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Non-volatile Memory (NVM) offers the opportunity to build large, durable B+ trees with markedly higher

performance and faster post-crash recovery than is possible with traditional disk- or flash-based persistence.

Unfortunately, cache flush and fence instructions, required for crash consistency and failure atomicity on

many machines, introduce substantial overhead not present in non-persistent trees, and force additional NVM

reads and writes. The overhead is particularly pronounced in workloads that benefit from cache reuse due to

good temporal locality or small working sets—traits commonly observed in real-world applications.

In this paper, we propose a buffered durable B+ tree (BD+Tree) that improves performance and reduces

NVM traffic via relaxed persistence. Execution of a BD+Tree is divided into epochs of a few milliseconds each;

if a crash occurs in epoch 𝑒 , the tree recovers to its state as of the end of epoch 𝑒 −2. (The persistence boundary

can always be made current with an explicit sync operation, which quickly advances the epoch by 2.) NVM

writes within an epoch are aggregated for delayed persistence, thereby increasing cache reuse and reducing

traffic to NVM.

In comparison to state-of-the-art persistent B+ trees, our micro-benchmark experiments show that BD+Tree

can improve throughput by up to 2.4× and reduce NVM writes by up to 90% when working sets are small or

workloads exhibit strong temporal locality. On real-world workloads that benefit from cache reuse, BD+Tree

realizes throughput improvements of 1.1–2.4× and up to a 99% decrease in NVM writes. Even on uniform

workloads, with working sets that significantly exceed cache capacity, BD+Tree still improves throughput by

1–1.3×. The performance advantage of BD+Tree increases with larger caches, suggesting ongoing benefits as

CPUs evolve toward gigabyte cache capacities.
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1 Introduction
As one of the most popular indexing data structures used in database systems, B+ trees have been

extensively studied and optimized. As databases continue to grow, B+ trees have also been rapidly

growing, consuming large amounts of expensive DRAM. Recovery in the wake of a crash typically

requires reconstruction, based on a full scan of the database, which can be quite expensive. A

durable index, on the other hand, if maintained in block storage, requires logging and I/O operations

on every update, increasing transaction latency and disk/flash traffic.

Hardware trends suggest (the discontinuation of Intel’s Optane products notwithstanding) that

systems of the near future may boast large amounts of byte-addressable nonvolatile memory (NVM).

Such memory is likely to provide latency and bandwidth only a small constant factor slower than

that of DRAM, together with larger capacity and lower cost per byte. It is also likely to be persistent,
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offering the intriguing opportunity to build persistent B+ trees with both high performance in the

absence of crashes and low post-crash recovery time.

To be considered correct, a concurrent data structure is generally required to be linearizable [14]—
its operations must appear to occur in some sequential order consistent with “real time” (if operation

𝑥 returns before operation 𝑦 is called, 𝑥 must appear to occur before 𝑦). A persistent data structure
is typically required to be durably linearizable (DL)—its history, across crash events, must be

linearizable when the crashes themselves are elided [17]. Equivalently, each operation must appear

to take place and to persist at some single point in time between its call and return [10].

The challenge to achieving durable linearizability is that caches are generally volatile, and write

their contents back to memory in arbitrary order: an unmodified concurrent structure that is simply

placed in NVM is unlikely to be consistent in the wake of a crash.

To build a durably linearizable structure, one must generally (1) force cache lines to be written

back to memory (on an Intel machine, via clflush, clflushopt, or clwb); (2) order the writes-back
explicitly (e.g., via sfence or mfence); and (3) employ undo or redo logging to allow partially

completed operations to be rolled backward or forward after a crash.

These steps have significant cost. A write-back instruction requires at least a few dozen cycles to

hand-shake with the on-chip memory controller, which takes responsibility for persisting the line.

If the line is not local, but dirty elsewhere in the system, a few hundred cycles may be required to

find it and force it to its own local memory controller. Likewise, an ordering fence may require

hundreds of cycles for cross-core or cross-socket communication.

At the same time, a write-back instruction (e.g., clflush or clflushopt) that invalidates the cache
line imposes an all-the-way-to-memory miss penalty on the program’s next access to the line.

Repeated flushed writes to the same cache line will not only incur the latency of the store and any

subsequent load: they will also contribute to wear-out in any memory technology with limited long-

term endurance. In contrast, ordinary (non-flushed) stores to a given line are typically absorbed by

the cache. Even on a machine with a non-flushing write-back instruction (e.g., the clwb of Intel’s

most recent processors), explicitly ordered NVM writes still consume memory bandwidth and

contribute to wear-out.
1
Write-back of log entries (for failure atomicity) can also dilate the critical

path.

Recently published durably linearizable B+ trees can be more than 10× slower than their transient

counterparts [38] and use twice as much memory [6, 25]. Much work has therefore focused either on

redesigning the B+ tree to use fewer persist instructions [5, 15, 25, 26, 33, 38, 43] or on moving those

instructions off the critical path, to hide their impact on performance [6, 28]. Similar strategies

have characterized work on general-purpose libraries that add persistence to existing volatile

structures [9, 11, 19, 21, 24, 30, 37].

Unfortunately, even the best existing durably linearizable B+ trees suffer from significant per-

sistence overhead and/or extra DRAM and NVM consumption. We use three Memcached traces

from Twitter [32] (details in Table 1) to measure the persistence overhead and memory traffic of

two state-of-the-art persistent trees. Each workload comprises 10 million accesses, with working

sets (total amounts of accessed memory) as shown in the table. Experiments were conducted on

a server with Intel Optane persistent memory and the real (non-invalidating) clwb instruction.

The Fast&Fair tree [15] persists both inner and leaf nodes, and sorts the keys within each node.

LB+Tree [26] is a hybrid structure that keeps leaf nodes in NVM but inner nodes in DRAM, to

reduce the number of NVM writes and persist instructions. Its inner nodes are sorted, and are

rebuilt after a crash; its leaf nodes are unsorted.

1
In all but the most recent Intel processors, clwb is simply an alias for clflushopt.
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Fig. 1. Behavior of persistent trees with different write-back instructions. Left: throughput (higher is better).
Right: relative volume of NVM reads and writes (lower is better). Experiments were conducted with one
thread.

Performance of the measured trees on the Twitter workloads is plotted in Fig. 1 for a single worker

thread, using invalidating (clflushopt) and non-invalidating (clwb) write-back, and comparing to

an (inconsistent) baseline with no write-back (noop). Fig. 1(a) shows that persistence instructions
lead to performance losses of 20–140%. When the working set is small, invalidating write-back

is particularly detrimental due to the instruction overhead and cache miss penalty. Relative to

the base case (noop), Fig. 1(b) shows that clflushopt results in a 52× increase in writes and 43×
increase in reads for trace t2, whose working set fits in the L3 cache. Although non-flushing clwb
instructions mitigate the performance degradation and reduce read traffic, they continue to induce

extra bandwidth and contribute to NVM wear-out.

Our work is founded on two key observations. First, cache reuse plays a critical role in persistent

applications. As real-world workloads often exhibit small working sets (only a modest subset of

total data is accessed over the course of execution) and/or good temporal locality (the same data are

accessed repeatedly within a short time span) [2, 4, 40], improving cache reuse can substantially

enhance performance by hiding the high latency of access to NVM and reduce NVM writes through

in-cache write combining. As server CPU caches evolve towards gigabyte capacity with the advent

of technologies like 3D V-Cache stacking, leveraging cache resources to their fullest potential in

persistent applications promises to deliver durability with unparalleled performance.

