
Refactoring the FreeBSD Kernel with Checked C
Junhan Duan,∗ Yudi Yang,∗ Jie Zhou, and John Criswell

Department of Computer Science
University of Rochester

Abstract—Most modern operating system kernels are written
in C, making them vulnerable to buffer overflow and buffer
over-read attacks. Microsoft has developed an extension to the
C language named Checked C which provides new source
language constructs that allow the compiler to prevent NULL
pointer dereferences and spatial memory safety errors through
static analysis and run-time check insertion. We evaluate the use
of Checked C on operating system kernel code by refactoring
parts of the FreeBSD kernel to use Checked C extensions. We
describe our experience refactoring the code that implements
system calls and UDP and IP networking. We then evaluate the
refactoring effort and the performance of the refactored kernel.
It took two undergraduate students approximately three months
to refactor the system calls, the network packet (mbuf) utility
routines, and parts of the IP and UDP processing code. Our
experiments show that using Checked C incurred no performance
or code size overheads.

Index Terms—memory safety, safe C, FreeBSD

I. INTRODUCTION

Most modern operating system (OS) kernels, such as
Linux [14] and FreeBSD [39], are implemented in C. However,
due to C’s lack of memory safety and type safety, OS kernels
written in C can have exploitable memory safety errors. These
memory safety errors may lead to the kernel having denial of
service (DoS) [3], [4], [6], [8], privilege escalation [4], [8], and
arbitrary code execution [6], [7] vulnerabilities. Memory safety
errors in OS kernels are extremely dangerous as kernels form
the foundation of the entire software stack; successful exploita-
tion of kernel memory safety errors can lead to memory cor-
ruption and information disclosure [16]. Such attacks can even
bypass defenses such as Data Execution Prevention (DEP) [2]
and Address Space Layout Randomization (ASLR) [19], [41].

To mitigate these vulnerabilities, one could rewrite the
OS kernel in a safe language; examples include Singular-
ity [30] (Sing# [26]), Mirage [38] (OCaml), Redox [24] and
Tock [36] (Rust), and Biscuit [23] (Go). However, rewriting
the OS kernel requires significant programmer effort. Another
approach is to use automatic compiler transformations to
enforce memory safety [21], [22] or Control Flow Integrity
(CFI) [9]. Memory safety transformations on kernel code
have high overhead (some kernel latency increase by as much
as 35× [21]) while CFI approaches [20], [27], [29] fail to
mitigate non-control data attacks [17].

Checked C [25], [44] is a new safe C dialect from Microsoft
that extends the C language with new pointer types for which
the compiler automatically performs NULL pointer checks and
array bounds checks; the compiler either proves that use of the

∗
Junhan Duan and Yudi Yang are co-primary authors.

pointer is safe at compile time or inserts run-time checks to
ensure safety at run-time. Checked C has low performance
overhead (only 8.6% on selected benchmarks [25]), and its
spatial safety checks mitigate both control-data [43], [48] and
non-control data [17] attacks.

In this paper, we investigate the use of Checked C in
refactoring parts of an OS kernel to be spatially memory
safe. Specifically, we quantify the performance and code size
overheads of using Checked C on OS kernel code and identify
challenges and solutions to using Checked C on OS kernel
code. We chose FreeBSD 12 stable to harden with Checked C
as FreeBSD uses Clang and LLVM [35] as its default compiler;
Checked C is based on Clang and LLVM [25]. Since there are
millions of lines of code inside the FreeBSD kernel, we refac-
tored kernel components that we think are part of the kernel’s
attack surface. Specifically, we refactored code that copies
data between application memory and kernel memory i.e.,
code using the copyin() and copyout() functions [5],
as such code, if incorrect, would allow applications to read
or corrupt the OS kernel’s memory. We also refactored code
in the TCP/IP stack as the TCP/IP stack processes data from
untrusted networks. Specifically, we modified the mbuf utility
routines [46] which manipulate packet headers and parts of the
UDP and IP processing code.

The rest of this paper is organized as follows: Section II
provides background on Checked C. Section III describes the
threat model. Section IV discusses how we refactored the
FreeBSD kernel to use Checked C features. Section V dis-
cusses our refactoring efforts. Section VI presents the results of
our evaluation on the refactored FreeBSD kernel. Section VII
discusses related work, and Section VIII concludes.

II. BACKGROUND ON CHECKED C

Checked C [25], [44] is a new safe C dialect. Checked C’s
design distinguishes itself from previous safe-C works [18],
[32], [34] in that it enables programmers to easily convert
existing C code into safe Checked C code incrementally, and it
maintains high backward compatibility. Currently, Checked C
provides no temporal memory safety protections, so our work
does not discuss temporal memory safety. In this section,
we briefly introduce Checked C’s key features: new types of
pointers (Section II-A), checked regions (Section II-B), and
bounds-safe interfaces (Section II-C).

