earlier, no anti-dependence (i.e. write after read)
found)

What if the write was A(I - 1)7?



Multiple (Separable) Indices

DO J =1, 100
DO I =1, 100

S1: A(I+1) = A(I) + B(J)
ENDDO

ENDDO

» True dependence for S1 in loop I is <

> Note that J does not appear in indices for A
» But there is a dependence!



The * dependence direction

> Can't write equations for J though, so we assume
direction vector

(*, <)

(<7 <)7 (:v <)7 (>, <)

Level-1 (i.e. J-level) true dependence

Level-2 (i.e. I-level) true dependence

Level-1 anti-dependence
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Dependence Graphs

» Nodes are statements

» Edges are dependences @?&h 8s, 817!
(from source to sink)

> S, 0.t 08



Ordering in a dependence graph

» Recall, for a moment, the data flow graph used in instruction
scheduling of basic blocks

» How would you generate a linear order of instructions from
the DAG that respected the dependences?



Vectorizable

DOI =1, N

S1: A(I + 1) =B(I) +¢C
S2: D(I) = A(I) + E
ENDDO

o1



Not Vectorizable

DOI=1,N
S1: B(I) = A(I) + E
52: AT +1) =B(I) +C

ENDDO

l.
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Will it vectorize? Example #b5

DOI =1, N
DOJ =1, M

S1: A(I+1, J) = A(I, J) + B
ENDDO

ENDDO



Example #5: Vectorized at level 2

DOI=1, N
A(I+1, 1:M) = A(I, 1:M) + B
ENDDO



Final Ex

S1

S2
S3

sS4

ample

DOI =1
X(I)
DO J

>

100
Y(I) + 10
1, 100

B(J) = A(J, N)

DO K =1, 100

A(J+1, K) = B(J) + C(J, K)

ENDDO

Y(I+) = AQ+L, W)

ENDDO
ENDDO



Step #1: Build Dependence Graph D




Step #2: Find Strongly Connected Components in D

» SCCs isolate cyclic regions
» Use Tarjan’s algorithm
> Yields SCCs §;



Step #3: Construct R,

» Construct a graph Ry,

where each node T;
corresponds to a SCC S; @
» S;isaSCCinD

» Connect nodes 7; using
induced dependence graph °1
Dy
» |.e., if there was an edge
between a node in S; and
a node in §;, induce an
edge between 7; and 7;



Step #4: Toposort R,

» R, is now a DAG
» Order nodes 7; of graph R, using topological sort



Step #b: Recurse into 7; (if 7; is cyclic)

» If a node 7; is cyclic

> Loop at this level must be
executed serially

» However, inner loops may be
vectorizable, so

» Generate a new
dependence graph with
only dependences for
inner levels

» Recurse into this graph,
starting from Step #1

Algorithm codegen (Figure 2.2)
in Allen and Kennedy.



Step #6: Vectorize each node 7; in R, (if possible)

» Process nodes 7; in topological order
» |s m; acyclic?
» Vectorize!

» Substitute all loop indices in inner dimensions with vectors



Result

DO I =1, 100
DO J =1, 100
B(J) = A(J, N)

A(J+1, 1:100) = B(J) + C(J, 1:100)
ENDDO

Y(I+1:I+100) = A(2:101, N)
ENDDO

X(1:100) = Y(1:100) + 10



Next steps

» More elaborate dependence testing
» Loop transformations

» Improve locality
» Improve parallelism
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