Second, durable linearizability, in its customary strict form, is too strong a correctness criterion.

A B+ tree intended to index a database on disk or flash requires persistence only on the millisecond

timescale of I/O operations. Loss of the last few index updates is not a problem, so long as the

post-crash state is internally consistent (and, presumably, consistent with the actual database).

working set (MiB)

traces R:W ratio Zipf 𝛼 10M ops 100M ops

t1 85:15 0.6372 97 303

t2 50:50 1.7366 4 9

t3 50:50 0 126 750

Table 1. Characteristics of Memcached traces. Zipf 𝛼 is a measure of workload skew: a higher value indicates
a more skewed distribution.
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Previous work suggests [17, 31, 37] that performance in the absence of crashes may be signif-

icantly improved if writes-back are buffered (batched) and effected on a periodic basis. Toward

that end, we present a Buffered Durable B+ Tree (BD+Tree) with relaxed persistence intended

to increase performance and decrease NVM wear-out, relative to existing non-buffered trees, by

amortizing persistence overhead over large operation batches and optimizing cache reuse. Specifi-

cally, BD+Tree employs an epoch system, managed by a background thread. The thread maintains a

global clock that ticks every few milliseconds, dividing time into epochs. Each BD+Tree operation

occurs within a single epoch, and all data are labeled with the epoch in which they were created.

Worker threads, which update the content of the tree, keep a record of modified cache lines, which

the background thread writes back to NVM at epoch boundaries. Time does not advance from

epoch 𝑒 to 𝑒 + 1 until all data in epoch 𝑒 − 1 has been persisted. Significantly, persisting data from

epoch 𝑒 − 1 does not delay operations proceeding in epoch 𝑒 . After forcing the write-back of data

from a given epoch, the background thread issues a fence instruction, after which all data from

that epoch are guaranteed to be persistent. If a crash happens in epoch 𝑒 , BD+Tree recovers to the

state that existed at the end of epoch 𝑒 − 2.

In contrast to persistent B+ trees based on periodic checkpoints, BD+Tree eliminates the need for

quiescence and reduces the need for extra DRAM (to buffer NVM writes) and NVM (for logging).

Experiments confirm that BD+Tree can achieve 1.1–2.4× speedup over existing persistent B+ trees.

It also generates fewer NVM writes and consumes less DRAM. Summarizing contributions, we:

• present the first buffered durably linearizable (BDL) B+ tree, together with correctness arguments.

• evaluate the performance of this tree relative to state-of-the-art alternatives, demonstrating

significant improvements in per-operation latency, DRAM consumption, and NVM traffic.

• explore sensitivity to algorithmic, architectural, and workload parameters, including epoch

length, memory reclamation frequency, cache size, access distribution, and working set size.

2 Background and Related work
Prior research has introduced various ways to mitigate the persistence overhead and NVM writes

of durable B+ trees. Common practices include selective persistence, loose ordering within leaf

nodes, and dual designs. Selective persistence entails storing inner nodes in DRAM while keeping

leaf nodes in NVM [5, 6, 25–27, 38, 42, 43]. With relaxed leaf node ordering, leaf nodes are either

semi-sorted (some keys within the same leaf node are sorted) [33, 43] or unsorted (all keys within

the same leaf are unsorted) [5, 25–27, 38, 42, 43], thereby reducing the frequency with which keys

must be moved in NVM. Dual design entails maintaining a mutable copy in DRAM to absorb

lookups and an immutable copy in NVM for durability; these copies are periodically synchronized

for consistency [30, 43].

Fast&Fair [15] is the state-of-the-art fully persistent B+ tree. It stores all nodes in NVM and

maintains them in a sorted manner. It assumes it is running on a Total Store Order (TSO) machine,

which guarantees that dependent stores no not bypass one another; this allows it to eliminate

instructions to maintain the ordering of writes generated by in-node shifting, provided they share

a cache line. LB+Tree [26] is the state-of-the-art hybrid tree. It stores leaf nodes in NVM and inner

nodes in DRAM. Its leaf nodes are unsorted, and use eager movement to enhance the likelihood

that metadata and updated keys will reside in the same cache line. When the metadata line of a

node has no empty slots, LB+Tree eagerly moves all co-located keys to another cache line; multiple

subsequent updates can then modify only the metadata line.

In addition to custom B+ trees, the literature also offers general-purpose libraries to facilitate

persistence of existing transient structures [9, 11, 13, 21, 24, 30, 35, 36]. Unfortunately, these libraries

tend to have limited applicability [9, 13, 24] or to result in suboptimal performance compared
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to customized persistent structures, due to high persistence overhead, excessive DRAM/NVM

consumption, or both [21, 24, 30, 35, 36].

MOD [13] is designed specifically for purely functional data structures. Recipe [24] necessitates

non-blocking read operations. Mirror [11] and NVTraverse [9] are intended for fully lock-free

data structures, and their performance remains limited by the overhead of write-back. Pronto [30]

retains data structures in DRAM and captures periodic snapshots, thereby limiting scalability

beyond DRAM capacity and leading to additional memory consumption. TIPS [21] maintains a

volatile hash table to record write operations. Both Pronto and TIPS require extra NVM space for

logging to guarantee durable linearizability.

Buffered durable linearizability (BDL) [17] relaxes persistence requirements with a weaker

consistency guarantee. A data structure is said to be buffered durably linearizable if (1) it is

linearizable during crash-free execution, and (2) upon a crash, the data structure preserves a

consistent prefix of the linearization order of pre-crash execution. Dalí [31] is a custom-designed

BDL hash table.Montage [37] is a general-purpose library designed to facilitate the creation of

BDL structures. It encourages a design pattern in which only essential data are kept in NVM. For a

B+ tree, Montage would keep only a pile of key-value (KV) pairs in NVM; both inner nodes and the

links among leaf nodes would be transient. The lack of persistence overhead for inner nodes would

improve performance during crash-free operation, but would lead to slow post-crash recovery, due

to the need to scan NVM, identify KV pairs, and sort them.

The TL4X [1] framework also executes transactions in a BDL manner. It employs four replicas:

two volatile and two persistent. Speculative write transactions update the volatile Main replica.

Irrevocable, read-only transactions access the volatile Back replica, which reflects a linearizable

execution history. Back is periodically synchronized to whichever persistent replica is least up-to-

date.

Various other (non-B+) trees can also serve as a persistent database index [20, 23, 29, 34]. ERT
[34] is a persistent radix tree whose primary objective is to minimize traversal overhead. It employs

a large node size to minimize tree height. Each node is organized as extensible hash table, enabling

efficient intranode search.

3 BD+Tree design
BD+Tree achieves relaxed persistence by implementing an epoch system and a specialized leaf

node design. Fig. 2 provides an overview of the BD+Tree architecture. B+ tree traversal occurs

primarily in inner nodes, while the majority of persistence overhead is associated with leaf node

updates [38]. Therefore, BD+Tree employs a hybrid design, similar to other persistent B+ trees,

where inner nodes are stored in DRAM and leaf nodes are kept in NVM. The inner nodes retain

the conventional structure of standard B+ trees, but leaf nodes are distinctive: among other things,

they include metadata to indicate the epoch in which each update occurred. This information helps

the background, epoch-advancing thread to manage write-back operations at epoch boundaries.

In the wake of a crash, the epoch information also allows the recovery procedure to identify the

data that were present at the penultimate epoch boundary, and that should therefore appear in the

rebuilt tree.