A. New Pointer Types

Checked C extends C with three new types of pointers
for spatial memory safety: ptr<T>, array_ptr<T>, and

int val = 10;
char s[10] = "hello";
ptr<int> p1 = &val;
array_ptr<T> p2 : count(sizeof(s)) = s;

Listing 1. Checked Pointer Declaration

nt_array_ptr<T>. ptr<T> pointers are used to point
to singleton objects and disallow pointer arithmetic. Listing 1
shows a simple example of defining a ptr<T> pointer.
array_ptr<T> pointers are for arrays and thus allow
pointer arithmetic. When initialized, it must be associated
with a bounds expression. Listing 1 shows an example of
an array_ptr<T> to an array of characters. The bounds
expression count(sizeof(s)) indicates the length of the
array. The array length can either be a constant or an ex-
pression. The bounds expression enables the compiler to do
static compile-time bounds checking and to insert dynamic
runtime checks when it cannot determine at compile-time if a
pointer dereference is safe. Note that although the bounds in-
formation is semantically coupled with an array_ptr<T>,
Checked C’s implementation avoids real fat pointer represen-
tation (such as what Cyclone [32] does) to maintain back-
ward compatibility. nt_array_ptr<T> is a special case of
array_ptr<T> with the constraint that it can only point to
NULL-terminated arrays. Besides bounds checking, Checked C
also does NULL pointer checking for pointer dereference. In
our work on the FreeBSD kernel, we primarily use ptr<T>
and array_ptr<T>.

Checked C uses strict type checking: it disallows direct as-
signment between checked and unchecked pointers [25]; in ad-
dition, checked pointers with different bounds expressions can-
not be assigned to each other because Checked C treats them as
pointers of different types. When such assignment is necessary,
Checked C provides a dynamic_bounds_cast<T>()
operator to use. A dynamic bounds cast is an operation
which compares the bounds information before and after the
cast and determines whether the assignment is legal: the
source pointer’s bounds must be equal or larger than the
destination pointer. Listing 2 shows a simple example of
dynamic_bounds_cast<T>().

B. Checked Regions

Programmers can write code that uses both the new checked
pointers and legacy unchecked pointers. This enables easy
incremental conversion of legacy code. However, unchecked
pointers can break the memory safety benefit ensured by
checked pointers in code blocks where checked and unchecked
pointers are mixed. To guarantee spatial memory safety,
programmers can annotate a block of code (a source file,
a function, or even a single statement) with the Checked
keyword [25]. In a checked region, all pointers must be
checked pointers, and code in checked regions cannot call
variadic functions or functions that have not been previously
declared. Ruef et al. [44] prove that checked regions cannot
induce spatial memory safety violations. Note that checked

array_ptr<char> s : count(7) = "abcdef";
array_ptr<char> s1 : count(5) =
dynamic_bounds_cast<array_ptr<char>>(s, count(5));

Listing 2. Checked C Bounds Casts

pointers can still be used in unchecked regions, and spatial
memory safety checks are performed on those pointers.

C. Bounds Safe Interface

To achieve better interaction between checked and
unchecked regions, Checked C provides Bounds-safe inter-
faces [25]. Bounds-safe interfaces allow the compiler to assign
bounds expressions to a function’s unchecked pointer argu-
ments. Such interfaces serve two purposes. First, a bounds-
safe interface on a function prototype allows code to pass a
checked pointer to a function that takes unchecked pointers
as input. In this case, the compiler performs a static bounds
check (similar to assignment between checked pointers) on
the checked pointer when the function is called. This allows
unmodified legacy code to take checked pointers as input.
Listing 3 shows an example. Second, a bounds-safe interface
allows legacy code to pass an unchecked pointer to a function
that takes checked pointers as input. In this case, the compiler
will create a checked pointer within the body of the function
that points to the same memory as the unchecked pointer
that is passed into the function; the bounds of the checked
pointer is specified by the bounds-safe interface. This ensures
that the checked code within the function does not cause a
spatial memory safety error when using the pointer passed
from unmodified legacy code.

III. THREAT MODEL

Our threat model assumes that the OS kernel is benign but
that it may have exploitable spatial memory safety errors such
as buffer overflows [42] and buffer overreads [47]. We assume
that attackers may be legitimate users on the system that can
write programs that invoke system calls or remote entities
that can send arbitrary packets to the system over an IPv4 or
IPv6 TCP/IP network. While the OS kernel could also have
exploitable temporal memory safety errors [10], we exclude
these from our threat model.

IV. IMPLEMENTATION

Since we started this project in November 2019, we used
version 96e4565 of the Checked C compiler 1 which was, at
that time, the latest version of Checked C. The compiler can
compile the original FreeBSD 12 kernel.

We refactored two components of the FreeBSD kernel.
First, we modified some system call code that copies data
between user-space memory and kernel-space memory using
copyin(), copyout() and copyinstr() [5]. If system
call code passes a length argument that is too large to these
functions, an application using the system call may be able to

1https://github.com/microsoft/checkedc-clang

https://github.com/microsoft/checkedc-clang

itype_for_any(T) void* memcpy(
void* dest : itype(array_ptr<T>) byte_count(len),
void* src : itype(array_ptr<T>) byte_count(len),
size_t len) : itype(array_ptr<T>) byte_count(len);

void foo(void) {
int len_a = 5;
int len_b = 4;
array_ptr<char> a : count(len_a) =

malloc<array_ptr<char>>(len_a);
array_ptr<char> b : count(len_b) =

malloc<array_ptr<char>>(len_b);
memcpy<array_ptr<char>>(b, a, len_b);

}

Listing 3. Bounds-Safe Interface Causing Compilation Error

void foo(void){
int len_a = 5;
int len_b = 4;
array_ptr<char> a : count(len_a) =

malloc<array_ptr<char>>(len_a);
array_ptr<char> b : count(len_b) =

malloc<array_ptr<char>>(len_b);
memcpy<array_ptr<char>>(b,

dynamic_bounds_cast<array_ptr<char>>(a,
count(len_b)), len_b);

}

Listing 4. Correct Bounds-Safe Interface with Dynamic Bounds Cast

read private kernel data or corrupt kernel memory. Second, we
hardened parts of the network stack as it processes network
packets from potentially untrusted sources; errors in manip-
ulating network packets might lead to remotely exploitable
code. Specifically, we modified the library routines that manip-
ulate network packets (called mbufs [39]) and then modified
parts of the IP and UDP protocol code to use checked pointers.

