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1 Coordinate descent and block coordinate descent

The coordinate descent (CD) algorithm is also a popular algorithm in optimization. For any
optimization problems minx∈Rn f(x), we can split the vector x into n coordinates and rewrite the
optimization problem in below

min
x1,x2,·,xn

f(x1, x2, · · · , xn).

(Note that x1, · · · , xn denote the coordinates of x, which is different from our previous note).
The idea of coordinate descent is to iteratively optimize each coordinate xi while fix the rest. The
algorithm can be summarized in 1: A slightly more general version of CD is the block version: block

Algorithm 1 CD

Require: x0, K
Ensure: xK ;
for k = 1 : K do
for i = 1 : n do

xi = argmin
y

f(x1, · · · , xi−1, y, xi, · · · , xn) (1)

end for
end for

coordinate descent (BCD). Following the same spirit in CD, BCD optimizes a block of coordinates
(instead of a single) while fixing the rest. One example of using BCD is the matrix factorization
problem covered in our early note:

min
U,V

1

2
‖M − UV T ‖2F .

We optimize U and V iteratively by

U = M(V +)T V = MT (U+)T .

Since there is not any key difference between BCD and CD. When we say CD, it covers both cases.
Many well known algorithms such as K-means and EM can be considered as a special case of CD.
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We can see that every single iterate decreases the objective function. Therefore, it is easy to
say that the CD algorithm guarantees the convergence. However, it does not guarantee to converge
to the global optimum even for convex problems. For example, consider the following problem:

min
x,y

1

2
x2 + |x− y|.

It is easy to see that the optimal solution is (0, 0). However, if (x, y) are initialized to (1, 1), we
have

y =1 = argmin
y

1

2
12 + |1− y| fix x = 1

x =1 = argmin
x

1

2
x2 + |x− 1| fix y = 1.

To guarantee that CD converges to the optimal solution, we need some additional conditions.

• f(x) is a convex smooth function;

• f(x) consists of a convex smooth function F (x) plus a convex closed “separable” function
G(x). G(x) is separable means that G(x) =

∑n
i=1Gi(xi).

2 Gauss-Seidel CD

Sometimes, it is still difficult to minimize a single variable (or a single block of variables) in CD.
However, that is not a big deal. The sprite of CD is nothing but updating a single variable to
decrease the objective value every time. Therefore, it is not necessary to optimize each single
variable to the best. To ensure to decrease the objective value, a simple coordinate gradient step
is enough. The Gauss-Seidel CD updates a coordinate by

xi = xi − γ∇if(x)

where ∇if(x) denotes the ith coordinate of the gradient ∇if(x). The steplength γ should be chosen
properly such that the new xi decreases the objective function value. A safe way to choose γ is

γ =
1

maxx |∇2
iif(x)|

(2)

To adaptively choose the step length, one can use the line search scheme we used in gradient descent
method. If we use (2) to replace (1), we obtain the Gauss-Seidel CD. Now, when we say CD, it
covers Gauss-Seidel CD as well.

3 Stochastic CD

The standard CD algorithm updates coordinates (or blocks of coordinates) in the cyclic manner
order. It may be extremely slow in practice. The stochastic version of CD updates coordinates in
a randomize manner in Algorithm 2.
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Algorithm 2 Stochastic CD

Require: x0, K
Ensure: xK ;
for k = 1 : K do

Randomly select a coordinate i from {1, 2, · · · , n}
Update xi by (1) or (2)

end for

4 EM algorithm: An explanation using CD

The key principle of CD is to optimize a single variable or (a single group of variable) at each
iteration while the remaining variables are fixed. We can use it to explain the EM algorithm. The
general framework of EM is trying to maximize the likelihood Pθ(X), which can be reformulated
in the following:

max
θ

Pθ(X)

⇔max
θ

logPθ(X)

⇔max
θ

logPθ(X) + max
q(·)

∑
Z

q(Z) log
Pθ(Z|X)

q(Z)

⇔max
θ,q(·)

∑
Z

q(Z) logPθ(X) +
∑
Z

q(Z) log
Pθ(Z|X)

q(Z)

⇔max
θ,q(·)

∑
Z

q(Z)

(
logPθ(X) + log

Pθ(Z|X)

q(Z)

)
⇔max

θ,q(·)

∑
Z

q(Z)

(
logPθ(X) + log

Pθ(Z|X)

q(Z)

)
⇔max

θ,q(·)

∑
Z

q(Z) log
Pθ(Z,X)

q(Z)

where q(·) is a density function, and the third line uses the fact of KL-divergence∑
Z

q(Z) log
p(Z)

q(Z)
= −KL(p||q) ≤ 0

and the equality holds when p(Z) = q(Z). The EM algorithm is nothing but to optimize the
objective function by alternatively optimizing θ and q(·)

• optimize q(·) by

q(Z) = Pθ(Z|X) = argmax
q(·)

∑
Z

q(Z) log
Pθ(Z,X)

q(Z)
;

• optimize θ by

θ = argmax
θ

∑
Z

q(Z) log
Pθ(Z,X)

q(Z)
.
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