3.1 Epoch system
The epoch system serves two key functions: first, it maintains a global clock that ticks every few

milliseconds, segmenting execution into distinct epochs; second, it tracks modified data within

each epoch and persists this data to NVM at epoch boundaries. Managed by a background thread,

the epoch system ensures that the maintenance and persistence overhead are off the critical path.

At any given point in normal (crash-free) execution, epochs can be categorized as
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Fig. 2. BD+Tree structure with 512B nodes (left), metadata structure (top right), and a bitmap example
(bottom right).

• the active epoch 𝑒 , in which new operations start. Operations in this epoch will not survive a

crash that occurs before epoch 𝑒 + 2.

• the in-flight epoch 𝑒−1, in which threads can continue their ongoing operations but are prohibited
from starting new ones. Operations in this epoch will not survive a crash that occurs before

(𝑒 − 1) + 2 = 𝑒 + 1.

• valid epochs 𝑖 , for 𝑖 ≤ 𝑒 − 2. Threads are not allowed to execute or initiate new operations in

these epochs. Content in valid epochs has been securely persisted.

Each tree operation, performed by a worker thread, begins and completes within a single epoch.

Before progressing to the next epoch, the epoch system ensures that all in-flight operations have

been completed and data has been persisted. Waiting for in-flight operations does not hinder system

progress, as threads are permitted to initiate new operations in the active epoch. Upon completion

of all in-flight operations, the epoch system sends dirty data to NVM and issues a fence instruction

to guarantee persistence, after which it increments the epoch number. Following this advancement,

the formerly active epoch becomes the in-flight epoch, and the in-flight epoch becomes a valid

epoch. In the event of a crash, we recover all and only those operations that occurred in valid

epochs.

3.2 Leaf node design
BD+Tree leaf nodes are unsorted: keys within a node appear in any order, but are all greater than

keys in nodes to the left and smaller than keys in nodes to the right. The first cache line of a leaf

node (Fig. 2) is reserved for metadata; the remaining cache lines are dedicated to key-value (KV)

pairs. Our experiments use a leaf node size of 512 bytes, though this could in principle be changed.

The metadata comprises several key components:

• fingerprints is an array of one-byte hash values for keys, enabling faster searches. A SIMD

instruction can efficiently pinpoint the indices of match candidates given the hash value of a

search key, thereby identifying potentially matching KV pairs.

• EpochBitmap eb is a composite field comprising an epoch number and two bitmaps. The epoch

number indicates when the node was last updated. If its value is 𝑒 , the two bitmaps bitmap𝑒−1
and bitmap𝑒−2 indicate which KV pairs were visible in and before epoch 𝑒 − 1, respectively.

EpochBitmap requires atomic updates, so it is implemented as a 128b integer. It could be scaled

to larger sizes using hardware transactional memory (HTM).
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• bitmape is a bit array that identifies KV pairs that are visible in epoch 𝑒 , where 𝑒 is the epoch

number stored in EpochBitmap. A KV pair is considered inserted/deleted into the node when

the associated bit is set/cleared.

• tracked_lines is a bitmap indicating which cache lines in the node have been modified in

the epoch indicated by the value in EpochBitmap. The epoch system tracks dirty data at the

granularity of cache lines rather than individual write requests, because writes to the same cache

line within the same epoch can be combined and need to be persisted only once at the epoch

boundary.

The global epoch number, node epoch number, and three bitmaps together determine the

state of a leaf node. Consider the example shown in the bottom right of Fig. 2. Assume that

the global epoch number is 5, the same as the node epoch number stored in EpochBitmap,
and bitmap𝑒 = ⟨1, 1, . . . , 0, 0⟩, indicating the presence of KV pairs in slots 0 and 1. Similarly,

bitmap𝑒−1 = ⟨1, 0, . . . , 0, 0⟩, indicating that there was only one KV pair, in slot 0, during epoch 4,

and bitmap𝑒−2 = ⟨0, 0, . . . , 0, 1⟩, indicating that there was one KV pair, in the last slot, 𝑛 − 1, two

epochs ago. Together, the three bitmaps imply the execution history: a KV pair was inserted into

slot 𝑛 − 1 two (or more) epochs ago; in epoch 4, the KV pair in the last slot was removed, and

a new KV pair was inserted into slot 0; in epoch 5, a KV pair was inserted into slot 1. Upon a

crash in epoch 5, the node would be restored to its state two epochs ago, with only the KV pair

in slot 𝑛 − 1 remaining. KV pairs in slots 0 and 1 would be discarded. If the node epoch number

were 4 instead of 5, the last update to the node would have occurred one epoch ago. The values in

bitmap𝑒 and bitmap𝑒−1 would identify visible KV pairs from the previous epoch and two epochs

ago, respectively. Only the KV pair in slot 0 should be recovered after a crash. Similarly, if the epoch

number were 3, bitmap𝑒 would indicate visible KV pairs from two epochs ago. The post-crash

recovery procedure would restore the KV pairs in the first two slots. The following section details

the mechanism through which BD+Tree manipulates the metadata to achieve BDL.

3.3 Operations
The BD+Tree APIs includes insertion, deletion, lookup and range query operations. Internally, write

operations (insertion and deletion) are made visible to the epoch system, enabling it to track the

updates for persistence. In contrast, read operations (lookup and range query) do not alter the

tree state and remain transparent to recovery, allowing them to execute without epoch system

monitoring.

A writer signals its presence to the epoch system by reading the global epoch number; writing

this, together with its thread ID, in an announcement array visible to the epoch system; and

double-checking the global epoch number. If the double-check fails, indicating an epoch transition,

the writer retries its announcement in the new epoch. Upon successful announcement, a write

operation is confined to the epoch it recorded in the announcement array: modified data are tracked,

persisted, or discarded together.

Insertion code appears in Listings 2 and 3. Consider the illustration in Fig. 3, where the bottom

array stores leaf entries and the top three arrays, from top to bottom, are bitmap𝑒 , bitmap𝑒−1, and
bitmap𝑒−2, with each bit aligned with the corresponding slot in the bottom array. In this simple

example, each entry occupies one cache line. (In the experiments of Sec. 4, keys and values are 8

bytes each, and a cache line holds 4 entries.) Assume, initially, that the leaf node is empty, the node

epoch number is 4, and all bitmaps are 0 (light blue in the figure). Upon successful registration

and acquisition of an epoch number 4 (Listing 2 line 3), the writer compares the leaf node epoch

number with the operation epoch number op_epoch. If the node epoch number exceeds op_epoch,
implying that the epoch system has advanced the global epoch and the node has been modified
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Fig. 3. BD+Tree insert and remove operations.

1 uint64 esys_regist(int tid , args ...) {

2 retry:

3 uint64 op_e = esys.get_epoch ();

4 esys.regist(op_e , tid);

5 uint64 cur_e = esys.get_epoch ();

6 if (op_e != cur_e) goto retry;

7 return op_e;

8 }

Listing 1. Write operation registration

by another thread in a later epoch, the writer must retry the registration process (Listing 2 lines

12–17). In our example, both node epoch and op_epoch are 4, as illustrated in Fig. 3 (1), and the

writer can directly insert A, B, and C into empty slots. It then flips the first three bits in bitmap𝑒 and
tracked_lines (making them green in the figure), and records the addresses of the updated cache

lines in a shared buffer accessible to the epoch system, thereby instructing it to persist those lines

(Listing 3 lines 2–15). Entries within the same epoch are updated in place (Fig. 3 (3); Listing 2 lines

35–39). As suggested by tracked_lines, the epoch system does not track those cache lines again.