A. Kernel Support Routines

We first refactored support functions that are needed by both
refactored and unmodified code. These functions must accept
checked pointers and unchecked pointers as inputs and return
values. We refactored most of these functions to have a bound
safe interface using the features described in Section II-C.

We could not, however, refactor the memory copying
and initialization functions (memset(), memcpy(), and
memmove()) to use a bound safe interface as it caused
safe code to fail to compile. We observed that the bounds
safe interface requires that the bounds of a checked pointer
argument be equal to the separate bounds argument. However,
in some cases, these functions are used to copy or initialize a
subset of the memory pointed to by a pointer. For example,
the code in Listing 3 is memory-safe, but our version of the
Checked C compiler fails to compile it: the length for array a
is 5 while the amount of data to be copied is 4. The variable a
and the formal parameter src have different types due to the
size mismatch [44].

We must use a dynamic bounds cast (Section II-A) to create
a new pointer that has its bound equal to the memory area
needing to be initialized or copied. The Checked C compiler

itype_for_any(T) int copyin(const void *udaddr,
void *kaddr:itype(array_ptr<T>) byte_count(len),

size_t len);

itype_for_any(T) int copyout(const void
*kaddr:itype(array_ptr<T>) byte_count(len),

void *udaddr, size_t len);

itype_for_any(T) int copyinstr(const void *udaddr,
void *kaddr:itype(array_ptr<T>) byte_count(len),

size_t len, size_t *lencopied);

Listing 5. Refactored copyin(), copyout() and copyinstr()

will insert a dynamic check on the cast to ensure the new
bounds is no greater than the target pointer’s bounds. Listing 4
adds a dynamic bounds cast to reduce the length of the
destination buffer to equal the amount of data to be copied;
this code compiles and executes correctly.

To ease the refactoring burden, we created macros that wrap
memset(), memcpy(), and memmove(). These macros
use a dynamic bound cast on its checked pointer input to
reduce the pointer’s bounds to the correct size before calling
the original library functions which we modified to use a
bounds safe interface. Code using checked pointers can use
our wrapper macros to avoid compiler errors conveniently.

We also modified the function prototype of the kernel’s
malloc() and free() functions to provide a bounds safe
interface so that they work with both checked and unchecked
C pointers. FreeBSD has an optimization in which it inlines
the code that zeros the memory object if the size of the
memory object is a constant. We disabled this optimization as
it is implemented using a macro wrapper around malloc();
Checked C does not support macros with arguments that take
both checked and unchecked C pointers like bounds safe
interfaces do.

B. Copyin and Copyout Functions

The FreeBSD kernel’s copyin(), copyout() and
copyinstr() [5], [39] functions copy data between user-
space application memory and kernel memory. Each ensures
that the kernel can recover if the pointer to user-space memory
is invalid; however, they do not ensure that the kernel buffer
is large enough for the copy operation. These functions are
implemented in assembly language to maximize performance;
we cannot implement them efficiently in C. Furthermore, we
want both checked code and unchecked code to use a single
copy of these functions to avoid unnecessary code duplication.

Listing 5 shows the basic idea of how we refactored the
copyin(), copyout() and copyinstr() [5] function
prototypes to provide a bounds safe interface. For the convi-
nence of reading, trivial keywords (e.g. restrict) are removed
from the source code. The kernel address pointer can be either
a checked or unchecked pointer. When checked pointers are
passed to copyin(), copyout() and copyinstr() in
our refactored kernel, the Checked C compiler will ensure
that the kernel buffer is large enough to contain the data that

TABLE I
CURRENTLY MODIFIED SYSTEM CALLS

Functions System Calls
sys_read(), sys_readv(), sys_pread(),

copyin() sys_preadv(), sys_write(),
& sys_writev(), sys_pwrite(),

copyout() sys_pwritev(), sys_sendto(),
sys_sendmsg(), sys_sendfile(),
sys_recvfrom(), sys_recvmsg()

copyinstr() sys_open(), sys_chmod(), sys_chown()

is to be copied. Section IV-C describes how we refactored
the system call code to pass checked pointers to copyin(),
copyout() and copyinstr().

C. System Call Modifications

Since FreeBSD has more than 100 system calls, we chose
to modify a subset of them. Table I shows the system calls
that we refactored.

In most cases, the kernel passes the address of local vari-
ables to the copyin(), copyout() and copyinstr()
functions. To refactor the code, we created one new local
checked pointer for every local variable passed into these func-
tions, assigned the address of the local variable to the checked
pointer, and modified calls to copyin(), copyout()
and copyinstr() to use the new checked pointer. In
some cases, we had to use dynamic_bounds_cast()
to shrink the bounds of an existing checked pointer. For
example, uiomove_faultflag() uses copyin() and
copyout() to transfer data for scatter/gather I/O. The code
loops through a list of user-space buffers and copies the
data of each user-space buffer into one contiguous kernel
buffer. Consequently, the size of the kernel buffer must be
progressively reduced each time the loop appends new data to
the kernel buffer.

