CSC2/455 Software Analysis and Improvement
Instruction Scheduling/Register Allocation

Sreepathi Pai
URCS

February 27, 2019

Outline

Review

Instruction Scheduling

Global Register Allocation

Postscript

Outline

Review

Optimizations

> Part I: Analysis

> Iterative Dataflow Analysis

» SSA Form
» Part II-A: Optimization

» Dead Code Elimination

» Partial Redundancy Elimination
» Part Ill: Code Generation

» Instruction Selection (not today)
» Instruction Scheduling
» Register Allocation

Outline

Instruction Scheduling

The need for instruction scheduling

» Code is in 3-address form
» Instructions have been selected

> eg. a / 4 becomes shr a, 2 (shift-right) or sar a, 2
(shift-arithmetic right)

» usually through tree rewrites (see Chapter 11 in Cooper and
Torczon)

» What (linear) order should we output instructions?

A modern CPU pipeline

4uops/cycle
\

Decoded Icache
(DsB)
6uops/cydle

32K L1 Instruction
Cache

Instruction Decode Queue (IDQ,, or micro-op queue)

‘ Scheduler]
256K L2 Cache
(Unifiec)
Port0 Port1 Port5 I Port6

Int ALU, Int ALU, Int ALU,

VecFMA | | FastleA, | | Fastlen, | | AW ‘—r
VecMUL | | VecPMA | | vecshur, | | mtshit.

VecAdd, | | VecMUL | | vecaw, | | Brancht.

VecAU, | | VecAdd, or 3KL1 Data Cache
Vecshft, | | VecA,

Divide, | | Vecshit,

Branch? | | IntMuL,

SowLEA

Source: Intel 64 and IA-32 Architectures Optimization Manual

Pipeline Details Known to Compiler

» Number of functional units and their types
» Which instructions can be issued together
> Latencies of operations

> Note some operations can have variable latencies (e.g.
memory operations)

» Forwarding latencies

» Delays when sending values from one functional unit to another
» Or from one instruction to another

» And other sundry architecture details
P See the architecture manuals for processor of interest

Two metrics of interest

» Throughput: Instructions completed per cycle
» Higher is better

» Latency: Total cycles for execution
» Lower is better

Basic block to data dependence graph

I A ¥ N +
o<

O Q00w
L ([| I
Q.

ON@ES K

Schedule

Assume the following delays:

» Add, Shifts, Subtraction: 1 cycle
> Multiplication: 2 cycles
» Division: 3 cycles

Cycle ALU1 ALU2
0 a=x+y |b=v/w

1 d=2z<<1 (busy)
2 (idle) (busy)
3 c=ax*b (idle)
4 (busy) (idle)
5 e=c-d (idle)

What determines the total time of the path?

Critical Path

» The path that takes the longest to execute
» Equivalently, has zero slack

P Delaying operations on critical path will increase total time

List scheduling

Goal: Schedule instructions on every cycle (i.e. build a table like in
previous figure)

» Overall structure:

» Mark operations whose predecessors have completed as ready
» Pick operations that are ready

» Schedule them in some order if resources available

» Proceed to next cycle

» Repeat until all operations are scheduled

(Figure 12.3 in Cooper and Torczon)

Priority /Heuristics

Always prioritize instructions on critical path.
» Can be hard to achieve
» Variable delays
» Multiple functional units

» Other architecture-specific constraints

Other Complications

» Small basic block sizes
» Trace scheduling (in Part |I-B)

» Long dependence chains with little parallelism
» Software Pipelining (in Part 1I-B)

Outline

Global Register Allocation

The Memory Hierarchy (on CPUs)

» Registers (on chip, few tens to low hundreds)
» L1 cache (tens of KB)

» L2 cache (tens of MB)

» DRAM (tens of GB)
» off-chip

Numbers every programmer should know

> Register access: 1 cycle

» L1 cache: less than 10 cycles
» L2 cache: less than 100 cycles
» DRAM: hundreds of cycles

Bottomline: Placing frequently used variables in registers can
improve performance

The Problem of Global Register Allocation

» Code is in SSA form (with ¢-functions removed)

» SSA form uses infinite registers (each temporary is a
“register”)

> Must map these logical registers to physical machine registers

Problem and Setup

Must answer two main questions:

» How many physical registers are needed? (k is the number of
physical registers)
» < k, fewer than available — everybody gets a register!
» > k, more than available — results in spill code
» Spilled registers are stored in memory and reloaded later

> Which physical register is assigned to which variable?

Live Ranges

A live range is a a set of all definitions and uses of the same
variable such that:

» |If a use u for variable i is in LR;, then all definitions d that
reach u are also in LR;

» If a definition d for variable i is in LR;, then all uses u reached
by d are also in LR;

Live range example

By

ap € -

/\

LRa

/\

1 bo(- CO(- |_Rb(- LRC &« .
. € bg -« « LRy
do ¢ - dy ¢ ¢o LRy ¢ - LRy ¢ LRc
B[45 « ¢(dg, dy) Bs
2 £ 9l e LR,
- edy =€ LRy
> Live ranges
> LRa = {ao}
> LRy, = {bo}
> LR = {c}

>

LRy = {dy,d1, d>}

Interference Graphs

» Two live ranges "interfere”
if they are both live at an
operation

» Implies that they must be
in different registers

» Represented by an
interference graph

» Nodes are live ranges

> An (undirected) edge
between nodes n and m
indicates interference

Register Allocation as Graph Coloring

Given an interference graph, the
minimal number of physical
registers required is equal to the
chromatic number of the graph
(due to Chaitin).

» Chromatic number is the
minimum number of colors
required such adjacent
nodes have different colors

» NP-complete problem

Four Color Example

Parting thoughts

What order should register allocation and instruction scheduling be
performed?

Outline

Postscript

References

» Chapter 12 of Cooper and Torczon (Instruction Scheduling)
» Chapter 13 of Cooper and Torczon (Register Allocation)

	Review
	Instruction Scheduling
	Global Register Allocation
	Postscript