Writes to the same cache line are combined in the cache, allowing the epoch system to persist them

with one persist instruction and to generate one write request to NVM.

In epoch 5, the node epoch number and bitmaps must be updated prior to a write operation:

the in-flight epoch becomes a valid epoch, and the active epoch becomes the in-flight epoch.

Tracked_lines is reset to 0, indicating that all entry cache lines are clean in the current epoch

(Listing 2 lines 19–30). As shown in Fig. 3 (4), the first and the third bits in bitmap𝑒−1 are set,

indicating that A
′
and C were inserted in the previous epoch. The modification of an entry from

earlier epochs is conducted out-of-place to preserve the old version for recovery: C is preserved in

its original position, and the new version C
′
is stored in the second slot. To ensure the visibility of

only the newest version, the bit in bitmap𝑒 that corresponds to C is cleared (Listing 3 lines 7–9).
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Note that while bitmap𝑒 denotes the visibility of entries throughout execution, the occupancy of

a slot is determined by the three bitmaps collectively. For instance, in Fig. 3 (7), only C
′
and D are

visible in the node, while A
′
and C have been marked as deleted. Nevertheless, the two slots are

still occupied by A
′
and C: should a crash occur during epoch 6, the node is expected to revert to

its state in epoch 4, when both A
′
and C were present (Fig. 3 (1)).

When the node reaches full capacity, as illustrated in Fig. 3 (7), inserting an entry triggers a node

split. The larger entries, including both visible entries and logically deleted entries, are relocated

to the new sibling node (Listing 3 lines 17–38). Importantly, this new node must be persisted

immediately, before removing migrated entries from the original node. The bitmaps in the two

nodes are updated to complete this procedure (Listing 3 lines 39–49).

In epoch 7, as the deletion of A
′
and C has been confirmed by the epoch system, their slots can

be repurposed by other operations.

Deletion code appears in Listing 4. An entry is considered deleted when the corresponding

bit in bitmap𝑒 is cleared (Listing 4 lines 30–32). Continuing our example, as shown in Fig. 3 (2),

removing B, an entry updated in the same epoch, is straightforward: by clearing the corresponding

bit, the slot occupied by B is made ready for reuse immediately. By contrast, entries from previous

epochs can only be logically deleted: the actual data is be preserved for recovery purposes. As an

example, in Fig. 3 (6), A
′
can only be logically deleted; its slot becomes available for reuse by B after

two epoch advances, as shown in Fig. 3 (8), at which point all updates from two epochs prior will

have been persisted by the epoch system.

A leaf node is deemed empty when there are no visible entries (bitmap𝑒 is zero); an empty leaf

node is considered reclaimable when it contains neither visible nor logically deleted entries—i.e.,

when all bitmaps are zero. In Fig. 3 (8), even though the second node appears empty from an active

thread’s perspective, it cannot be reclaimed, as D and E must be retained for possible post-crash

recovery. An empty node is marked as deleted and its reference is removed from its parent node,

but it is retained in the leaf linked list (Listing 4 lines 36–39). Memory reclamation is delegated to

a second background thread, which periodically scans the leaf linked list for reclaimable nodes;

further details appear in Section 3.6. Like many other B+ trees [15, 18, 26], BD+Tree never merges

nodes.

Lookup operations execute independently of the epoch system’s monitoring. A reader utilizes

bitmap𝑒 to identify valid KV pairs, ignoring those that reside in the node but are marked as deleted.

Code appears in Listing 5.

Range-query operations commence by finding the first leaf and then traversing the leaf linked

list to accumulate all KV pairs falling within the specific range. During this traversal, nodes that

are empty but yet not reclaimable are skipped.

3.4 Correctness
Upon a system crash in epoch 𝑒 , BD+Tree recovers to the state at the end of epoch 𝑒 − 2. The

recovered history is buffered durably linearizable as a result of three properties that hold throughout

execution:

(1) operations are linearizable;

(2) operations in epoch 𝑒 − 1 linearize before operations in epoch 𝑒;

(3) operations persist in an order consistent with the linearization order.

BD+Tree maintains property 1 by means of per-leaf locks. Each operation appears to occur

instantaneously when the associated bit in bitmap𝑒 is set or cleared. During crash-free execution,
operations appear to occur in a total order consistent with any ordering that threads are able to

observe. To maintain properties 2 and 3, BD+Tree avoids two incorrect scenarios:
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1 void insert(k_type k, v_type v, int tid) {

2 retry_register:

3 uint64 op_epoch = esys_regist(tid);

4 htm_begin ();

5 LeafNode* leaf = tree_traversal(k);

6 leaf ->lock();

7 htm_end ();

8 if (op_epoch < global_epoch) {

9 leaf ->unlock ();

10 goto retry_register;

11 }

12 if (leaf ->get_epoch () != op_epoch) {

13 if (leaf ->get_epoch () > op_epoch) {

14 /* do not directly update the node modified in a later epoch */

15 leaf ->unlock ();

16 goto retry_register;

17 }

18 /* initially update the node in a new epoch */

19 leaf ->tracked_lines = 0;

20 EpochBitmap new_eb;

21 new_eb.epoch = op_epoch;

22 if (leaf ->get_epoch () == op_epoch - 1) {

23 new_eb.bitmap𝑒−2 = leaf ->eb.bitmap𝑒−1;
24 new_eb.bitmap𝑒−1 = leaf ->bitmap𝑒 ;

25 } else if (epoch < op_epoch - 1) {

26 new_eb.bitmap𝑒−2 = leaf ->bitmap𝑒 ;

27 new_eb.bitmap𝑒−1 = leaf ->bitmap𝑒 ;

28 }

29 CAS(leaf ->get_eb (), new_eb);

30 add_to_persist(leaf , 0); // track the first (metadata) cacheline */

31 }

32 bool oop_upd = false;

33 if ((int pos = leaf ->find(k)) != -1) {

34 if (matched key was from the current epoch) { // update in place

35 leaf ->entries[pos].val = v;

36 leaf ->unlock ();

37 return;

38 } else {

39 oop_upd = true; // update existing KV in a new epoch out -of-place

40 }

41 }

42 leaf ->leaf_insert(k, v, oop_upd , pos , op_epoch);

43 leaf ->unlock ();

44 return;

45 }

Listing 2. Insertion

• Problem 1: store𝑒−1 overwrites store𝑒
When a write operation in the in-flight epoch 𝑒 − 1 (call it store𝑒−1) targets the same node as

store𝑒 in the active epoch 𝑒 , property 2 would be violated if store𝑒 completed prior to store𝑒 − 1,

and store𝑒−1 overwrote store𝑒 .
• Problem 2: store𝑒 becomes visible before store𝑒−1
This might happen even if store𝑒−1 and store𝑒 modify different nodes and store𝑒 completes before

store𝑒−1. A range query, for example, might see store𝑒 but not store𝑒−1.