D. TCP/IP Stack Modifications

An mbuf is a data structure that represents a single network
packet [46]; it is used to represent packets for all of the
network protocols supported by the FreeBSD kernel. An mbuf
contains a header and a buffer area in which the packet’s data is
stored. A pointer in the mbuf header points to the first memory
location in the mbuf occupied by data. By moving the pointer
in the mbuf header, the FreeBSD kernel can quickly add and
remove network protocol headers e.g., UDP and IP headers.

The FreeBSD kernel provides a set of utility routines that
the network stack can use to manipulate the mbuf [46]. For
example, m_prepend() adds extra space to the beginning
of the data within an mbuf by decrementing the pointer in
the mbuf header, allowing for efficient prepending of headers
without data copying. Hence, as Figure 1 illustrates, an mbuf
uses an individual pointer to point to the first address of the
packet held within the mbuf instead of pointing to the initial
address of the buffer region within the mbuf.

We refactored all the mbuf utility routines to be in
checked regions so that Checked C enforces spatial memory
safety. We changed all unchecked pointers to use checked

Fig. 1. Memory Layout of an mbuf Data Structure.

pointer types, modified all functions called by the routines
to be in checked regions, and added bounds-safe interfaces
for the routines. We did leave a few functions outside of
checked regions. For example, m_alloc() (which allo-
cates an mbuf [46]) calls a function in the kernel memory
allocation library that is outside of our refactoring scope and
is therefore outside a checked region. The memory safety of
these functions requires manual inspection for now but could
be proved by Checked C when we refactor more of the kernel.

Aside from the exceptions stated below, pointers and mem-
ory buffers allocated within and used by the mbuf utility
routines have complete spatial memory safety. Additionally,
the bounds-safe interfaces ensure that the mbuf utility routines
will be memory safe when they use buffers passed in from
unmodified kernel code so long as that code passes in buffers
with sufficient size. Operations that manipulate these pointers,
including prepending, appending, inserting, and removing,
enforce spatial memory safety.

However, we could not put all mbuf code into checked
regions. Two scenarios account for the majority of difficulty.
First, some mbuf routines call code in other kernel subsystems
that we have not yet refactored; such code must be out-
side checked regions. Second, some mbuf code uses pointer
arithmetic to generate out-of-bound pointers that are used in
comparisons but not dereferenced. Checked C considers such
pointers to be out of bounds even though they are not used
to read or write out of the bounds of their referent memory
object.

After refactoring the mbuf code, we refactored the
ip_input(), ip_output(), udp_input(), and
udp_output() functions to place their code within
checked regions. ip_input() and udp_input()
process the IP and UDP headers of incoming packets,
respectively, while ip_output() and udp_output()
add IP and UDP headers to outgoing packets, respectively [46].
We refactored all functions called by these four functions to
be in checked regions as well. We did not refactor the IP
routing table code due to time.

V. REFACTORING EFFORT AND CHALLENGES

To evaluate the cost of our refactoring work, we measured
the number of lines we added and deleted using the git

TABLE II
LINES OF CODE REFACTORED MEASURED IN LINES

Added Deleted Files Modified Lines in Checked Regions
1,779 587 61 1,068

diff --stat command between the latest Checked C
modified kernel and the original kernel source code (revision
2ade061 from the FreeBSD 12 git repository). This count
includes comments and white space we added to the kernel.
We also counted the number of files we modified. Our results
in Table II show that we modified a small percentage of the
original FreeBSD 12 kernel’s 302,406 lines of code. We also
counted the number of lines of code that are within checked
regions; such code cannot induce a spatial memory safety
violation [44]. As Table II shows, most of the code we added
is within checked regions.

We also estimated our programmer effort on the project.
Two undergraduate students spent about 7.3 hours a week on
the project for 3 months. This includes time spent writing and
debugging code, compiling the kernel, writing test suites, and
reading material needed for the project. The pure coding and
debugging time spent on this project is around 3 hours a week.

The incremental conversion features of Checked C and
its compatibility with C eased our refactoring efforts: we
were able to modify functions and add small checked
regions instead of completely rewriting the kernel. Bounds safe
interfaces allowed us to reuse existing kernel functions with
both checked pointers and unchecked C pointers. However, we
observed a few challenges during our refactoring efforts due
to Checked C’s design or implementation:

1) Checked C’s bounds checking cannot always deduce
pointer bounds equality after performing pointer arith-
metic. For example, if p is a checked array pointer,
the compiler cannot infer that p and p + x - x have
the same bounds; instead, it generates a compile-time
warning (an error when compiling the FreeBSD kernel).
Programmers must insert a dynamic bounds cast opera-
tion to force the compiler to check that the two pointer
expressions have the same bounds.

2) As mentioned in the last paragraph of Section IV-A,
Checked C does not permit programmers to write C
preprocessor macros that have bounds safe interfaces
that accept both checked and unchecked pointers as
inputs to the same parameter. As numerous macros are
used in the kernel, we were forced to write new versions
of macros that take checked pointers as inputs and to
refactor existing code that uses checked pointers to use
the new macros. Because of this issue, we created a new
set of macros for the kernel linked list implementation
with 11 additional lines.

