

A Framework for Political Portmanteau Decomposition

Nabil Hossain nhossain@cs.rochester.edu

Minh Tran

Henry Kautz

Dept. Computer Science University of Rochester, NY

Political Portmanteau

• Portmanteau

- words formed by combining sounds and meanings of two words
 - brunch = breakfast + lunch motel = motor + hotel

Political Portmanteau

• Portmanteau

- words formed by combining sounds and meanings of two words
 - brunch = breakfast + lunch motel = motor + hotel
- Political portmanteau (PP)
 - portmanteau in which at least one word refers to political entity
 - libtard = liberal + retard
 repugnican = repugnant + republican

Political Portmanteau

• Portmanteau

- words formed by combining sounds and meanings of two words
 - brunch = breakfast + lunch motel = motor + hotel
- Political portmanteau (PP)
 - portmanteau in which at least one word refers to political entity
 - libtard = liberal + retard
 - offensive; political framing
 - creative, humorous, slang, sticky
 - can be used in hate speech

repugnican = **repugn**ant + republ**ican**

Contributions

- Framework for identifying political portmanteau from the web
- Algorithm for PP detection and decomposition into root words
- First shared dataset of PP

Method

- Extract words from Reddit news comments
- Apply slang detection algorithm
- Classify the detected words into PP vs not-PP

Hossain, Nabil, Thanh Thuy Trang Tran, and Henry Kautz. "Discovering Political Slang in Readers' Comments." In ICWSM 2018.

Method

- Extract words from Reddit news comments
- Apply slang detection algorithm
- Classify the detected words into PP vs not-PP
- Decompose detected PP into root words:

Method

- Extract words from Reddit news comments
- Apply slang detection algorithm
- Classify the detected words into PP vs not-PP
- Decompose detected PP into root words:
 - $E + C \rightarrow PP$ or $C + E \rightarrow PP$

Hossain, Nabil, Thanh Thuy Trang Tran, and Henry Kautz. "Discovering Political Slang in Readers' Comments." In ICWSM 2018.

Model Details

- β distribution Model no contextual features
 - Edit distances, word length, usage frequency
 - capture sound blending and word popularity
- XGBoost uses pre-trained GloVe word vector features from comments
 - also uses β distribution model features

Results

- β distribution Model no contextual features
 - Edit distances, word length, usage frequency
 - capture sound blending and word popularity
- XGBoost uses pre-trained GloVe word vector features from comments
 - also uses β distribution model features

Model	Top1	Top3	Top5	Top10
Random	47.48	57.75	62.57	67.61
Beta Model (no context)	62.17	72.43	75.45	79.07
XGBoost (with context)	76.23	86.72	90.34	93.36

PP Decomposition Accuracy

Results

- β distribution Model no contextual features
 - Edit distances, word length, usage frequency
 - capture sound blending and word popularity
- XGBoost uses pre-trained GloVe word vector features from comments
 - also uses β distribution model features

Model	Top1	Top3	Top5	Top10
Random	47.48	57.75	62.57	67.61
Beta Model (no context)	62.17	72.43	75.45	79.07
XGBoost (with context)	76.23	86.72	90.34	93.36

PP Decomposition Accuracy

Model	Accuracy
Chance (always predict "not PP")	66.2
Bi-LSTM	69.5
Bi-LSTM + GloVe	75.1
BERT	78.8
XGBoost model	83.1

PP Detection Accuracy

Results

- β distribution Model no contextual features
 - Edit distances, word length, usage frequency
 - capture sound blending and word popularity
- XGBoost uses pre-trained GloVe word vector features from comments
 - also uses β distribution model features

Model	Top1	Top3	Top5	Top10
Random	47.48	57.75	62.57	67.61
Beta Model (no context)	62.17	72.43	75.45	79.07
XGBoost (with context)	76.23	86.72	90.34	93.36

PP Decomposition Accuracy

Questions: nhossain@cs.rochester.edu

Website: https://cs.rochester.edu/u/nhossain

Model	Accuracy
Chance (always predict "not PP")	66.2
Bi-LSTM	69.5
Bi-LSTM + GloVe	75.1
BERT	78.8
XGBoost model	83.1

PP Detection Accuracy