Problem 1 is avoided by aborting a write operation when it attempts to modify a node that has

been updated in a later epoch. When the operation restarts, it will no longer belong to the prior
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1 void leaf_insert(k_type k, v_type v, bool oop_upd , int old_p , uint64 op_e) {

2 if (! is_full ()) {

3 int new_pos = find_empty_slot ();

4 leaf ->entries[new_pos] = (k, v);

5 leaf ->fingerprints[new_pos] = hash(k);

6 set_bit(bitmap𝑒 , new_pos); // mark as inserted

7 if (oop_upd) {

8 unset_bit(bitmap𝑒 , old_p); // delete old KV

9 }

10 int line_num = get_line_num(new_pos);

11 if (! tracked_lines.include(line_num)) { // only track untracked lines

12 add_to_persist(leaf , line_num);

13 set_bit(tracked_lines , line_num);

14 }

15 return;

16 } else { // leaf is full , split it

17 LeafNode* new_leaf = pnew();

18 Indexes to_move = get_indexes_of_half_largest_KVs ();

19 int moved_bitset = 0, new_bitmap = 0, to = 0;

20 for (int i : to_move) {

21 new_leaf.entries[to] = entries[i];

22 new_leaf.fingerprints[to] = fingerprints[i];

23 if (oop_upd && entries[old_p].key == k && (bitmap𝑒 & (1 << old_p))) {

24 old_p = i; // old KV is moved to new split node;

25 // record its position in new node for deletion

26 }

27 moved_bitset |= (1 << i);

28 new_bitmap |= (1 << to);

29 to++;

30 }

31 new_leaf ->bitmap𝑒 = bitmap𝑒 & new_bitmap;

32 new_leaf ->eb.bitmap𝑒−1 = eb.bitmap𝑒−1 & new_bitmap;

33 new_leaf ->eb.bitmap𝑒−2 = eb.bitmap𝑒−2 & new_bitmap;

34 new_leaf ->eb.epoch = op_e;

35 new_leaf ->sibling = sibling;

36 if (k >= split_key) {

37 new_leaf ->leaf_insert(k, v, oop_upd , old_p , op_e);

38 }

39 persist(new_leaf); // persist split node immediately

40 sibling = new_leaf;

41 bitmap𝑒 &= ~( moved_bitset); // clear moved KVs

42 EpochBitmap new_eb;

43 new_eb.epoch = op_e;

44 new_eb.bitmap𝑒−1 = bitmap𝑒−1 & ~( moved_bitset);

45 new_eb.bitmap𝑒−2 = bitmap𝑒−2 & ~( moved_bitset);

46 CAS(eb, new_eb);

47 if (k < split_key) {

48 leaf_insert(k, v, oop_upd , old_p , op_e);

49 }

50 /* update the inner tree */

51 }

52 }

Listing 3. Leaf insertion

epoch. Problem 2 is avoided by coordinating read and write operations: once store𝑒 secures a lock
on a node, it double-checks the global epoch number and aborts if it has changed. If a reader has

observed some store𝑒+1, store𝑒 will either abort (due to epoch check failure) or will already hold the
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1 void delete(k_type k, int tid) {

2 retry_register:

3 uint64 op_epoch = esys_regist(tid);

4 htm_begin ();

5 LeafNode* leaf = tree_traversal(k);

6 leaf ->lock();

7 htm_end ();

8 if (op_epoch < global_epoch) {

9 leaf ->unlock ();

10 goto retry_register;

11 }

12 if (leaf ->get_epoch () != op_epoch) {

13 if (leaf ->get_epoch () > op_epoch) {

14 leaf ->unlock ();

15 goto retry_register;

16 }

17 leaf ->tracked_lines = 0;

18 EpochBitmap new_eb;

19 new_eb.epoch = op_epoch;

20 if (leaf ->get_epoch () == op_epoch - 1) {

21 new_eb.bitmap𝑒−2 = leaf ->eb.bitmap𝑒−1;
22 new_eb.bitmap𝑒−1 = leaf ->bitmap𝑒 ;

23 } else if (epoch < op_epoch - 1) {

24 new_eb.bitmap𝑒−2 = leaf ->bitmap𝑒 ;

25 new_eb.bitmap𝑒−1 = leaf ->bitmap𝑒 ;

26 }

27 CAS(leaf ->get_eb (), new_eb);

28 add_to_persist(leaf , 0);

29 }

30 if ((int pos = leaf ->find(k)) != -1) {

31 unset_bit(bitmap𝑒 , pos); // mark the KV as deleted

32 }

33 if (leaf ->bitmap𝑒 ) { // leaf is non -empty

34 leaf ->unlock ();

35 return;

36 } else { // leaf is visibly empty , mark it as deleted

37 leaf ->deleted = true;

38 /* keep node in leaf layer; remove from inner tree */

39 }

40 }

Listing 4. Deletion

node lock. In the latter case, the reader will wait for the lock to be released, and is guaranteed to

observe store𝑒 .
Thus, property 2 is satisfied, as all stores in 𝑒 − 1 occur and are observed prior to stores in 𝑒 . The

epoch system, for its part, guarantees that updates in epoch 𝑒 −1 are persisted before those in epoch

𝑒 and that updates from the same epoch are persisted or discarded together, thereby maintaining

property 3.

3.5 Concurrency control
We leverage hardware transactional memory (HTM), mutex locks, and sequence locks (seqlocks)

[22] for concurrency control. HTM protects the tree traversal and lock acquisition, with fallback

to a global reader-writer lock in the (rare) event of HTM aborts. Mutex locks and seqlocks are

employed for inner nodes and leaf nodes, respectively.
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1 v_type lookup(k_type k) {

2 retry_lookup:

3 htm_begin ();

4 LeafNode* leaf = tree_traversal(k);

5 uint32 lock_val = leaf ->read_seqlock ();

6 htm_end ();

7 while (leaf ->locked ()) { // wait until writer completes its op

8 }

9 if ((int pos = leaf ->find(k)) != -1) {

10 v_type val = leaf ->entries[pos].val;

11 if (leaf ->read_seqlock () == lock_val) {

12 return val;

13 } else {

14 goto retry_lookup;

15 }

16 }

17 return NULL;

18 }

Listing 5. Lookup

A writer traverses the tree inside a transaction, acquiring locks on inner and leaf nodes during

this process. Similarly, a reader traverses the tree under the protection of HTM but does not acquire

locks. Instead, it checks the seqlock value in the leaf node before and after reading. The read is

retried if the seqlock value has changed, indicating that a writer has modified the leaf node during

the read.

3.6 Memory reclamation
As inner nodes are allocated in DRAM and reclaimed much as in other B+ trees, our discussion

focuses on memory reclamation for leaf nodes in NVM. Memory reclamation includes removing

redundant KV pairs and reclaiming empty leaf nodes.

A key may be paired with multiple values (“duplicates”) if it undergoes updates across multiple

epochs. For duplicates that are older than two epochs, only the most recent needs to be retained

for post-crash recovery. Suppose, for example, that A was inserted in epoch 5 and updated in

epochs 6, 7, 8, and 9. There would be five instances of A: 𝐴5, 𝐴6, 𝐴7, 𝐴8 and 𝐴9. Instances 𝐴5 and

𝐴6 are redundant and can be removed, as A will be restored to 𝐴7 after a crash in epoch 9. Our

implementation ensures that redundant KV duplicates are promptly removed and restricts each KV

pair to a maximum of three instances. Given that all KV instances are stored in the same leaf node,

when duplicating a KV pair we also logically remove the old KV pair by clearing the corresponding

bit in bitmap𝑒 . If the same KV pair is updated 2 epochs later, the space occupied by the old KV pair

can be repurposed for other operations because the removal is known to be valid.