3) We observed that the FreeBSD kernel frequently allo-
cates local variables and copies data between application
memory and these local variables using copyin()
and copyout(). In the original kernel, the address of
these local variables can be passed to copyin() and
copyout() by using the address-of operator (&). In
Checked C, a separate checked pointer variable must
be created to point to the local variable, and this new
checked pointer variable is passed to copyin() and
copyout(). As this creates many unnecessary pointer
variables, it would be convenient if Checked C enhanced

the address-of operator to automatically create a checked
pointer in calls to functions that can take checked
pointers.

VI. EVALUATION

We evaluated the performance and code size overheads of
our refactored FreeBSD kernel. For performance, we evaluated
the following components:

• File System: the bandwidth for file read.
• System Calls: the latency of several common system calls

such as read(), write(), and open().
• Pipe: the bandwidth and transaction latency of pipe I/O

using the read() and write() system calls.
• Unix Socket: the bandwidth and transaction latency for

Unix domain sockets using the read() and write
system calls.

• UDP: the bandwidth and transaction latency for an IPv4
UDP socket.

We used the LMBench suite [40] to measure the perfor-
mance of system calls, the file system, and pipes as well as the
latency of Unix domain and IPv4 UDP sockets. The open()
system call uses our refactored copyinstr() function, and
the file system and networking experiments utilize our refac-
tored read(), write(), send(), and recv() system
calls. We used iPerf3 [1] to measure IPv4 and IPv6 UDP
bandwidth. iPerf3 sets up a client process and server process
which communicate over a network; the datagram size is
configurable. iPerf3 transmits data between the client and
server for 10 seconds while calculating the bandwidth once
per second.

We performed our experiments on a machine with one i7-
7700 Intel CPU (4 cores, 8 threads) running at 3.60 GHz. Our
machine had 16 GB of DRAM and a 500 GB solid state drive
(SSD). We ran each benchmark 10 times. For the network
tests, we ran the server and the client on the same machine.
We configured a UDP server and client using iPerf3 with a
buffer size of 65,507 bytes (the maximum buffer size that
iPerf3 accepts) and to report bandwidth in MB/s. We also
disabled the limitation on bandwidth. We switched the client
mode between IPv4 and IPv6 to measure both IPv4 and IPv6
performance.

We used version 2ade061 of the stable/12 branch of
FreeBSD’s online repository.2 Our baseline kernel is the
original FreeBSD kernel compiled by the Checked C com-
piler as we wanted to measure the overhead of using the
Checked C features. We compiled both the baseline kernel
and the Checked C kernel using default compiler flags.

A. Performance Overhead

1) System Calls: To understand how our changes affect
system call performance, we used LMBench [40] v3.0-a9 to
measure the latency of several system calls and the bandwidth
of file I/O, pipe I/O, and Unix domain socket I/O on the
baseline and Checked C kernels. We ran each LMBench

2https://github.com/freebsd/freebsd/tree/stable/12

https://github.com/freebsd/freebsd/tree/stable/12

TABLE III
FREEBSD KERNEL PERFORMANCE

Version FreeBSD12 Checked-FreeBSD12
Latency
(ns)

Average Std
Dev

Average Std
Dev

Overhead

getppid 187.96 0.61 188.23 1.25 +0.14%
read 260.22 0.68 259.96 1.25 −0.10%
write 233.14 0.96 232.75 2.23 −0.17%
open 1,874.72 6.47 1,881.26 5.18 +0.34%
Pipe I/O 4,573.20 38.15 4,526.57 37.79 −1.01%
Unix
socket I/O

4,921.33 64.33 4,858.62 50.76 −1.27%

Bandwidth
(MB/s)

Average Std
Dev

Average Std
Dev

Overhead

File I/O 15,076.88 48.54 14,880.79 67.30 +1.01%
Unix
socket I/O

1,677.64 6.11 1,680.41 9.81 −0.16%

Pipe I/O 10,351.54 176.35 10,281.92 66.55 +0.67%

TABLE IV
UDP BENCHMARK RESULT

Version FreeBSD12 Checked-FreeBSD12
Latency
(ns)

Average Std
Dev

Average Std
Dev

Overhead

UDP
Socket I/O

8,133.78 44.70 8,093.38 33.67 −0.49%

Bandwidth
(MB/s)

Average Std
Dev

Average Std
Dev

Overhead

UDP socket
I/O

5,702 5.67 5,672 16.26 +0.52%

UDP6
socket I/O

5,117 12.81 5,145 19.16 −0.54%

benchmark 10 times and calculated the average and standard
deviation of the 10 runs. Time is measured in nanoseconds.

Our results in Table III show that our changes induce
almost no performance overhead when accounting for standard
deviation. As the Checked C compiler can optimize away
some checks [25], we believe the low overhead is due to the
Checked C compiler optimizing away bounds checks. As Sec-
tion V states, in many calls to copyin() and copyout(),
the function calling copyin() or copyout() is passing
a pointer to a local variable. It is trivial for the compiler to
prove that the length passed to copyin() or copyout()
is identical to the length of the local variable, especially since
the same expression is used as the length of buffer to which
the checked pointer points and as the length of data that
copyin() or copyout() should transfer.

2) UDP & IP: Since LMBench [40] v3.0-a9 does not pro-
vide a complete UDP bandwidth test, we only used LMBench
to measure UDP latency. We used iPerf3 [1] to measure the
bandwidth; we report the bandwidth iPerf3 measured for its
server process. As the results in Table IV show, our changes
incur nearly no overhead. This is expected; we only refactored
the code that processes UDP and IP headers, and this code is
only used once per packet when sending or receiving a UDP
packet.