As discussed in Sec. 3.3, despite appearing empty, a node cannot be reclaimed immediately if it

contains KV pairs from the previous two epochs. To identify reclaimable nodes, BD+Tree employs a

background thread that periodically scans the leaf layer. If the global epoch is 𝑒 , a node is considered

reclaimable if it is marked as deleted and (1) the node epoch is 𝑒 and all bitmaps are zero, (2) the

node epoch is 𝑒 − 1 and both bitmap𝑒 and bitmap𝑒−1 are zero, or (3) the node epoch is smaller than

𝑒 − 1 and bitmap𝑒 is zero.

4 Evaluation
We evaluate BD+Tree in comparison to state-of-the-art alternatives, focusing on operation through-

put, NVM traffic, and post-crash recovery time.
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Fig. 4. Key distributions of synthetic workloads.

System configuration: all experiments were conducted on a Linux 5.15.0 (Ubuntu) server with

two Intel Xeon Gold 6330 CPUs, with 28 physical cores (56 hyperthreads) in each socket. Each

socket has a total of 1.3 MiB L1 D-cache, 0.9 MiB L1 I-cache, 35 MiB L2 cache, and 42 MiB L3 cache.

L1 and L2 cache banks are per-core private; the L3 cache is shared by all cores on a given socket.

Each socket has 8 channels of 16GiB DRAM and 4 channels of 128GiB second-generation Intel

Optane persistent memory, for a two-socket total of 256 GiB of DRAM and 1 TiB of NVM. NVM is

configured in direct access (DAX) mode using the ext4 file system.

Tested data structures: We benchmark BD+Tree against three persistent B+ trees: Fast&Fair

(fully persisted, DL), LB+Tree (hybrid, DL), and Montage-B+Tree (hybrid, BDL). The Fast&Fair tree

and LB+Tree are described in Section 2; we use the original source code without modifications.

The Montage-B+Tree is constructed using the Montage framework [37]. In contrast to the other

three trees, which store KV pairs in persistent leaf nodes, Montage places the entire tree in DRAM.

KV pairs are allocated and persisted in NVM, with pointers to those pairs appearing in volatile

leaf nodes. The Montage-B+Tree employs the same concurrency control as BD+Tree (Sec. 3.5).

Fast&Fair, BD+Tree, and Montage-B+Tree utilize a 512-byte node size (with testing on BD+Tree

under varying node sizes revealing negligible performance variations), while LB+Tree employs

a 256-byte node size as it demonstrates the optimal performance across diverse workloads. Key

and value sizes in our evaluation are set to 8 bytes each. This choice accommodates the design

of LB+Tree, which achieves significant benefits by collocating multiple KV pairs and leaf node

metadata in the same cache line when possible. All trees use the Ralloc allocator for NVM [3].

4.1 Synthetic workload evaluation
We employ synthetic workloads to examine the performance, scalability, and space efficiency

of BD+Tree, adjusting system parameters (epoch length, reclamation frequency), workload key

distribution, and read-write ratio to determine their impact on the behavior of buffered persistence.

Operations sample our key space using one of three distributions: Uniform, Zipfian, or “Latest.”

These distributions are representative of typical key-value database scenarios [2, 4, 39]. The Zipfian

generator scatters hot keys throughout the key space. In contrast, the "Latest" generator [7] is

based on a skewed Zipfian distribution favoring the items accessed most recently in the past. These

distributions are depicted graphically in Fig.4. The concentration of hot keys in Zipfian workloads

is regulated by the constant 𝛼 , where a higher value of 𝛼 indicates a more skewed distribution. For

instance, with 𝛼=1.01, 60% of accesses are focused on 40% of the key space, whereas with 𝛼=1.05,

the same proportion of accesses is concentrated on 10% of the key space.
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Our experiments employ five synthetic workloads, shown in Table 2. U, L and Z indicate Uniform,

Latest and Zipfian workloads, respectively. U1 is smaller than U2; Z1 is less skewed than Z2.

Numbers of worker threads are indicated for each experiment. Each thread runs operations in a

tight loop for 10 seconds, concurrent with all other threads. Each test is repeated three times, after

which we report the average numbers of operations per second or NVM writes per second.

4.1.1 Comparative throughput of trees. Our initial experiment measures the throughput of our

four different trees on (a) a single thread, (b) 24 threads within a single socket, and (b) 48 threads

across two sockets. The epoch length of BD+Tree is set to 50ms for 1 and 24 threads, and 500ms

for 48 threads. As recommended by the authors [37], Montage-B+Tree’s epoch length is fixed at

50ms. (Changing the epoch length in Montage-B+Tree on 48 threads yields negligible performance

variation.) Each tree is initially populated with half the possible keys, selected uniformly at random

(500,000 keys for workload U1 and 5 million keys for workloads U2, L1, Z1, and Z2). As tree prefilling

is performed using each tree’s own insertion operations, BD+Tree may start with a lower cache

miss rate due to the minimal use of cache-invalidating write-back instructions. Operations may be

either reads (lookups) or writes (insertions or deletions, each with probability 0.5).

Results appear in Fig. 5. BD+Tree exhibits superior performance in workloads with small working

sets (U1), or good temporal locality (L1, Z1, Z2). The performance gains are particularly significant

when the workloads are smaller (relative to the cache size) and more skewed. BD+Tree performs

particularly well for workload U1 because its working set fits within the L3 cache, allowing loads

and stores to NVM within the same epoch to be served directly by the cache. It performs better for

Z2 than Z1, as Z2 demonstrates stronger temporal locality.

In the most challenging scenario—uniform access distribution and a working set that exceeds

cache capacity (U2)—BD+Tree’s performance edge is reduced or even eliminated for two primary

reasons. First, random accesses to leaf nodes in a large tree induce a large number of cache

misses, leading to cache replacement that is driven not by persistence instructions but by simple

capacity limits. Thus, BDL yields marginal performance improvement. Second, BDL incurs extra

overhead to keep track of dirty data and to maintain KV duplicates (for rollback to a previous epoch

boundary on recovery). The background persisting thread may also interfere with worker threads

by contending for memory resources. The overhead and interference are closely related to epoch

length (Section 4.1.2). The varying performance behavior of BD+Tree in Fig. 5 indicates that it

tends to deliver better performance with larger cache sizes, a finding confirmed by experiments

presented in Section 4.2.1.

We attribute the disappointing performance of Fast&Fair to its use of a fully persistent tree (both

internal and external nodes) and to its decision to sort the keys in every node: sorting often requires

that the entire node (comprising several cache lines) be flushed to NVM, rather than just the line(s)

containing modified KV pair(s). Montage-B+Tree suffers from higher access latency and memory

management overhead due to extra indirection—i.e., to its use of volatile leaves containing pointers

workload distribution key space size

U1 uniform 1 million

U2 uniform 10 million

L1 latest (𝛼=0.99) 10 million

Z1 Zipfian (𝛼=1.01) 10 million

Z2 Zipfian (𝛼=1.05) 10 million

Table 2. Synthetic workloads
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Fig. 5. Throughput of persistent B+ trees with write-heavy (top) or read-heavy (bottom) workloads, with
1 (left), 24 (middle), or 48 (right) threads.

to KV pairs in NVM. Each KV pair in Montage-B+Tree occupies a separately allocated block of

NVM; in BD+Tree and LB+Tree, NVM allocation and deallocation occur only when (many-key)

leaf nodes are created or destroyed. The performance difference between Montage-B+Tree and

BD+Tree diminishes when worker threads are distributed across two sockets, as Montage-B+Tree’s

transient leaves render it less sensitive to NUMA effects [12].

4.1.2 Epoch length. While BDL reduces persistence overhead and NVM traffic by amortizing

persistence overhead across large operation batches and optimizing cache reuse, extending epoch

length does not invariably yield improved performance. Epoch length might be expected to impact

performance directly in two ways:

(1) Cache misses: The background thread, running at epoch boundaries, may write data back to

memory using instructions (clflushopt or, on some machines, clwb) that evict the data from the

cache, inducing subsequent misses in any worker thread that accesses the same data. A longer

epoch does not necessarily result in fewer cache misses, however: by increasing both the working

set of an epoch and the number of copies that must be retained from earlier epochs (some of

which share cache lines with active data), it may induce more capacity misses. (We explore the

issue of retained copies further in Section 4.1.7.)

(2) Memory interference: In a multithreaded environment, an NVM writer thread may negatively

impact the read and write performance of other threads due to contention for shared memory

resources, including the Read/Write Pending Queues (RPQ/WPQ) in integrated Memory Con-

trollers (iMC) and the XPBuffers in NVM DIMMs, particularly under high contention [8, 41].

The interference between the background persisting thread and worker threads is influenced by

the frequency of persistence, the data volume written to NVM, and (again) the number of data

copies retained from earlier epochs, all of which depend on epoch length.

We assess sensitivity to epoch length using workload U2, as it consistently displays the lowest

throughput. Experiments employ the same configuration as in Sec 4.1, tested with 50% insert
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operations and 50% delete operations, with epochs ranging from 1 𝜇s to 10 seconds. BD+Tree

requires ~148 MiB of NVM to store leaf nodes (excluding KV duplicates) and ~9 MiB of DRAM to

store inner nodes. Results appear in Fig. 6.

The impact of epoch length on performance depends heavily on the cache size and thread count.

With a single thread, performance remains stable. With 48 threads, however, performance improves

with longer epochs. This behavior is mainly due to cache effects: in the single-thread case, misses

are mainly due to cache replacement, and epoch length is largely irrelevant. With 48 threads,

however, spread across two sockets, we have a combined 154 MiB of cache—enough to hold a

significant portion of the tree. Misses are then largely due to explicit flushes, and longer epochs

allow these to occur less often.

With 24 threads on a single socket, performance degrades by about 10% as the epoch length

increases from 1 𝜇s to 1ms, primarily due to eager eviction of now-cold data in very short epochs.

At this point, however, performance begins to improve, as longer epochs reduce contention for

cache and memory resources between workers and the background persisting thread: throughput

at an epoch length of 10 s is roughly 13% higher than at 1ms.

Our results suggest that when ample cache resources are available (relative to the working set

size), extending the epoch length can improve performance by maximizing cache reuse. When

workloads cannot benefit from cache reuse, if memory contention is low, shorter epochs can reduce

post-crash data loss without hurting performance. Under high memory contention, longer epochs

are preferred to prevent the background writer from hindering the progress of foreground workers.

Results elsewhere in this paper use an epoch length of 50ms when running on a single socket and

500ms when running across two sockets.

4.1.3 Memory reclamation frequency. When the worker thread and memory reclaimer run on the

same socket, our experiments demonstrate that memory reclamation frequency has a negligible

impact on performance, regardless of workload characteristics and access patterns: contention

between between the background memory reclaimer and worker threads is low, and leaf nodes

become empty—and thus reclaimable—infrequently. However, when the memory reclamation

thread runs on a different socket, a high frequency leads to significant performance loss, as the

metadata cache lines of all leaf nodes are moved to shared mode in the cache, forcing workers

to re-acquire exclusive ownership before making subsequent updates. We mitigate this issue by

binding the memory reclamation thread to the same socket as the worker threads. When threads

operate across multiple sockets, we employ a longer inter-reclamation interval (500ms, rather

than 50ms). Since empty slots resulting from deletions are often quickly refilled by insertions, the
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majority of nodes remain occupied [18]. Setting the reclamation interval at 500ms does not lead to

a noticeable increase in memory usage for any of our workloads.

4.1.4 Scalability. Given the results of epoch length and memory reclamation frequency analysis,

we conducted experiments to evaluate the scalability of the four persistent trees. We set the read-

write ratio at 8:2, reflecting the prevalence of read requests in real-world workloads. Results appear

in Fig. 7. Performance decline was observed for all trees when accesses span across sockets. Notably,

while BD+Tree is designed to provide a significant performance advantage in write-intensive

workloads (by batching writes-back and increasing cache reuse), it also performs extremely well in

read-intensive workloads.

4.1.5 Range queries. When searching for a range keys, BD+Tree performs better for large ranges

than for small ones. Details appear in Fig. 8. For ranges smaller than a single node, BD+Tree must

sort the pairs within the node. If a query spans nodes, it must still sort the starting and ending nodes,

but the middle ones avoid this overhead. Fast&Fair shows superior performance for small-sized

queries due to its sorted leaf nodes. As the query size increases, however, the advantage diminishes,

and the higher traversal overhead in NVM-based inner nodes becomes more pronounced. LB+Tree

outperforms BD+Tree for small-sized queries, as BD+Tree’s larger node size leads to higher NVM

read and sorting overheads. Montage-B+Tree exhibits the lowest performance due to the necessity

of following pointers in leaf nodes to retrieve each KV pair.

4.1.6 Overhead in BD+Tree. BD+Tree introduces two types of overhead: bookkeeping and com-

putation. Bookkeeping overhead, from tracking dirty data within an epoch, is negligible as it is

offloaded to the background thread. Computation overhead, from retrieving and updating epoch-

related information within leaf nodes, also incurs minimal performance impact. This is because

metadata cache lines, which contain epoch information, need to be loaded into the cache before
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Fig. 9. NVM traffic per million operations (in MiB), with 24 active threads (r:w=2:8).

subsequent operations. Therefore, reads and writes of epoch information are typically served by

the cache. Additionally, epoch-related updates occur only once every few milliseconds.

4.1.7 NVM traffic and space efficiency. We compared the NVM traffic (reads and writes) and

space efficiency of the three hybrid and unsorted trees: LB+Tree, Montage-B+Tree, and BD+Tree.

Fast&Fair was excluded from this comparison due to its fully persistent and sorted nature.

We used Intel’s PCM tool [16] to measure NVM traffic, normalizing to MiB per million operations

to account for varying throughput among trees. PCM counts the number of requests (in cache lines)

directed to the iMC. For a small workload (U1), as shown in Fig. 9, BD+Tree reduces both reads

and writes to NVM by ~90% relative to LB+Tree. For larger workloads with good temporal locality

(L1, Z1, Z2), BD+Tree reduces NVM writes by 30–44% and reads by 6–24%. In the less favorable

situation of uniform access to a large working set (U2), BD+Tree incurs 12% more NVM writes and

9% more NVM reads due to KV duplicates (for keys updated in the two most recent epochs) and to

the inability to combine writes in cache.

To quantify the space overhead of each tree, we measured the amount of DRAM and NVM used

to store tree nodes. Results appear in Table 3. Montage-B+Tree requires 10× more DRAM, since

the entire tree (including leaves) resides in DRAM. It utilizes less NVM because it persists only

KV pairs. LB+Tree and BD+Tree, by contrast, store data at the granularity of leaf nodes, which

include metadata and empty slots not occupied by any KV pairs. BD+Tree consumes less DRAM

than LB+Tree due to its larger leaf node size; NVM consumption is almost the same.