B. Code Size Overhead

We measured sizes of the compiled kernel binaries with
the ls -l command. Since the Checked C compiler inserts

dynamic checks into the refactored (checked) kernel, we
expect the checked version to be larger than the original
kernel. However, to our surprise, the original baseline kernel
is 31,295,952 bytes, while the checked kernel is 31,295,448
bytes, which is 504 bytes smaller. We disassembled both ker-
nels and checked a sample function that shrank and observed
that some functions that we have not modified shrank in size
in the checked kernel. When compiling the Checked C kernel,
the Checked C compiler makes different instruction selection
choices that cause certain instruction sequences to be shorter in
the checked kernel. For example, in sigexit_handler(),
a function we did not modify, the compiler generated a shorter
mov instruction for the checked kernel.

We also counted the number of dynamic checks inserted
by the Checked C compiler. For each dynamic check, the
compiler inserts code to execute an undefined instruction
ud2 [31] and directs the control flow to it if the run-time check
fails. We disassembled both kernels and found 173 additional
ud2 instructions in the checked kernel, which indicates the
compiler inserted at least 173 dynamic checks.

C. Checked C Compiler vs. Original Clang Compiler

When compiling code that does not use Checked C features,
the Checked C compiler should produce code that has the same
performance as when it is compiled with the original Clang
compiler. To verify this, we compiled the original FreeBSD
kernel with both the original unmodified Clang 9.0 compiler
and the Checked C compiler which is based on Clang 9.0. We
then ran all our benchmarks again on both kernels; we used
a different machine for this experiment, but its specifications
are identical to our first machine save for a smaller 256 GB
SSD. We found that both kernels have the same performance.
Hence, the overhead from the modified FreeBSD kernel must
be due to our kernel modifications and any dynamic checks
that Checked C introduces.

VII. RELATED WORK

A. Safe C Dialects

There are a few safe C dialects that provide spatial and/or
temporal memory safety. Similar to Checked C, Cyclone [32]
combines static analysis and dynamic checking to catch out-
of-bounds accesses; unlike Checked C, Cyclone uses “fat”
pointers - integrating bounds information with raw C pointers
- to allow pointer arithmetic. Consequently, it breaks back-
ward compatibility when interacting with legacy library code.
Deputy [18] extends C’s type system with dependent types
to incorporate pointers’ bounds information into types; like
Checked C, it maintains backwards compatibility by avoiding
fat pointers but also requires programmers to annotate their
code. SafeDrive [49] applied Deputy to secure Linux device
drivers and to automatically restart failed device drivers. Our
work is similar to the refactoring work in SafeDrive but
evaluates the effects of refactoring core kernel code. Control-
C [34] is a subset of C specifically targeting real-time embed-
ded systems. It restricts certain C features (e.g., it disallows
casts between any pointer type) so that all the memory safety

checking can be done at compile time. Although incurring no
runtime overhead, it is not suitable for refactoring general-
purpose OS kernels due to its restrictions.

B. OS Written in a Safe Programming Language

Many research and prototype OS kernels have been written
in memory-safe and type-safe programming languages, includ-
ing SPIN [13] (Modula-3), JX [28] and KaffeOS [11], [12]
(Java), Singularity [30] (Sing# [26]), Mirage [38] (OCaml),
Redox [24] and Tock [36] (Rust), and Biscuit [23] (Go). A
few common obstacles hinder wide adoption of such operating
systems. First, these OS kernels suffer from compatibility
issues with existing low-level programs such as device drivers.
Second, it takes significant programmer effort to rewrite an OS
kernel. Checked C’s features allowed us to add spatial memory
safety to the FreeBSD kernel incrementally and cheaply while
using FreeBSD’s existing device drivers.

C. Automatic Compiler Instrumentation

Automatic compiler instrumentation can also mitigate mem-
ory safety vulnerabilities. Some solutions, such as KCoFI [20],
the work of Ge et al. [27], kGuard [33], and FINECFI [37]
restrict control flow to prevent various control-flow hijacking
attacks. Unlike our work, these systems do not mitigate non-
control data attacks. KENALI [45] uses CFI [9] and Data
Flow Integrity [15] to prevent memory safety attacks from
performing privilege escalation attacks by protecting the OS
kernel’s access control mechanisms, but it does not protect
other kernel data structures from theft or corruption. Secure
Virtual Architecture (SVA) [21], [22] provides both spatial
and temporal memory safety to an OS kernel, preventing both
control flow hijacking and non-control data attacks. However,
SVA incurs 28.9% to 280% performance overhead on common
system calls. Checked C provides spatial memory safety with
low performance overhead, but only refactored code provides
protection; unmodified code can still be vulnerable.

VIII. CONCLUSION

To the best of our knowledge, we are the first to refactor
OS kernel code to use Checked C [25]. Our current experience
leads us to believe that using Checked C on OS kernel code
will yield efficient spatial memory safety protections against
buffer overflow [42] and buffer overread [47] attacks with a
modest refactoring cost. Given our positive experience, we
will continue refactoring more kernel code to use checked
pointers and will investigate whether the FreeBSD community
is interested in accepting our changes to the kernel upstream.

ACKNOWLEDGEMENTS

We thank David Tarditi and the anonymous reviewers for
their helpful comments. This work was funded by NSF Award
CNS-1618213.

REFERENCES

[1] ESnet. iperf3. [Online]. Available: http://software.es.net/iperf/
[2] “A detailed description of the data execution prevention (dep,”

in feature in Windows XP Service Pack 2, Windows XP Tablet
PC Edition 2005, and Windows Server 2003, retrieved Dec.2018.
[Online]. Available: https://support.microsoft.com/en-us/help/875352/
a-detailed-description-of-the-data-execution-prevention-

[3] “CVE-2014-6416.” Available from MITRE, CVE-ID CVE-2014-
6416., Sep. 15 2014. [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-6416

[4] “CVE-2016-1887.” Available from MITRE, CVE-ID CVE-2016-1887.,
Jan. 13 2016. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2016-1887

[5] FreeBSD Handbook, December 2018, revision 52666. [Online].
Available: https://www.freebsd.org/doc/handbook/index.html

[6] “CVE-2019-14816.” Available from MITRE, CVE-ID CVE-2019-
14816., Aug. 10 2019. [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-14816

[7] “CVE-2019-8555.” Available from MITRE, CVE-ID CVE-2019-8555.,
Feb. 18 2019. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-8555

[8] “CVE-2020-12653.” Available from MITRE, CVE-ID CVE-2020-
12653., May 5 2020. [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2020-12653

[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,” ACM
Transactions on Information Systems Security, vol. 13, pp. 4:1–
4:40, November 2009. [Online]. Available: http://doi.acm.org/10.1145/
1609956.1609960

[10] J. Afek and A. Sharabani, “Dangling Pointer: Smashing the Pointer for
Fun and Profit,” in Black Hat USA, 2007.

[11] G. Back and W. C. Hsieh, “The kaffeos java runtime system,” ACM
Trans. Program. Lang. Syst., vol. 27, no. 4, p. 583–630, Jul. 2005.
[Online]. Available: https://doi.org/10.1145/1075382.1075383

[12] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau, “Tech-
niques for the design of java operating systems,” in Proceedings of 2000
USENIX Annual Technical Conference. San Diego, CA, USA: USENIX
Association, 2000.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers, “Extensibility safety and
performance in the spin operating system,” in Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, ser. SOSP
’95. New York, NY, USA: Association for Computing Machinery, 1995,
p. 267–283. [Online]. Available: https://doi.org/10.1145/224056.224077

[14] D. P. Bovet and M. Cesati, Understanding the LINUX Kernel, 2nd ed.
Sebastopol, CA: O’Reilly, 2002.

[15] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, ser. OSDI ’06. USA: USENIX
Association, 2006, p. 147–160.

[16] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: State-of-the-art defenses and
open problems,” in Proceedings of the Second Asia-Pacific Workshop
on Systems, 2011, pp. 1–5.

[17] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data Attacks Are Realistic Threats,” in Proceedings of the 14th
USENIX Security Symposium (SEC), Baltimore, MD, 2005, pp. 12–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251398.1251410

[18] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula,
“Dependent types for low-level programming,” in Proceedings of the
16th European Symposium on Programming, ser. ESOP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 520–535. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1762174.1762221

[19] K. Cook, “Kernel address space layout randomization,” Linux Security
Summit, 2013.

[20] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels,” in
Proceedings of the 2014 IEEE Symposium on Security and Privacy,
ser. SP ’14. Washington, DC, USA: IEEE Computer Society, 2014,
pp. 292–307. [Online]. Available: https://doi.org/10.1109/SP.2014.26

[21] J. Criswell, N. Geoffray, and V. Adve, “Memory Safety for Low-
level Software/Hardware Interactions,” in Proceedings of the 18th
Conference on USENIX Security Symposium, ser. SSYM’09. Berkeley,
CA, USA: USENIX Association, 2009, pp. 83–100. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855774

http://software.es.net/iperf/
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6416
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6416
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1887
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1887
https://www.freebsd.org/doc/handbook/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14816
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14816
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12653
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12653
http://doi.acm.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
https://doi.org/10.1145/1075382.1075383
https://doi.org/10.1145/224056.224077
http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dl.acm.org/citation.cfm?id=1762174.1762221
https://doi.org/10.1109/SP.2014.26
http://dl.acm.org/citation.cfm?id=1855768.1855774

[22] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure
Virtual Architecture: A Safe Execution Environment for Commodity
Operating Systems,” in Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, ser. SOSP ’07. New
York, NY, USA: ACM, 2007, pp. 351–366. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294295

[23] C. Cutler, M. F. Kaashoek, and R. T. Morris, “The benefits and costs
of writing a posix kernel in a high-level language,” in Proceedings
of the 12th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’18. USA: USENIX Association, 2018, p.
89–105.

[24] R. Developers, “The redox operating system.” [Online]. Available:
https://doc.redox-os.org/book/

[25] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi, “Checked C: Making C
Safe by Extension,” in 2018 IEEE Cybersecurity Development (SecDev),
Sep. 2018, pp. 53–60.

[26] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt,
J. R. Larus, and S. Levi, “Language support for fast and reliable
message-based communication in singularity os,” in Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, ser. EuroSys ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 177–190. [Online]. Available:
https://doi.org/10.1145/1217935.1217953

[27] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in Proceedings of the 1st IEEE European
Symposium on Security and Privacy (EuroS&P), Saarbrücken, Germany,
March 2016, pp. 179–194.

[28] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder, “The JX operating
system,” in Proceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference, ser. ATEC ’02. USA:
USENIX Association, 2002, p. 45–58.