One could expect space consumption in BD+Tree to depend on epoch length: with long epochs,

a larger number of keys will be updated in each epoch, and must be retained until two epoch

boundaries have passed. We model this using a uniform access pattern as it serves as an upper

bound. Consider a tree whose key values are drawn from 1..𝑁 . Suppose we initially fill the tree

with 𝑁 /2 distinct keys and then perform a long sequence of update operations (50:50 inserts and

LB+Tree Montage-B+Tree BD+Tree

DRAM 16.32 172.09 9.11

NVM 168.63 96.27 175.80

Table 3. DRAM and NVM usage (in MiB) of persistent trees under workload L1.
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removes), with a uniformly random choice of key for each. Suppose further that𝑀 operations can

be performed per epoch.

The probability that a specific key is accessed by a given write operation is 1/𝑁 . The probability

that the key is not accessed for an entire epoch is thus ((𝑁 − 1)/𝑁 )𝑀, and the probability that the

key is accessed at least once in the epoch is 1 − ((𝑁 − 1)/𝑁 )𝑀. Since a key instance is created

only on insertion, the probability of generating a key instance in the key’s final operation of the

epoch (if any) is [1 − ((𝑁 − 1)/𝑁 )𝑀 ]/2. This calculation holds for the current epoch 𝑒 and for the

previous epoch 𝑒 − 1. The probability of retaining a key instance from epoch 𝑒 − 2 or earlier should

converge to 1/2. Consequently, for a given key, the number of instances maintained by BD+Tree

can be expressed as

< e-1︷︸︸︷
1

2
+

𝑒−1︷              ︸︸              ︷
1

2

(
1 −

(
𝑁−1
𝑁

)𝑀 )
+

𝑒︷              ︸︸              ︷
1

2

(
1 −

(
𝑁−1
𝑁

)𝑀 )
=
3

2

−
(
𝑁 − 1

𝑁

)𝑀
With a space of N possible keys, the total number of key instances maintained by BD+Tree can be

expected to be

𝑁 ·
(
3

2

−
(
𝑁 − 1

𝑁

)𝑀 )
So long as𝑀 is small relative to 𝑁 , [(𝑁 −1)/𝑁 ]𝑀 will be close to 1, and we will have only slightly

more than 𝑁 /2 total key instances. (If 𝑀 is 𝑁 /10, for example, we will have about 0.6 instances

per key.) To validate our model, we executed workload U2 with a single thread for 10 seconds.

Using a single thread ensures a constant throughput (operations per second) across different epoch

lengths, allowing us to adjust the total number of operations,𝑀 , within an epoch by altering the

epoch length. Experimental results matched the model very closely. The number of key instances

remained very close to 𝑁 /2 for all epoch lengths below a tenth of a second, indicating a negligible

increase in NVM space consumption.

4.2 Real-world workload evaluation
We use trace data from Memcached (Table 1) to further investigate the performance and NVM

read/write behavior of the four persistent B+ trees under real-world workloads. With each workload

comprising 100 million operations, working sets are as shown in the last column of the table. Results

appear in Fig. 10. Relative to LB+Tree, BD+Tree achieves a 1.1–1.4× speedup under the read-heavy

workload (t1) and a 1.5–2.4× speedup when the working set is small due to high temporal locality

(t2). Notably, despite displaying inferior performance in the large synthetic uniform workload (U2),

BD+Tree is comparable to its competitors (with fewer than 40 threads) or even better (with more

than 40 threads) in the real-world uniform workload with its markedly larger working set (t3).

In contrast to our synthetic microbenchmarks, real-world workloads often exhibit high temporal

locality even when all keys are accessed equally often on a large time scale.

In another contrast to the synthetic case, Montage-B+Tree performs comparably to LB+Tree and

BD+Tree on the real-world t1 and t3 workloads. We attribute this to the larger real-world working

sets. With synthetic workloads, LB+Tree and BD+Tree can retain part of the leaf layer in the cache,

thereby reducing NVM accesses. In contrast, Montage-B+Tree fills the cache with volatile leaf

nodes, leading to more frequent and costly NVM accesses. With larger workloads, LB+Tree and

BD+Tree experience a higher NVM access penalty—first, because a larger working set results in

lower cache reuse; second, because LB+Tree and BD+Tree read both metadata and KV cache lines

from NVM, whereas Montage-B+Tree stores the metadata cache line in DRAM and only loads the
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Fig. 11. NVM traffic generated per million operations (in MiB). with 24 active threads.

KV pair from NVM, effectively halving its NVM accesses. Notably, Montage-B+Tree achieves this

saving at the cost of 10× more DRAM usage.

As shown in Fig. 11, BD+Tree reduces NVM traffic by 99% on workload t2 as a result of better

cache reuse. With the large uniform workload t3, it increases NVM write traffic by ~10%, while

only expanding space usage by ~1%.

4.2.1 Performance with very large caches. As cache sizes continue to grow, it becomes increasingly

important to avoid self-eviction in persistent applications, to fully utilize cache resources. BD+Tree

can be expected to deliver higher performance with larger caches due to better cache reuse, even

for uniformly distributed workloads, as long as the working set is not significantly larger than the

cache size. To confirm this expectation, we conducted experiments on a server with an AMD EPYC

7773X processor featuring 768 MiB of L3 cache (8 chiplets, 96 MiB each). We compared BD+Tree,

LB+Tree, and Montage-B+Tree using the large uniform workloads U2 and t3, where BD+Tree loses

its advantage over prior art on the Intel Server due to its smaller cache size (2 sockets, 42 MiB

each). A single thread was used due to AMD’s lack of HTM support. As the AMD server does not

support real NVM, our results underestimate the advantages of BD+Tree due to the lower cache

miss penalty of DRAM accesses. Even so, BD+Tree achieved speedups of 1.55× and 1.45× compared

to LB+Tree and Montage-B+Tree, respectively, under U2 (20% reads, 80% writes), and 1.31× and

1.56× when U2 is read-heavy (80% reads, 20% writes). Furthermore, BD+Tree outperforms LB+Tree

and Montage-B+Tree by 1.63× and 1.13×, respectively, under workload t3. The results underscore
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the importance of effectively utilizing cache resources, and highlight the performance potential of

BD+Tree.

4.3 Recovery time
Fast&Fair achieves instant post-crash recovery due to its full persistence. BD+Tree and LB+Tree

reconstruct the internal tree from the persistent (linked) leaf layer. Montage-B+Tree, however,

stores the entire tree in DRAM and persists only KV pairs. Consequently, the recovery process

needs to scan the entire heap to gather those KV pairs, sorting them and reconstructing both the

internal tree and the leaves. To recover a B+ tree containing 10 million KV pairs, LB+Tree and

BD+Tree take ~200 𝜇s, while Montage-B+Tree needs more than 1.4ms.

5 Conclusions
We have presented BD+Tree, a buffered durably linearizable B+ tree that attains better performance

and reduced NVM wear-out, relative to prior persistent trees, via relaxed persistence. Relaxation

amortizes persistence overhead over large batches of operations, and enhances cache reuse to

improve throughput and reduce the volume of NVM writes. Our evaluation demonstrates that for

workloads with small working set or with good temporal locality—common traits in real-world

scenarios—BD+Tree can deliver a performance improvement ranging from 1.1× to 2.4× and a

reduction in NVM writes of up to 99% compared to state-of-the-art hybrid persistent B+ trees. Our

results highlight the critical role of cache reuse in persistent memory programming. As index sizes

for real-world data repositories continue to exceed the capacity of even the largest on-chip caches,

fully capitalizing on this resource will be imperative for both performance and NVM endurance.
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