[29] S. Gravani, M. Hedayati, J. Criswell, and M. L. Scott, “Iskios:
Lightweight defense against kernel-level code-reuse attacks,” arXiv
preprint arXiv:1903.04654, 2019.

[30] G. C. Hunt and J. R. Larus, “Singularity: Rethinking the software
stack,” SIGOPS Oper. Syst. Rev., vol. 41, no. 2, p. 37–49, Apr. 2007.
[Online]. Available: https://doi.org/10.1145/1243418.1243424

[31] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, January 2019, order Number: 325462-069US.

[32] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang, “Cyclone: A Safe Dialect of C,” in Proceedings
of the General Track of the Annual Conference on USENIX
Annual Technical Conference, ser. ATEC ’02. Berkeley, CA,
USA: USENIX Association, 2002, pp. 275–288. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647057.713871

[33] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “Kguard:
Lightweight kernel protection against return-to-user attacks,” in Pro-
ceedings of the 21st USENIX Conference on Security Symposium, ser.
Security’12. USA: USENIX Association, 2012, p. 39.

[34] S. Kowshik, D. Dhurjati, and V. Adve, “Ensuring code safety without
runtime checks for real-time control systems,” in Proceedings of
the 2002 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, ser. CASES ’02. New York,
NY, USA: Association for Computing Machinery, 2002, p. 288–297.
[Online]. Available: https://doi.org/10.1145/581630.581678

[35] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO), Palo Alto, CA,

2004, pp. 75–86. [Online]. Available: http://dl.acm.org/citation.cfm?id=
977395.977673

[36] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta,
and P. Levis, “Multiprogramming a 64kb computer safely and
efficiently,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 234–251. [Online]. Available:
https://doi.org/10.1145/3132747.3132786

[37] J. Li, X. Tong, F. Zhang, and J. Ma, “Fine-CFI: Fine-grained control-
flow integrity for operating system kernels,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 6, pp. 1535–1550, 2018.

[38] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels:
Library operating systems for the cloud,” in Proceedings of the
Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
461–472. [Online]. Available: https://doi.org/10.1145/2451116.2451167

[39] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Watson, The
Design and Implementation of the FreeBSD Operating System, 2nd ed.
Addison-Wesley Professional, 2014.

[40] L. McVoy and C. Staelin, “lmbench: Portable Tools for Performance
Analysis,” in Proceedings of the 7th USENIX Annual Technical
Conference (ATC), San Diego, CA, January 1996, pp. 23–23. [Online].
Available: http://dl.acm.org/citation.cfm?id=1268299.1268322

[41] S. Nicula and R. D. Zota, “Exploiting stack-based buffer overflow using
modern day techniques,” Procedia Computer Science, vol. 160, pp. 9–
14, 2019.

[42] A. One, “Smashing the Stack for Fun and Profit,” Phrack, vol. 7, Novem-
ber 1996, http://www.phrack.org/issues/49/14.html [Online; accessed 11-
March-2019].

[43] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-Oriented
Programming: Systems, Languages, and Applications,” ACM Transac-
tions on Information Systems Security (TISSEC), vol. 15, no. 1, pp.
2:1–2:34, Mar. 2012.

[44] A. Ruef, L. Lampropoulos, I. Sweet, D. Tarditi, and M. Hicks, “Achiev-
ing Safety Incrementally with Checked C,” in Principles of Security
and Trust, F. Nielson and D. Sands, Eds. Cham: Springer International
Publishing, 2019, pp. 76–98.

[45] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity,” in Proceedings of
the 2016 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2016.

[46] W. R. Stevens and G. R. Wright, TCP/IP Illustrated, 1st ed. Addison-
Wesley Professional, 1995, vol. 2.

[47] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the Memory Secrecy Assumption,” in Proceed-
ings of the 2nd European Workshop on System Security (EUROSEC),
Nuremburg, Germany, 2009, pp. 1–8.

[48] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the Expressiveness of Return-into-libc Attacks,” in Proceedings
of the 14th International Conference on Recent Advances in Intrusion
Detection (RAID), Menlo Park, CA, 2011, pp. 121–141.

[49] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, E. Brewer, E. Brewer, and E. Brewer, “Safedrive:
Safe and recoverable extensions using language-based techniques,”
in Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 45–60. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1298455.1298461

http://doi.acm.org/10.1145/1294261.1294295
https://doc.redox-os.org/book/
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/1243418.1243424
http://dl.acm.org/citation.cfm?id=647057.713871
https://doi.org/10.1145/581630.581678
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/2451116.2451167
http://dl.acm.org/citation.cfm?id=1268299.1268322
http://www.phrack.org/issues/49/14.html
http://dl.acm.org/citation.cfm?id=1298455.1298461
http://dl.acm.org/citation.cfm?id=1298455.1298461

	Introduction
	Background on Checked C
	New Pointer Types
	Checked Regions
	Bounds Safe Interface

	Threat Model
	Implementation
	Kernel Support Routines
	Copyin and Copyout Functions
	System Call Modifications
	TCP/IP Stack Modifications

	Refactoring Effort and Challenges
	Evaluation
	Performance Overhead
	System Calls
	UDP & IP

	Code Size Overhead
	Checked C Compiler vs. Original Clang Compiler

	Related Work
	Safe C Dialects
	OS Written in a Safe Programming Language
	Automatic Compiler Instrumentation

	Conclusion
	References

